JPH0319927B2 - - Google Patents

Info

Publication number
JPH0319927B2
JPH0319927B2 JP56123370A JP12337081A JPH0319927B2 JP H0319927 B2 JPH0319927 B2 JP H0319927B2 JP 56123370 A JP56123370 A JP 56123370A JP 12337081 A JP12337081 A JP 12337081A JP H0319927 B2 JPH0319927 B2 JP H0319927B2
Authority
JP
Japan
Prior art keywords
azimuth
distortion
orthogonal
amount
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56123370A
Other languages
Japanese (ja)
Other versions
JPS5824810A (en
Inventor
Akishi Numata
Akira Kuno
Muneaki Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP12337081A priority Critical patent/JPS5824810A/en
Priority to US06/355,622 priority patent/US4497034A/en
Priority to DE19823208483 priority patent/DE3208483A1/en
Publication of JPS5824810A publication Critical patent/JPS5824810A/en
Publication of JPH0319927B2 publication Critical patent/JPH0319927B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • G01C17/30Earth-inductor compasses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Navigation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、方位検知部からの信号により、移動
体、例えば車両の進行方向に対応する方位信号を
発生する方位検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a direction detection device that generates a direction signal corresponding to the traveling direction of a moving object, such as a vehicle, based on a signal from a direction detection section.

〔従来技術〕[Prior art]

従来の方位検出装置においては、車両の残留磁
気等による地磁気のひずみを例えば外部に取り付
ける補正用磁石により補正していた。
In conventional direction detecting devices, distortion of the earth's magnetic field caused by residual magnetism of a vehicle is corrected by, for example, an externally attached correction magnet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の構成では、車両の残留磁気等による
地磁気のひずみを打ち消すため格外部に取り付け
る補正用磁石の位置、個数、強さなどいろいろな
面からの考慮が必要となり、その補正は複雑なも
のとなり、また、車両毎に地磁気のひずみの特性
が異なるため、車両毎に異なつた補正が必要とな
る。また方位検知部の信号そのものがひずんでい
る場合もあるため正確な地磁気の方位を検知する
ことができなかつた。
In this conventional configuration, it is necessary to consider various aspects such as the position, number, and strength of the correction magnets installed outside the frame in order to cancel the distortion of the earth's magnetic field caused by the vehicle's residual magnetism, etc., and the correction is complicated. Furthermore, since the geomagnetic distortion characteristics differ from vehicle to vehicle, different corrections are required for each vehicle. Furthermore, the signal itself from the direction detection unit may be distorted, making it impossible to accurately detect the direction of the earth's magnetic field.

本発明は上記問題に鑑みたもので、移動体の乗
員の煩雑な補正操作を必要とすることなく、地磁
気の歪み量を自動的に補正することにより、常に
正確な移動体の方位が容易に検出できるようにす
ることを目的とする。
The present invention has been developed in view of the above problems, and it is possible to easily maintain accurate orientation of a moving object at all times by automatically correcting the amount of geomagnetic distortion without requiring complicated correction operations by the occupants of the moving object. The purpose is to enable detection.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本願発明では、第6図に示す如く、移動
体に取り付けられ、地磁気の方位を直交する2成
分にて検知する方位検知部1と、該方位検知部か
らの直交する2成分の電気信号により方位を演算
し方位信号を発生する演算部2を有する方位検出
装置において、 前記演算部は、前記方位検知部からの直交する
2成分の電気信号のどちらか一方が、あらかじめ
定められた所定値に等しいかどうかを所定周期毎
に自動的に判定する判定手段2Aと、 前記直交する2成分の電気信号のうちの一方
が、前記所定値に等しいと判定された時に、前記
電気信号の他方の値とあらかじめ定められた基準
値とを比較演算し、この他方の値に対する地磁気
の歪み量を自動的に演算し記憶する歪み量演算記
憶手段2Bと、 前記直交する2成分の電気信号を前記歪み量演
算記憶手段に記憶された地磁気の歪み量に基づい
て自動的に補正する歪み量補正手段2Cと、 前記補正された直交する2成分の電気信号によ
り方位を演算する方位演算手段2Dとを備えると
いう技術的手段を採用する。
Therefore, in the present invention, as shown in FIG. 6, a direction detecting section 1 is attached to a moving body and detects the direction of the earth's magnetic field using two orthogonal components, and an electric signal of two orthogonal components from the direction detecting section is used. In a direction detection device having a calculation unit 2 that calculates a direction and generates a direction signal, the calculation unit is configured to adjust one of the two orthogonal electric signals from the direction detection unit to a predetermined value. a determining means 2A that automatically determines whether or not they are equal at predetermined intervals; and a predetermined reference value, and a distortion amount calculation storage means 2B that automatically calculates and stores the amount of geomagnetic distortion with respect to the other value; It is said to be equipped with a distortion amount correction means 2C that automatically corrects the amount of distortion based on the amount of geomagnetic distortion stored in the calculation storage means, and an azimuth calculation means 2D that calculates the azimuth based on the corrected two-component electrical signals that are orthogonal to each other. Adopt technical measures.

