JPS6244187B2 - - Google Patents

Info

Publication number
JPS6244187B2
JPS6244187B2 JP12104279A JP12104279A JPS6244187B2 JP S6244187 B2 JPS6244187 B2 JP S6244187B2 JP 12104279 A JP12104279 A JP 12104279A JP 12104279 A JP12104279 A JP 12104279A JP S6244187 B2 JPS6244187 B2 JP S6244187B2
Authority
JP
Japan
Prior art keywords
voltage
expansion valve
valve
control circuit
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12104279A
Other languages
Japanese (ja)
Other versions
JPS5644565A (en
Inventor
Hiroshi Fujeda
Kenichiro Imasu
Akira Nakazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12104279A priority Critical patent/JPS5644565A/en
Publication of JPS5644565A publication Critical patent/JPS5644565A/en
Publication of JPS6244187B2 publication Critical patent/JPS6244187B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は冷凍サイクルに用いられる冷媒流量制
御装置に関し、特に膨張弁に、電気信号によつて
その弁開度が調節可能な機構を有する膨張弁を使
用した冷媒流量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerant flow rate control device used in a refrigeration cycle, and more particularly to a refrigerant flow rate control device using an expansion valve having a mechanism whose opening degree can be adjusted by an electric signal. Regarding equipment.

冷凍サイクルは例えば第1図のように通常構成
される。1は圧縮機、2は凝縮器、3は膨張弁、
4は蒸発器である。膨張弁3は蒸発器4の入口部
及び出口部に設けた第1、第2の温度センサによ
つて検出された冷媒温度の差に応じて膨張弁3の
弁開度を制御する制御回路5により制御され、蒸
発器4の入出口間の温度差を一定に保つようにな
つている。温度センサとしては、温度を抵抗値に
変換する類のもの、電圧に変換する類のものがあ
るがいずれであつても、電気信号に変換できるも
のであればよい。膨張弁3としては例えば第2図
に示す構成をもつたものがある。弁枠3A内に、
弁3A、弁座3C、流入ポート3D、流出ポート
3Eを有し、冷媒は流入管3Fより、流出ポート
3D、弁座3Cと弁3Bとの間隙、流出ポート3
Eを経て流出管3Gを経て流出する。弁駆動部
は、ケース3H内に収納され、バイメタル3i、
バイメタル3iを変位させるための電気ヒータ3
j、スプリング3Kより成る。電気ヒータ3jの
給電線は接続端子3L,3Mを介して外部へ引出
される。
A refrigeration cycle is usually configured as shown in FIG. 1, for example. 1 is a compressor, 2 is a condenser, 3 is an expansion valve,
4 is an evaporator. The expansion valve 3 has a control circuit 5 that controls the opening degree of the expansion valve 3 according to the difference in refrigerant temperature detected by first and second temperature sensors provided at the inlet and outlet of the evaporator 4. The temperature difference between the inlet and the outlet of the evaporator 4 is kept constant. Temperature sensors include those that convert temperature into a resistance value and those that convert temperature into voltage, but any sensor may be used as long as it can be converted into an electrical signal. As the expansion valve 3, for example, there is one having a configuration shown in FIG. Inside the valve frame 3A,
It has a valve 3A, a valve seat 3C, an inflow port 3D, and an outflow port 3E.
E and flows out through the outflow pipe 3G. The valve drive unit is housed in the case 3H, and is made of bimetal 3i,
Electric heater 3 for displacing bimetal 3i
j, Consists of spring 3K. The power supply line of the electric heater 3j is drawn out to the outside via the connection terminals 3L and 3M.

このような構成で、圧縮機1が運転中は、第1
の温度センサで検出する温度T1と第2の温度セ
ンサで検出する温度T2との差T2−T1が所定の温
度よりも低ければ、制御回路5は電気ヒータ3j
の通電量を減じる信号を出力し、これにより膨張
弁3の弁開度が減じ、これにより冷媒流量が減ぜ
られ、これによりT2−T1が増加する。逆にT2
T1が所定温度より高ければ、制御回路5により
膨張弁3の弁開度が増す方向へ制御され、冷媒流
量が増し、T2−T1が低下する。このような動作
によつて、T2−T1を略々一定値に保ち、これに
より、蒸発器出口の過熱度を略々一定に保つ。
With this configuration, while the compressor 1 is operating, the first
If the difference T 2 −T 1 between the temperature T 1 detected by the second temperature sensor and the temperature T 2 detected by the second temperature sensor is lower than a predetermined temperature, the control circuit 5 controls the electric heater 3j.
A signal is output to reduce the energization amount, thereby reducing the opening degree of the expansion valve 3, thereby reducing the refrigerant flow rate, and thereby increasing T 2 −T 1 . Conversely, T 2
If T 1 is higher than the predetermined temperature, the control circuit 5 controls the expansion valve 3 in the direction of increasing the valve opening, the refrigerant flow rate increases, and T 2 −T 1 decreases. This operation keeps T 2 −T 1 at a substantially constant value, thereby keeping the degree of superheat at the evaporator outlet substantially constant.

