JPS6244180A - Universal-type endo-beta-n-acetylglucosaminidase and production thereof - Google Patents
Universal-type endo-beta-n-acetylglucosaminidase and production thereofInfo
- Publication number
- JPS6244180A JPS6244180A JP18385985A JP18385985A JPS6244180A JP S6244180 A JPS6244180 A JP S6244180A JP 18385985 A JP18385985 A JP 18385985A JP 18385985 A JP18385985 A JP 18385985A JP S6244180 A JPS6244180 A JP S6244180A
- Authority
- JP
- Japan
- Prior art keywords
- endo
- acetylglucosaminidase
- type
- enzyme
- sugar chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、新規な汎用型エンド−β−N−アセチルグル
コサミニダーゼ(以下、本発明酵素と略することもある
。)およびその製造法に関するものである。さらに詳し
くは、糖タンパク質のアスパラギン結合型糖鎖の高マン
ノース型や混合型だけでなく、複合型糖鎖のN、N’−
ジアセチルキトビオース構造に対して作用する基質特異
性をも有し、そのN、N’−ジアセチルキトビオース構
造内の β1→4結合の部分を加水分解する作用を有す
る、エンド−グリコシダーゼである汎用型エンド−β−
N−アセチルグルコサミニダーゼおよびこれをなたまめ
より採取する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel general-purpose endo-β-N-acetylglucosaminidase (hereinafter sometimes abbreviated as the enzyme of the present invention) and a method for producing the same. More specifically, we will examine not only the high-mannose type and mixed type of asparagine-linked sugar chains of glycoproteins, but also the N, N'-
It is an endo-glycosidase that also has substrate specificity to act on the diacetylchitobiose structure and has the action of hydrolyzing the β1→4 bond within the N,N'-diacetylchitobiose structure. General-purpose endo-β-
This invention relates to N-acetylglucosaminidase and a method for collecting it from catfish.
一般に、糖タンパク質は、酵素、ホルモン、免疫グロブ
リンや細胞表面など生物界に広く分布し、その糖鎖部分
の役割りの重要性が最近特に注目されてきており、多く
の研究者が糖鎖部分の機能解明に従事しているが未だ全
容解明には至っていない、その理由として、機能解明の
基礎となる糖鎖の構造について、糖タンパク質がアミノ
酸と糖という性質の異なる構成ユニットを持つことが研
究の障害になっていると考えられる。この意味において
、糖鎖構造を研究する場合、又、糖タンパク質のN鎖が
生理活性に与える影響を研究する場合、糖タンパク質か
ら糖部分をオリゴ糖として切りはなすエンド−グリコシ
ダーゼは非常に重要な酵素になるものと考えられる。In general, glycoproteins are widely distributed in the biological world, including enzymes, hormones, immunoglobulins, and cell surfaces, and the importance of the role of their sugar chain moieties has recently attracted particular attention, and many researchers have Although we are currently working on elucidating the functions of glycoproteins, we have not yet fully elucidated the whole picture.The reason for this is that research on the structure of sugar chains, which is the basis for elucidating their functions, is due to the fact that glycoproteins have constituent units with different properties: amino acids and sugars. It is thought that this is a hindrance. In this sense, endo-glycosidases, which cut off sugar moieties from glycoproteins as oligosaccharides, are very important enzymes when studying the structure of sugar chains or the influence of the N-chain of glycoproteins on physiological activity. It is thought that it will become.
そこで、本発明者らは1種々の給源中におけるエンド−
グリコシダーゼについて鋭意研究したところ、なたまめ
より抽出した溶液中に新規な汎用型エンド−β−N−ア
セチルグルコサミニダーゼを見出すに至った。Therefore, the present inventors investigated the end-products in various sources.
As a result of intensive research on glycosidase, a novel general-purpose endo-β-N-acetylglucosaminidase was discovered in a solution extracted from soybeans.
従来、エンド−β−N−アセチルグルコサミニダーゼは
バクテリア等から得られたものが知られているが、いず
れも特定の糖鎖に対してのみ作用するものであった。Conventionally, endo-β-N-acetylglucosaminidase obtained from bacteria has been known, but all of them act only on specific sugar chains.
即ち、アスパラギン結合型糖鎖の構成としては、高マン
ノース型、混合型、複合型に分けられる。That is, the structure of asparagine-linked sugar chains can be divided into high-mannose type, mixed type, and complex type.
次に各型の式と作用部位を示す。Next, the formula and action site of each type are shown.