〔作用〕[Effect]

本発明では、直交する2成分の電気信号のうち
の一方があらかじめ定めた所定値に等しくなつた
とき、他方の値の地磁気の歪み量があらかじめ定
めた基準値(例えば、直交する2成分のベクトル
軌跡の円の半径R)と特定の関係にあることに着
目し、この他方の値と基準値とが比較演算されて
前記歪み量が繰り返し更新され、正確な地磁気の
歪み量が算出される。そして、この歪み量により
補正された前記電気信号に基づいて、方位が演算
される。
In the present invention, when one of the orthogonal two-component electric signals becomes equal to a predetermined value, the amount of geomagnetic distortion of the other value becomes equal to a predetermined reference value (for example, a vector of orthogonal two-component electric signals). Focusing on the fact that there is a specific relationship with the radius R of the circle of the trajectory, the other value is compared with the reference value, the distortion amount is repeatedly updated, and the accurate geomagnetic distortion amount is calculated. Then, the direction is calculated based on the electrical signal corrected by this amount of distortion.

〔実施例〕〔Example〕

以下本発明を図に示す実施例について説明す
る。第1図はその一実施例を示す電気結線図であ
つて、方位検知センサ10は強磁性体の磁心1c
上に励磁巻線1D、および互いに直交するように
出力巻線1A,1Bがそれぞれ巻かれている。1
1は発振回路で、励磁巻線1Dを周波数で励磁
するために矩形波信号A(第2図1)を出力する。
磁心1c内の磁界は方位検知センサ10に加わる
地磁気の水平分力Hと地磁気のひずみの水平分力
hの和、H+hに応じて変化し、この磁心1C内
の磁界に比例した出力がそれぞれ出力巻線1A,
1Bより取り出され、コンデンサと抵抗からなる
同構成のフイルタ12A,12Bにより周波数2
成分の出力X,Y(第2図2,3)が得られる。
この出力X,Yを増巾回路13A,13Bを用い
て増巾した後、タイミング回路14よりの信号C
(第2図4)にてホールド回路15A,15Bで
サンプルホールドすれば15a点、15b点に直
流の出力x,yが得られる。
The present invention will be described below with reference to embodiments shown in the drawings. FIG. 1 is an electrical wiring diagram showing one embodiment of the present invention, in which the direction detection sensor 10 has a magnetic core 1c made of ferromagnetic material.
An excitation winding 1D is wound thereon, and output windings 1A and 1B are wound orthogonally to each other. 1
Reference numeral 1 denotes an oscillation circuit which outputs a rectangular wave signal A (FIG. 2 1) in order to excite the excitation winding 1D at a frequency.
The magnetic field inside the magnetic core 1c changes according to the sum of the horizontal component force H of the earth's magnetism applied to the orientation detection sensor 10 and the horizontal component force h of the earth's magnetic distortion, H+h, and an output proportional to the magnetic field inside the magnetic core 1C is output. Winding 1A,
1B, and filters 12A and 12B of the same configuration consisting of a capacitor and a resistor
The component outputs X and Y (Fig. 2, 2 and 3) are obtained.
After amplifying these outputs X and Y using amplifying circuits 13A and 13B, the signal C from the timing circuit 14 is
If the hold circuits 15A and 15B sample and hold (FIG. 2, 4), DC outputs x and y are obtained at points 15a and 15b.