しかしこのような装置では、圧縮機1が長期間
停止した後で始動した場合、以下のような問題が
発生する。停止中は、蒸発器4の入口出口温度
T1とT2はほぼ等しくなつていてT2−T1≒0であ
る。このため制御回路5は膨張弁3の弁開度を閉
じる方向の出力を出すため、弁が閉じた状態から
始動すれば、弁は永久に開かないことになる。す
なわち始動時に於いて膨張弁3の弁が開かないこ
とがあるばかりか、開いた状態からスタートして
も、制御回路5は弁を閉じる方向の出力を出し
て、弁を閉じてしまうことになる。このようなこ
とがあれば、冷凍サイクルが正常に動作し得ない
ことは明白である。
However, in such a device, when the compressor 1 is started after being stopped for a long period of time, the following problem occurs. During stoppage, the inlet and outlet temperature of evaporator 4
T 1 and T 2 are almost equal, and T 2 −T 1 ≈0. For this reason, the control circuit 5 outputs an output in the direction of closing the valve opening of the expansion valve 3, so if the engine is started with the valve closed, the valve will not open forever. In other words, not only may the expansion valve 3 not open during startup, but even if the engine starts from an open state, the control circuit 5 will output an output in the direction of closing the valve, resulting in the valve being closed. . If this happens, it is obvious that the refrigeration cycle cannot operate normally.

本発明は上記した従来例の欠点を解消した、新
規な制御回路を有する冷媒流量制御装置を提供せ
んとするものである。すなわち制御回路6内に、
始動後、蒸発器4の入口出口部温度差T2−T1
所定の値に達するまでは膨張弁3の弁開度を所定
の開度に保つ始動制御回路を付加することによ
り、上記従来例の欠点を解消せんとするものであ
る。以下本発明を図面を用いて説明する。
The present invention aims to provide a refrigerant flow rate control device having a novel control circuit that eliminates the drawbacks of the conventional example described above. That is, in the control circuit 6,
By adding a starting control circuit that maintains the valve opening of the expansion valve 3 at a predetermined opening until the temperature difference T 2 −T 1 at the inlet and outlet of the evaporator 4 reaches a predetermined value after starting, the above-mentioned conventional method can be improved. This is an attempt to overcome the shortcomings of the example. The present invention will be explained below using the drawings.