上記各型において、従来のエンド−β−N−アセチルグ
ルコサミニダーゼは高マンノース型と混合型の糖鎖には
作用するが、シアル酸の結合したままの複合型には作用
しない。また、別の給源のものは高マンノース型糖鎖に
は強く作用するが、複合型糖鎖には高濃度の2−メルカ
プトエタノールとノニデッド(nonidet)−P2
Oなどのタンパク質の変成剤の存在下でなければ作用し
ないというものであった。In each of the above types, conventional endo-β-N-acetylglucosaminidase acts on high-mannose type and mixed type sugar chains, but does not act on complex type with sialic acid still bound. In addition, other sources have a strong effect on high mannose type sugar chains, but on complex type sugar chains, high concentrations of 2-mercaptoethanol and nonidet-P2
It was believed that it would only work in the presence of a protein denaturing agent such as O.
しかし、なたまめより得られた本発明酵素は、高マンノ
ース型や混合型の糖鎖だけでなく、シアル酸の結合した
ままの複合型M鎖にも強く作用し、しかも活性発現のた
めにタンパク質を変成させてしまうような2−メルカプ
トエタノールやノニデット(nonidet)−P2O
などを必要としないという、いわば汎用型といえる新規
なエンド−β−N−アセチルグルコサミニダーゼと認め
られるものである。However, the enzyme of the present invention obtained from Natamame strongly acts not only on high-mannose type and mixed type sugar chains, but also on complex type M chains with sialic acid still attached, and moreover, it is necessary to express activity. 2-mercaptoethanol and nonidet-P2O, which can denature proteins.
It is recognized as a novel endo-β-N-acetylglucosaminidase, which can be said to be a general-purpose type that does not require the following.
本発明酵素は、糖タンパク質の糖鎖がその糖タンパク質
の生理活性ではたす役割りを解明していく研究には重要
なものとなることは明らかである。It is clear that the enzyme of the present invention will be important for research to elucidate the role that sugar chains of glycoproteins play in the physiological activity of the glycoproteins.
即ち、糖タンパク質のタンパク部分を化学的に変成させ
てしまう物質を何ら必要とすることなく活性発現する本
発明酵素は、公知の酵素よりもより広い基質特異性を有
することによってより有用なものである。In other words, the enzyme of the present invention, which exhibits activity without the need for any substance that chemically denatures the protein portion of glycoproteins, is more useful than known enzymes because it has broader substrate specificity. be.
本発明酵素は、糖タンパク質のアスパラギン結合型糖鎖
の高マンノース型や混合型だけでなく、シアル酸の結合
したままの複合型糖鎖にも作用するという広い基質特異
性を有するので、糖タンパク質の糖鎖の機能的、生理的
役割を研究する上において、本発明酵素をその糖タンパ
ク質に作用させることにより複合型を含めたほとんどの
アスパラギン結合型糖鎖の取り除かれたタンパク質の活
性を調べることが可能となるため、この方面における本
発明酵素の利用が期待される。又、一部の。The enzyme of the present invention has broad substrate specificity, acting not only on high-mannose and mixed-type asparagine-linked sugar chains of glycoproteins, but also on complex-type sugar chains with sialic acid still attached. In studying the functional and physiological roles of sugar chains, it is important to examine the activity of proteins from which most asparagine-linked sugar chains, including complex types, have been removed by allowing the enzyme of the present invention to act on the glycoproteins. Therefore, the enzyme of the present invention is expected to be used in this field. Also, some.
糖タンパク質の糖鎖構造が腫瘍により通常の糖鎖構造と
異なる構造に変化するという報告が多く発表されている
。この様なことがら糖鎖の構造も医学、生化学、生理学
的に注目されており、糖鎖をタンパク質部分から遊離さ
せる作用を持つ本発明酵素は、糖鎖の構造決定の際にも
有用な酵素として利用されることが期待される。Many reports have been published that the sugar chain structure of glycoproteins changes to a structure different from the normal sugar chain structure due to tumors. For these reasons, the structure of sugar chains has also attracted attention in medicine, biochemistry, and physiology, and the enzyme of the present invention, which has the effect of releasing sugar chains from protein moieties, is also useful in determining the structure of sugar chains. It is expected that it will be used as an enzyme.
本発明酵素は、水性媒質等により、なたまめより抽出分
離される。抽出液には酵素活性を有するのでそのまま粗
精製酵素として使用することができる。The enzyme of the present invention is extracted and separated from the soybeans using an aqueous medium or the like. Since the extract has enzymatic activity, it can be used as is as a crudely purified enzyme.