そして、出力巻線1Bに対してθなる角度をな
して地磁気の水平分力Hが印加され、またφなる
角度をなして地磁気のひずみの水平分力hが印加
された場合、出力x,yは次式で表される。
If the horizontal component of the earth's magnetic field H is applied to the output winding 1B at an angle of θ, and the horizontal component of the earth's magnetic strain h is applied at an angle of φ, the outputs x, y is expressed by the following formula.

x=K1(Hsinθ+hsinφ)+K2x y=K1(Hcosθ+hcosφ)+K2y 上式においてK1は方位検知部1の増幅度、
K2x,K2yは方位検知部1のひずみである。
x=K 1 (Hsinθ+hsinφ)+K 2 x y=K 1 (Hcosθ+hcosφ)+K 2 y In the above equation, K 1 is the amplification degree of the direction detection section 1,
K 2x and K 2y are distortions of the orientation detection section 1.

また、上式において、K1・h・sinφ+K2xおよ
びK1・h・cosφ+K2yは車両に着磁した残留磁気
が出力巻線1Bに扱ぼす成分であるため、経年変
化や、車両が外部の強力な磁界中を通過しない限
り、車両の進行方向の変化に関係なく、一定の値
となる。
In addition, in the above equation, K 1・h・sinφ+K 2x and K 1・h・cosφ+K 2y are the components that the residual magnetism that is magnetized on the vehicle acts on the output winding 1B, so there are Unless the vehicle passes through a strong magnetic field, the value remains constant regardless of changes in the vehicle's direction of travel.

そして、車両を一回転させると、地磁気と出力
巻線1Bとの角度θは、0゜から360゜変化し、これ
に応じて上式の出力x,y(15a点、15b点)
も変化し、出力x,yを成分とするベクトル軌跡
は円となる。
Then, when the vehicle rotates once, the angle θ between the earth's magnetism and the output winding 1B changes from 0° to 360°, and accordingly, the output x, y of the above equation (point 15a, point 15b)
The vector locus whose components are the outputs x and y becomes a circle.

すなわち、上式をそれぞれ2乗し、加算して、
整理すると、 {x−(K1・h・sinφ+K2x)}2+ {y−(K1・h・cosφ+K2y)}2= (K1H)2となり、x,yのベクトル軌跡は、第3
図に示すような半径K1Hで、x軸方向にK1・h.
sinφ+K2x,y軸方向にK1・h・cosφ+K2yだけ
原点移動した円となる。
That is, by squaring each of the above expressions and adding them,
To summarize, {x−(K 1・h・sinφ+K 2x )} 2 + {y−(K 1・h・cosφ+K 2y )} 2 = (K 1 H) 2 , and the vector locus of x and y is 3
With radius K 1 H as shown in the figure, K 1 h in the x-axis direction.
sinφ+K 2x , a circle whose origin has been moved by K 1・h・cosφ+K 2y in the y-axis direction.

第1図において、2は演算部で公知のマイクロ
コンピユータシステムを用いて第4図に示すフロ
ーチヤートの演算処理を実行する。まず、方位検
知部1の出力x,yをステツプ101にて読み込
み、原点移動量xpffset,ypffset(ステツプ100に
て初期値はそれぞれ零)を歪み量補正手段をなす
ステツプ102にてそれぞれ減算して、原点移動
量を除いた出力x,yの値x′,y′を求める。但
し、原点移動量xpffset.ypffsetの初期値は零である
ため、最初のうちはx′,y′の値は正確な原点移動
量を除いた値ではないが、以下の演算を繰り返す
ことにより正確な値に近づく。即ち、判定手段と
してのステツプ103,104にてこのx′,y′の
どちらかが零の時、他方のy′またはx′の方位検知
部1の出力x,yのベクトル軌跡の半径K1Hに
相当する定数R(基準値)とから、原点移動xpffset
またはypffsetを歪み量演算記憶手段をなすステツ
プ107〜112にて求めて記憶する(車両の運
転状態に係わりなく記憶する)。
In FIG. 1, reference numeral 2 denotes an arithmetic unit which executes the arithmetic processing of the flowchart shown in FIG. 4 using a known microcomputer system. First, the outputs x and y of the direction detection section 1 are read in step 101, and the origin movement amounts x pffset and y pffset (initial values are zero in step 100) are each subtracted in step 102, which serves as distortion amount correction means. Then, the values x' and y' of the outputs x and y excluding the amount of movement of the origin are determined. However, the amount of movement of the origin x pffset . Since the initial value of y pffset is zero, at first the values of x' and y' are not accurate values excluding the amount of movement of the origin, but by repeating the following calculation, they approach accurate values. That is, in steps 103 and 104 as a determination means, when either of these x' or y' is zero, the radius of the vector locus of the output x, y of the other y' or x' of the direction detection unit 1 is determined From the constant R (reference value) corresponding to H, move the origin x pffset
Alternatively, y pffset is determined and stored in steps 107 to 112, which constitute the distortion amount calculation storage means (it is stored regardless of the operating state of the vehicle).