第3図は本発明の実施例における制御回路の図
面である。第1図、第2図と同一符号は同一物を
示す。60A,60Bは以下に述べる回路の直流
電源で、中点が接地されている。61はスイツチ
で、以下に述べる回路への直流電源60A,60
Bからの給電をオンオフする。5A,5Bは第
1、第2の温度センサとしての負特性サーミスタ
で本実施例では同一特性をもつものである。62
は抵抗で、蒸発器入口温度T1と出口温度T2との
差T2−T1の所定温度ΔTを与える。もしも(T2
−T1)=ΔTならば、サーミスタ5Bの抵抗値と
抵抗62の抵抗値を加えたものが、サーミスタ5
Aの抵抗値と等しくなり、点Aの電圧VAとな
る。もしも(T2−T1)>ΔTならば、サーミスタ
5Bの抵抗値と抵抗62の抵抗値を加えたもの
は、サーミスタ5Aの抵抗値よりも小さくなり、
点Aの電圧VAは正電圧となる。逆に(T2−T1
<ΔTなら、点Aの電圧VAは負電圧となる。す
なわち、蒸発器4の入口出口温度T1,T2の温度
差は電気信号としての電圧VAに変換される。6
3は増幅器で、点Aの電圧VAを比例倍する。増
幅器63は抵抗63A,63B、オペアンプ63
C、オペアンプ63C出力保護抵抗63Dで構成
される。64は電気ヒータ3jの駆動回路で、増
幅器63の出力電圧を入力電圧とし、この入力電
圧と出力電圧とを等しくするバツフアである。バ
ツフア64はオペアンプ64A、限流抵抗64
B、トランジスタ64Cで構成され、その出力は
トランジスタ64Cのコレクタ電圧である。今直
流電源60A,60Bの電圧を、+Vcc、−Vcc
すると、バツフア入力電圧ViBに対しその出力電
圧はViBとなり、電気ヒータ3jの印加電圧VH
は、VH=(2Vcc−ViB)となる。すなわち、ViB
が低くなれば、ヒータ3jの印加電圧は増し、そ
の発熱量は大となり、バイメタル3iの変位量大
となり、弁開度は増加する。ViBが高くなれば、
ヒータ3jの印加電圧は小となり、弁開度は減少
する。65は始動制御回路で、オペアンプ63C
の出力VAOを反転入力とし、65A,65Bなる
抵抗で電源電圧を分割した電圧VRをその非反転
入力とする65Cなる比較手段としてのオペアン
プ、オペアンプ65C出力がLoのとき、オペア
ンプ64Aの反転入力を引込むためのダイオード
65D、オペアンプ65C出力がHiのとき、そ
の非反転入力をその出力電圧とほぼ等しくし、再
びその出力がLoになることを禁止するダイオー
ド65E、電源投入時VAO>VRとなるように、
短期間VRを、−Vccとするためのコンデンサ65
Fで構成され、このコンデンサ65Fはたとえば
充電時間が約2〜3秒である。
FIG. 3 is a diagram of a control circuit in an embodiment of the present invention. The same reference numerals as in FIGS. 1 and 2 indicate the same parts. 60A and 60B are DC power supplies for the circuit described below, and their middle point is grounded. 61 is a switch, which is a DC power supply 60A, 60 for the circuit described below.
Turn the power supply from B on and off. 5A and 5B are negative characteristic thermistors as first and second temperature sensors, which have the same characteristics in this embodiment. 62
is a resistance, which gives a predetermined temperature ΔT of the difference T 2 −T 1 between the evaporator inlet temperature T 1 and the outlet temperature T 2 . What if (T 2
-T 1 )=ΔT, the sum of the resistance value of thermistor 5B and the resistance value of resistor 62 is the thermistor 5
It becomes equal to the resistance value of point A, and becomes the voltage V A at point A. If (T 2 - T 1 )>ΔT, the sum of the resistance value of thermistor 5B and the resistance value of resistor 62 will be smaller than the resistance value of thermistor 5A,
The voltage V A at point A becomes a positive voltage. Conversely (T 2T 1 )
<ΔT, the voltage V A at point A becomes a negative voltage. That is, the temperature difference between the inlet and outlet temperatures T 1 and T 2 of the evaporator 4 is converted into a voltage V A as an electrical signal. 6
3 is an amplifier that proportionally multiplies the voltage V A at point A. The amplifier 63 includes resistors 63A, 63B, and an operational amplifier 63.
C, an operational amplifier 63C, and an output protection resistor 63D. Reference numeral 64 is a drive circuit for the electric heater 3j, which is a buffer that uses the output voltage of the amplifier 63 as an input voltage and makes the input voltage equal to the output voltage. Buffer 64 is operational amplifier 64A, current limiting resistor 64
B and a transistor 64C, the output of which is the collector voltage of the transistor 64C. Now, if the voltages of the DC power supplies 60A and 60B are +V cc and -V cc , the output voltage will be V iB with respect to the buffer input voltage V iB , and the applied voltage of the electric heater 3j will be V H
becomes V H =(2V cc −V iB ). That is, V iB
As the voltage decreases, the voltage applied to the heater 3j increases, the amount of heat generated by the heater 3j increases, the amount of displacement of the bimetal 3i increases, and the valve opening increases. If V iB becomes high,
The voltage applied to the heater 3j becomes small, and the valve opening degree decreases. 65 is the starting control circuit, operational amplifier 63C
An operational amplifier 65C serves as a comparison means, with the output V AO of the amplifier as an inverting input, and a voltage V R obtained by dividing the power supply voltage by resistors 65A and 65B as its non-inverting input. When the output of the operational amplifier 65C is Lo, the inverting of the operational amplifier 64A Diode 65D for pulling in the input, diode 65E for making the non-inverting input almost equal to its output voltage when the operational amplifier 65C output is Hi, and prohibiting its output from becoming Lo again, when the power is turned on V AO >V So that R
Capacitor 65 for short-term VR to -Vcc
The charging time of this capacitor 65F is approximately 2 to 3 seconds, for example.