抽出液は通常の酵素精製法に従って使用目的に応じた精
製段階に精製することができる。上記のなたまめとは、
なたまめの根、茎、葉、花、種子。The extract can be purified to a purification step according to the intended use according to a conventional enzyme purification method. What is the above Natamame?
Roots, stems, leaves, flowers, and seeds of the soybean.
さや、生体液など特に限定するものではなく、特定の部
位、あるいはいくつかの部位を混合したものが使用でき
る。又、抽出法は特に限定されず、常法により行われる
。例えば、なたまめからの抽出は通常、水または緩衝液
により行うことができる。There are no particular limitations such as pods or biological fluids, and a specific part or a mixture of several parts can be used. Moreover, the extraction method is not particularly limited and may be carried out by a conventional method. For example, extraction from soybean can usually be carried out with water or a buffer.
一般的には、なたまめの種子を取り出し、これを粉砕機
で粉砕し、0.1Mリン酸緩衝液で4℃程度で12時間
抽出し、抽出液に硫安を加えて、3o−h%硫安とし、
沈澱区分を分離し、これを水に溶解し、透析し、脱塩す
る。透析内液をDEAE−トヨパールに吸着させて、リ
ニアグラジェント法により溶出し、得られた活性区分を
リン酸緩衝液に対して透析し、透析内液をハイドロキシ
アパタイトカラムに吸着させ、リニアグラジェント法に
より溶出し、得られた溶出区分をリン酸緩衝液に対して
透析し、透析内液を濃縮し、濃縮液をセファクリルS−
200でゲル濾過し、得られた活性区分を水に対して透
析し、透析内液を凍結乾燥することによって本発明酵素
標品を得ることができる。Generally, the seeds of Natamame are taken out, crushed with a crusher, extracted with 0.1M phosphate buffer at about 4℃ for 12 hours, and ammonium sulfate is added to the extract to give a 3o-h% ammonium sulfate,
Separate the precipitated fraction, dissolve it in water, dialyze and desalt. The dialysed fluid was adsorbed on DEAE-Toyopearl and eluted using a linear gradient method. The obtained active fraction was dialyzed against a phosphate buffer. The dialyzed fluid was adsorbed on a hydroxyapatite column and eluted using a linear gradient method. The eluate fraction obtained was dialyzed against phosphate buffer, the dialysate was concentrated, and the concentrated solution was purified with Sephacryl S-
The enzyme preparation of the present invention can be obtained by gel filtration at 200 °C, dialyzing the obtained active fraction against water, and freeze-drying the dialyzed solution.
次に、実施例5で得られた汎用型エンド−β−N−アセ
チルグルコサミニダーゼの理化学的性質を示す。Next, the physicochemical properties of the general-purpose endo-β-N-acetylglucosaminidase obtained in Example 5 will be shown.
1、基質特異性
糖タンパク質のアスパラギン結合型糖鎖のN、N’−ジ
アセチルキトビオース構造の部分に作用し、下図の矢印
(″>)で示されるN−アセチルグルコサミンの β1
→4結合を加水分解し、糖タンパク質よりオリゴ糖を遊
離する活性を持ち、アスパラギン結合型糖鎖の高マンノ
ース型や混合型だけでなく、複合型にも作用する。1. β1 of N-acetylglucosamine, which acts on the N,N'-diacetylchitobiose structure of the asparagine-linked sugar chain of substrate-specific glycoproteins, as shown by the arrow (''>) in the figure below.
→It has the activity of hydrolyzing 4-bonds and releasing oligosaccharides from glycoproteins, and acts not only on high-mannose and mixed types of asparagine-linked sugar chains, but also on complex types.
2、作 用
Huang、C,−Cらの方法(Carbohydr、
Res、13.127−137、1970)に準じて調
製した一般的な高マンノース型糖鎖を基質とした場合、
下記の反応式のととく基質の矢印(つ)で示す部分を加
水分解する作用を有する。2. Effect The method of Huang, C, -C et al. (Carbohydr,
Res, 13.127-137, 1970) when a general high-mannose sugar chain was used as a substrate,
It has the effect of hydrolyzing the part of the substrate shown by the arrow in the reaction formula below.