つまり、原点移動量xpffset=0、ypffset=0の時
は第7図aのように、xとx′、及びyとy′は一致
しており、例えば、A点に軌跡がある場合、x=
x′=0で、y=y′≧0であるので、ステツプ10
8にてy−Rなる演算を行ない、新たなypffset
求める。従つて、第7図bのようなx,x′軸の関
係となる。この時点では、yottsetは第3図の原
点移動量(K1・h・cosφ+K2y)と正確にはまだ
一致していない。
In other words, when the origin movement amount x pffset = 0, y pffset = 0, x and x' and y and y' match as shown in Figure 7a. For example, if there is a trajectory at point A , x=
Since x'=0 and y=y'≧0, step 10
In step 8, the calculation y-R is performed to obtain a new y pffset . Therefore, the relationship between the x and x' axes is as shown in FIG. 7b. At this point, yottset does not yet exactly match the origin movement amount (K 1 · h · cosφ + K 2y ) in FIG. 3.

次に、第7図bにおいて、軌跡が例えばB点に
なつたとすると、y′=0でx′<0となるのでステ
ツプ112にてxpffset=x+Rなる演算を行ない、
新たなxpffsetを求める。従つて、第7図cのよう
なy,y′軸の関係となる。
Next, in FIG. 7b, if the trajectory reaches point B, for example, y'=0 and x'<0, so in step 112, the calculation x pffset =x+R is performed,
Find a new x pffset . Therefore, the relationship between the y and y' axes is as shown in FIG. 7c.

そして、第7図cにおいて、a図のように再び
x′=0のC点になつたとき、上記のようにypffset
を再演算する(y′<0のため、ステツプ109に
てypffset=y+Rとなる)。
Then, in Figure 7c, again as in Figure a.
When it reaches point C where x'=0, y pffset as shown above
(Since y'<0, y pffset =y+R at step 109).

このように、x′=0,y=0のような定められ
たxまたはyの所定の時に原点移動量yottsetま
たはxpffsetを求めることを繰り返せば、第3図に
示す原点移動量(K1・h・sinφ+K2x)と(K1
h・cosφ+K2y)とが第5図に示すひずみ量すな
わち原点移動量xpffsetとypffsetとして求められる。
In this way, by repeating the calculation of the origin movement amount yottset or x pffset at a predetermined time of fixed x or y such as x'=0, y=0, the origin movement amount (K 1・h・sinφ+K 2x ) and (K 1
h·cosφ+K 2y ) are obtained as the amount of distortion shown in FIG. 5, that is, the amount of movement of the origin x pffset and y pffset .

x′およびy′が零でない時は、方位演算手段をな
すステツプ105にてこのx′およびy′からθ=
tan-1(x′/y′)なる演算を行い、車両の進行方位に 対応する方位信号θをステツプ106にて出力す
る。
When x' and y' are not zero, in step 105, which serves as an azimuth calculation means, θ=
The calculation tan -1 (x'/y') is performed, and an azimuth signal θ corresponding to the traveling direction of the vehicle is output at step 106.

なお、この演算部2を含む方位検出装置はこの
装置専用の電源スイツチのオンによる電源供給
(車両イグニツシヨンキースイツチのオンによる
電源供給でもよい)を受て作動状態になり、また
前記ひずみ量はこの電源スイツチのオンオフ状態
に係わりなく記憶(不揮発記憶)されるように構
成されている。
The direction detecting device including this calculation unit 2 is brought into operation by receiving power supply by turning on a power switch dedicated to this device (power may be supplied by turning on the vehicle ignition key switch), and the direction detecting device is activated by the amount of distortion. is configured to be stored (non-volatile storage) regardless of the on/off state of this power switch.