圧縮機1の長期停止後、圧縮機1を運転させる
と同時にスイツチ61を閉じる。始動直後は、蒸
発器4の入口出口部温度差T2−T1はほぼゼロで
あるから、点Aの電圧VAは負電圧となるので、
オペアンプ63Bの出力電圧は正電圧となつてい
る。今仮に抵抗65A,65Bの抵抗値を、VAO
がゼロVになつたとき、オペアンプ65出力が反
転する電圧にVRがなるように選んでおく。従つ
て、VAO>VRとなり、オペアンプ65C出力は
Lo電圧(≒−Vcc)となり、オペアンプ64A反
転入力はほぼ−Vccとなり、ヒータ3jの印加電
圧は2Vccとなり、膨張弁3の弁開度は全開方向へ
動作する。弁開度は電気ヒータ3jに100%電圧
を印加してもすぐには全開とならないが、時間の
経過とともに全開方向へと動作する。始動後冷媒
の循還により、蒸発器入口出口温度の差が生じ、
T2−T1が所定の温度差ΔTに達すると、点Aの
電圧はゼロVとなり、オペアンプ63Bの出力電
圧もゼロVとなる。これにより、VAO<VRとな
り、オペアンプ65C出力はHiとなり、これに
より、オペアンプ64Aの反転入力を引込む動作
が完了し、オペアンプ64Aの反転入力にはオペ
アンプ63C出力が印加され通常の制御動作へ移
る。同時に、オペアンプ65Cの非反転入力はそ
の出力電圧(≒Vcc)と等しくなり、VAOが変化
しても再びLoになることが禁止される。ここで
抵抗65A,65Bの抵抗値を適当に選択し、蒸
発器4の入口出口温度差T2−T1が所定温度ΔT
になつたとき、膨張弁3に対し全開信号を出力す
ることが終了したが、終了させるための温度差
T2−T1はΔT以外の値であつてもよく、このよ
うにするには抵抗65A,65Bの値を適当に選
択すればよい。
After the compressor 1 has stopped for a long period of time, the switch 61 is closed at the same time as the compressor 1 is operated. Immediately after starting, the temperature difference T 2 - T 1 at the inlet and outlet of the evaporator 4 is almost zero, so the voltage V A at point A becomes a negative voltage, so
The output voltage of the operational amplifier 63B is a positive voltage. Now suppose that the resistance values of resistors 65A and 65B are V AO
When V becomes zero V, select V R to be the voltage at which the output of the operational amplifier 65 is inverted. Therefore, V AO > V R and the output of the operational amplifier 65C is
The Lo voltage (≈-V cc ) is applied, the inverting input of the operational amplifier 64A becomes approximately -V cc , the voltage applied to the heater 3j becomes 2V cc , and the valve opening of the expansion valve 3 operates in the fully open direction. The valve opening degree does not become fully open immediately even when 100% voltage is applied to the electric heater 3j, but moves toward the fully open direction as time passes. Due to refrigerant circulation after startup, a difference in evaporator inlet and outlet temperatures occurs,
When T 2 −T 1 reaches a predetermined temperature difference ΔT, the voltage at point A becomes zero volts, and the output voltage of the operational amplifier 63B also becomes zero volts. As a result, V AO <V R and the output of the operational amplifier 65C becomes Hi. This completes the operation of pulling in the inverting input of the operational amplifier 64A, and the output of the operational amplifier 63C is applied to the inverting input of the operational amplifier 64A, returning to normal control operation. Move. At the same time, the non-inverting input of operational amplifier 65C becomes equal to its output voltage (≈V cc ), and is prohibited from going Lo again even if V AO changes. Here, the resistance values of the resistors 65A and 65B are appropriately selected, and the inlet and outlet temperature difference T 2 - T 1 of the evaporator 4 is set to a predetermined temperature ΔT.
When the output of the fully open signal to the expansion valve 3 is completed, the temperature difference required to complete the output is completed.
T 2 −T 1 may be a value other than ΔT, and this can be achieved by appropriately selecting the values of the resistors 65A and 65B.

この実施例によれば、始動後、温度差T2−T1
が所定の温度差になるまで、膨張弁3の弁開度
を、温度差T2−T1に無関係に全開にする信号を
制御回路6が出力するので、従来例の如く始動時
に弁が全閉方向へ動作することがなく、冷媒流量
を安定に制御できる。
According to this embodiment, after starting, the temperature difference T 2 −T 1
The control circuit 6 outputs a signal to fully open the expansion valve 3, regardless of the temperature difference T 2 -T 1 , until the temperature difference reaches a predetermined temperature difference. The refrigerant flow rate can be stably controlled without moving in the closing direction.