なお、記実施例では方位検知センサ10として
リングコアタイプフラツクスゲートセンサを示し
たが、その代わりに、他のフラツクスゲートセン
サ、ホール素子等を用いてもよい。
In this embodiment, a ring core type flux gate sensor is shown as the direction detection sensor 10, but other flux gate sensors, Hall elements, etc. may be used instead.

さらに、方位信号θは、tan-1(x′/y′)なる演算 によらなくても、レベル比較によつて2N分割の
方位信号としてもよい。
Furthermore, the azimuth signal θ may be made into a 2N-divided azimuth signal by level comparison instead of using the calculation tan −1 (x′/y′).

さらに、算部2はマイクロコンピユータシステ
ムによるデジタル処理ではなくアナログ的に比較
回路、加減算回路等を組み合わせても実現でき
る。
Furthermore, the calculating section 2 can be realized not by digital processing by a microcomputer system but by combining a comparison circuit, an addition/subtraction circuit, etc. in an analog manner.

さらに、本方位検出装置は、車両だけでなく、
船舶、飛行機、その他の測定器に応用してもよ
い。さらに、上記実施例では、x′,y′のどちらか
が零の時の他方のy′またはx′を用いて演算したが
x′,y′の値が零でないある決められた値の時の他
方のy′またはx′の値を用いても良い。
Furthermore, this direction detection device can be used not only for vehicles but also for
It may also be applied to ships, airplanes, and other measuring instruments. Furthermore, in the above embodiment, when either x' or y' is zero, the other y' or x' is used for calculation.
The value of the other y' or x' when the value of x' or y' is a certain predetermined value other than zero may be used.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明では、移動体の乗員
は、移動体を普通に運転しているだけで方位補正
が自動的に行われ、補正のための煩わしい操作が
不要になるという優れた効果がある。
As described above, the present invention has the excellent effect that the direction correction is automatically performed by the occupant of the moving object simply by driving the moving object normally, eliminating the need for troublesome operations for correction. be.

しかも、移動体が移動中に順次ひずみ量が補正
されるから移動体の残留磁気等による地磁気のひ
ずみおよび方位検出部のひずみが変化しても自動
的にひずみ量も変わり移動体の正確な進行方位に
対応する方位信号を容易に発生することができる
という優れた効果がある。
Moreover, since the amount of distortion is corrected sequentially while the moving object is moving, even if the distortion of the earth's magnetic field due to the residual magnetism of the moving object or the distortion of the azimuth detection unit changes, the amount of distortion will automatically change to ensure accurate progress of the moving object. This has the excellent effect of easily generating an azimuth signal corresponding to the azimuth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す電気結線図、
第2図1,2,3,4は方位検知部の作動説明に
供する電圧波形図、第3図は方位検知部の作動説
明に供する説明図、第4図は演算部の演算処理を
示す演算流れ図、第5図は演算部の演算処理の説
明に供する説明図、第6図は本発明の構成を示す
ブロツク図、第7図は演算部の演算過程を説明す
るための説明図である。 1…方位検知部、2…演算部、2A…判定手
段、2B…歪み量演算記憶手段、2C…歪み量補
正手段、2D…方位演算手段、10…方位検知セ
ンサ。
FIG. 1 is an electrical wiring diagram showing an embodiment of the present invention;
Figure 2 1, 2, 3, and 4 are voltage waveform diagrams used to explain the operation of the direction detection section, Figure 3 is an explanatory diagram used to explain the operation of the direction detection section, and Figure 4 is a calculation showing the calculation process of the calculation section. 5 is an explanatory diagram for explaining the arithmetic processing of the arithmetic section, FIG. 6 is a block diagram showing the configuration of the present invention, and FIG. 7 is an explanatory diagram for explaining the arithmetic process of the arithmetic section. DESCRIPTION OF SYMBOLS 1... Direction detection section, 2... Calculation section, 2A... Determination means, 2B... Distortion amount calculation storage means, 2C... Distortion amount correction means, 2D... Direction calculation means, 10... Direction detection sensor.

Claims (1)

【特許請求の範囲】 1 移動体に取り付けられ、地磁気の方位を直交
する2成分にて検知する方位検知部と、該方位検
知部からの直交する2成分の電気信号により方位
を演算し方位信号を発生する演算部を有する方位
検出装置において、 前記演算部は、前記方位検知部からの直交する
2成分の電気信号のどちらか一方が、あらかじめ
定められた所定値に等しいかどうかを所定周期毎
に自動的に判定する判定手段と、 前記直交する2成分の電気信号のうちの一方
が、前記所定値に等しいと判定された時に、前記
電気信号の他方の値とあらかじめ定められた基準
値とを比較演算し、この他方の値に対する地磁気
の歪み量を自動的に演算し記憶する歪み量演算記
憶手段と、 前記直交する2成分の電気信号を前記歪み量演
算記憶手段に記憶された地磁気の歪み量に基づい
て自動的に補正する歪み量補正手段と、 前記補正された直交する2成分の電気信号によ
り方位を演算する方位演算手段とを備えることを
特徴とする方位検出装置。
[Scope of Claims] 1. An azimuth detection unit that is attached to a moving body and detects the azimuth of the earth's magnetic field using two orthogonal components, and a azimuth signal that calculates the azimuth using the two orthogonal electrical signals from the azimuth detection unit. In the azimuth detecting device, the azimuth detecting device determines whether one of the orthogonal two-component electrical signals from the azimuth detecting section is equal to a predetermined value at a predetermined period. a determination means for automatically determining the value of the other electrical signal and a predetermined reference value when one of the two orthogonal electrical signals is determined to be equal to the predetermined value; distortion amount calculation storage means for automatically calculating and storing the amount of distortion of the earth's magnetic field with respect to the other value; An orientation detection device comprising: a distortion amount correcting means that automatically corrects the distortion amount based on the distortion amount; and an orientation calculating means that calculates the orientation using the corrected orthogonal two-component electrical signals.
JP12337081A 1981-08-05 1981-08-05 Bearing detecting device Granted JPS5824810A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12337081A JPS5824810A (en) 1981-08-05 1981-08-05 Bearing detecting device
US06/355,622 US4497034A (en) 1981-08-05 1982-03-08 Heading detecting apparatus
DE19823208483 DE3208483A1 (en) 1981-08-05 1982-03-09 COURSE DETERMINATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12337081A JPS5824810A (en) 1981-08-05 1981-08-05 Bearing detecting device

Publications (2)

Publication Number Publication Date
JPS5824810A JPS5824810A (en) 1983-02-14
JPH0319927B2 true JPH0319927B2 (en) 1991-03-18

Family

ID=14858897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12337081A Granted JPS5824810A (en) 1981-08-05 1981-08-05 Bearing detecting device

Country Status (1)

Country Link
JP (1) JPS5824810A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848811A (en) * 1981-09-18 1983-03-22 Mitsubishi Electric Corp Bearing meter for car
EP0183735A1 (en) * 1984-05-22 1986-06-11 Kurt Tschannen Electronic compass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116211A (en) * 1981-01-09 1982-07-20 Mitsubishi Electric Corp Measuring device for direction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57116211A (en) * 1981-01-09 1982-07-20 Mitsubishi Electric Corp Measuring device for direction

Also Published As

Publication number Publication date
JPS5824810A (en) 1983-02-14

Similar Documents

Publication Publication Date Title
JPS6151244B2 (en)
JPS6212976Y2 (en)
JPH0429010B2 (en)
US4751783A (en) Azimuth determination apparatus
JPS6327235B2 (en)
JPS60135814A (en) Azimuth detecting apparatus
JPS5834314A (en) Bearing detector
JPS6035851Y2 (en) Direction detection device
JP2514254B2 (en) Vehicle compass
JP2003167627A (en) Position detecting sensor
JPH0319927B2 (en)
JP3318762B2 (en) Electronic compass
JPS5826213A (en) Azimuth detector
JPH0150846B2 (en)
JPH0348713A (en) Azimuth meter for vehicle
JPS6244207B2 (en)
JPS58135911A (en) Error compensating device for navigation system for vehicle
JPS62255814A (en) Correcting method for vehicle azimuth error
JPS5822911A (en) Azimuth detecting device
JPH0319929B2 (en)
JPS61215915A (en) Azimuth detecting device
JP2573667B2 (en) Direction measurement device
JPH0650248B2 (en) Mobile body orientation detector
JPH05196468A (en) Azimuth meter for car
JPH0261685B2 (en)