第4図は本発明の他の実施例を示す図面で、第
3図の実施例では、全開信号を出力するものであ
るが、本実施例は、所定の開度を保つための信号
を出力するものであり、第3図の回路に、リレー
66、直流電源67を付加したものである。すな
わちオペアンプ65C出力がLoの期間は、リレ
ー66がオンし、オペアンプ64A反転入力は直
流電源67の電圧VCを−Vccに加えた電圧VC
ccとなり、ヒータ3jの印加電圧は2Vcc−VC
となる。これにより、膨張弁3の弁開度は全閉と
全開の中間の開度になる。VCをゼロとすれば、
第3図の回路と同様弁開度は全開となる。またV
CをVC=Vccと選べば、ヒータ印加電圧はVcc
なり50%の通電量となり、弁開度は相応の弁開度
を維持することになる。
FIG. 4 is a drawing showing another embodiment of the present invention. The embodiment shown in FIG. 3 outputs a fully open signal, but this embodiment outputs a signal to maintain a predetermined opening degree. This is a circuit in which a relay 66 and a DC power source 67 are added to the circuit shown in FIG. That is, during the period when the output of the operational amplifier 65C is Lo, the relay 66 is turned on, and the inverting input of the operational amplifier 64A receives the voltage V C - which is the sum of the voltage V C of the DC power supply 67 and -V CC .
V cc and the voltage applied to heater 3j is 2V cc −V C
becomes. As a result, the opening degree of the expansion valve 3 becomes an opening degree between fully closed and fully open. If V C is set to zero, then
Similar to the circuit shown in FIG. 3, the valve opening is fully open. Also V
If C is chosen as V C =V cc , the voltage applied to the heater becomes V cc , which is 50% of the energization amount, and the valve opening is maintained at a corresponding valve opening.

以上の説明では、第1の温度センサを蒸発器入
口部に設けたが、蒸発器内の冷媒温度はほぼ均一
であることを考慮すれば、中間部に設けてもよい
ことは明白である。また第1、第2の温度センサ
にはサーミスタを用いたが他のセンサであつても
よいし、またその非線形性が問題になるような場
合には、サーミスタに直列、または並列、または
直並列に抵抗を付加することで直線化することも
でき、これで第3図のサーミスタ5A,5Bを置
換すればよい。膨張弁3としては、第2図の如き
ものを用いたが、他に比例電磁弁や可逆モータを
用いるもの等があるが、いずれにせよ、電気信号
によりその弁開度を調節できるものであればよい
ことは上述の説明から明らかである。
In the above description, the first temperature sensor was provided at the inlet of the evaporator, but considering that the refrigerant temperature within the evaporator is substantially uniform, it is clear that it may be provided at the intermediate portion. In addition, although thermistors are used as the first and second temperature sensors, other sensors may be used, and if their nonlinearity becomes a problem, they may be used in series, in parallel, or in series-parallel with the thermistors. It can also be made straight by adding a resistor to it, and the thermistors 5A and 5B in FIG. 3 can be replaced with this. As the expansion valve 3, the one shown in Fig. 2 was used, but there are other ones that use a proportional solenoid valve or a reversible motor, but in any case, the valve opening can be adjusted by an electric signal. It is clear from the above explanation that this is the case.

以上詳述したように、本発明によれば、始動後
温度差T2−T1が所定の温度に達するまでは、膨
張弁開度を所定開度に保つ信号を制御回路が出力
するので、安定に冷凍サイクルを始動させること
ができる優れた効果を奏するものである。
As detailed above, according to the present invention, the control circuit outputs a signal that maintains the expansion valve opening at a predetermined opening until the temperature difference T 2 −T 1 after startup reaches a predetermined temperature. This provides an excellent effect of stably starting the refrigeration cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷凍サイクル概略構成図、第2図は膨
張弁の一例を示す断面図、第3図は本発明の実施
例の制御回路図、第4図は本発明の他の実施例の
制御回路の要部回路図である。 3……膨張弁、4……蒸発器、5A……第1の
温度センサ、5B……第2の温度センサ、6……
制御回路、65……始動制御回路、65C……比
較手段としてのオペアンプ。
Fig. 1 is a schematic configuration diagram of a refrigeration cycle, Fig. 2 is a sectional view showing an example of an expansion valve, Fig. 3 is a control circuit diagram of an embodiment of the present invention, and Fig. 4 is a control circuit diagram of another embodiment of the present invention. It is a circuit diagram of the main part of a circuit. 3... Expansion valve, 4... Evaporator, 5A... First temperature sensor, 5B... Second temperature sensor, 6...
Control circuit, 65... Starting control circuit, 65C... Operational amplifier as comparison means.

Claims (1)

【特許請求の範囲】 1 電気信号によつてその弁開度が調節可能な膨
張弁と、蒸発器の入口部分乃至中間部分に設け冷
媒温度を電気信号に変換する第1の温度センサ
と、蒸発器出口部分に設けた第2の温度センサ
と、前記第1の温度センサ及び第2の温度センサ
の電気信号の差に応じて前記膨張弁に対して電気
信号を出力する制御回路とを備え、前記制御回路
は圧縮機の始動により前記電気信号の差と所定の
値とを比較し前記電気信号の差が前記所定の値よ
りも小さいとき前記膨張弁の弁開度を所定の開度
に保つ電気信号を出力する比較手段を有する始動
制御回路を備えた冷媒流量制御装置。 2 前記膨張弁が、電気ヒータとバイメタルから
なる弁駆動を有するとともに、前記所定の弁開度
を全開としたことを特徴とする特許請求の範囲第
1項記載の冷媒流量制御装置。
[Scope of Claims] 1. An expansion valve whose valve opening degree can be adjusted by an electric signal, a first temperature sensor provided at an inlet portion or an intermediate portion of the evaporator to convert refrigerant temperature into an electric signal, and an evaporator. a second temperature sensor provided at the outlet of the chamber; and a control circuit that outputs an electric signal to the expansion valve according to the difference between the electric signals of the first temperature sensor and the second temperature sensor, The control circuit compares the difference in the electrical signals with a predetermined value when the compressor is started, and when the difference in the electrical signals is smaller than the predetermined value, maintains the valve opening of the expansion valve at the predetermined opening. A refrigerant flow control device comprising a starting control circuit having a comparison means for outputting an electric signal. 2. The refrigerant flow rate control device according to claim 1, wherein the expansion valve has a valve drive consisting of an electric heater and a bimetal, and the predetermined valve opening degree is set to be fully open.
JP12104279A 1979-09-20 1979-09-20 Refrigerant flow rate controller Granted JPS5644565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12104279A JPS5644565A (en) 1979-09-20 1979-09-20 Refrigerant flow rate controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12104279A JPS5644565A (en) 1979-09-20 1979-09-20 Refrigerant flow rate controller

Publications (2)

Publication Number Publication Date
JPS5644565A JPS5644565A (en) 1981-04-23
JPS6244187B2 true JPS6244187B2 (en) 1987-09-18

Family

ID=14801370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12104279A Granted JPS5644565A (en) 1979-09-20 1979-09-20 Refrigerant flow rate controller

Country Status (1)

Country Link
JP (1) JPS5644565A (en)

Also Published As

Publication number Publication date
JPS5644565A (en) 1981-04-23

Similar Documents

Publication Publication Date Title
US4168456A (en) Apparatus for controlling an electric motor for driving a cooling fan of an internal combustion engine
JPS5839083B2 (en) Automotive air conditioner
JPH06213548A (en) Refrigerator
JPS61180876A (en) Temperature controller for refrigerator, etc.
JPS6244187B2 (en)
JPS6034037B2 (en) Refrigerant flow control device
JPS5847628B2 (en) Refrigerant flow control device
JPS6116898B2 (en)
JPS5942210B2 (en) air conditioner
JPH0563691B2 (en)
JPS6144901Y2 (en)
JPS5843742Y2 (en) Refrigerant flow control device
JPS5937419B2 (en) Refrigerant cycle refrigerant flow control device
JPS61139507A (en) Air conditioning device for vehicle
JP2967431B2 (en) Air cleaner
KR910001337Y1 (en) Solenoid damper control circuit
JP3629766B2 (en) air purifier
JPS6120451Y2 (en)
JPS6353473B2 (en)
JPS5953225A (en) Car air-conditioner
JP3151842B2 (en) Electric vehicle heater system
KR900004353B1 (en) Automatically temperature controlling circuit for automobile
JPS5910513Y2 (en) Defrost control device
JPS5832104Y2 (en) Air conditioner control circuit
JPS61135812A (en) Air conditioner for vehicle