本酵素の活性はこの糖鎖に限らず、あらゆる高マンノー
ス型に作用する。基質が混合型や複合型でシアル酸が結
合したものであっても、やはリアスパラギンに結合して
いるN−アセチルグルコサミンと、そのグルコサミンの
4位の炭素に結合しているN−アセチルグルコサミンと
の間の結合を加水分解する。The activity of this enzyme is not limited to this sugar chain, but acts on all high-mannose types. Even if the substrate is a mixed or complex type with sialic acid bound to it, it is still N-acetylglucosamine bound to the riasparagine and N-acetylglucosamine bound to the 4th carbon position of the glucosamine. Hydrolyzes the bond between.
3、分子量
62.000 (セファクリルS−200によるゲル濾
過の溶出位置より)
4、至適pH
5,0
5、安定pH
中性付近で安定
6、Km値
Man GGlc NAc@ASN−DNSに対するK
m値は0.18mMである。3. Molecular weight 62.000 (from the elution position of gel filtration with Sephacryl S-200) 4. Optimal pH 5.0 5. Stable pH Stable around neutrality 6. Km value Man GGlc NAc@ASN-DNS
m value is 0.18mM.
7、力価の測定方法
本発明酵素の力価の測定は、イワセ(Iwase、I)
らの方法(アナリテイカル・バイオケミストリー(An
al、Biochem)113.93−95.1981
)に準じて行う。7. Method for measuring titer The titer of the enzyme of the present invention can be measured using Iwase (Iwase, I).
The method of Analytical Biochemistry (An
al, Biochem) 113.93-95.1981
).
すなわち、グレイ(Gray、す、R)の方法(メソド
・イン・エンチモロジイ側ethods in Enz
ynology)。That is, Gray's methods (Methods in Enzymology)
ynology).
Vol、旦、 pP、139−151)により調製した
基質1μgを含む0.1M酢酸緩衝液pH5,20μQ
に酵素溶液を5μQ添加し、反応後の溶液中に含まれる
物質を高速液体クロマトグラフィーで分離し加水分解分
の定量を行うことにより力価を測定する。37℃で1分
間に1μmolの基質を分解する酵素量を1単位(Un
it C本明細書においてrUJと略称する)とする。0.1 M acetate buffer pH 5, 20 μQ containing 1 μg of substrate prepared according to Vol.
The titer is measured by adding 5 μQ of the enzyme solution to the solution, separating the substances contained in the solution after reaction by high performance liquid chromatography, and quantifying the hydrolyzed content. The amount of enzyme that decomposes 1 μmol of substrate per minute at 37°C is 1 unit (Un
it C (abbreviated herein as rUJ).
以下、本発明の実施例として示す。ただし、本発明はこ
の実施例に限定されるものではない。一実施例1゜
なたまめ10gを粉砕機で粉砕し、得られた粉砕物を1
00m Qのビーカーに入れ、さらに0.1Mリン酸緩
衝液(pH7,0) 40m Qを加えて冷室(4℃)
で攪拌し抽出した。12時間後、この溶液を遠心分離し
、上清液を粗抽出液とした。粗抽出液中の本酵素活性は
300mU存在した。Examples of the present invention will be shown below. However, the present invention is not limited to this example. Example 1: 10 g of Natamama was crushed using a crusher, and the resulting crushed product was
00mQ beaker, add 0.1M phosphate buffer (pH 7,0) 40mQ, and store in a cold room (4℃).
The mixture was stirred and extracted. After 12 hours, this solution was centrifuged, and the supernatant liquid was used as a crude extract. The enzyme activity in the crude extract was 300 mU.
実施例2゜
実施例1で得られた粗抽出液36m Hに硫安20.2
gを攪拌しながら加え、硫安が溶解後室温で放置した。Example 2 20.2 ammonium sulfate was added to 36 m H of the crude extract obtained in Example 1.
g was added with stirring, and after the ammonium sulfate was dissolved, the mixture was allowed to stand at room temperature.
1時間後この硫安溶液を遠心分離し、得られた沈澱区分
を10m Qの水に溶解後、5o+Mリン酸緩衝液pH
7,0に対して透析した。得られた透析内液中の本酵素
活性は290m U存在した。After 1 hour, this ammonium sulfate solution was centrifuged, and the resulting precipitate fraction was dissolved in 10 mQ water, and then dissolved in 5o+M phosphate buffer pH.
Dialyzed against 7.0. The enzyme activity in the obtained dialyzed fluid was 290 mU.
実施例3゜
実施例2で得られた透析内液を、5mMリン酸緩衝液p
87.0で平衡化したDEAE−Toyoperl (
東洋曹達社製)の充てんされた15 X 200cmの
カラムに通した。Example 3゜The dialyzed fluid obtained in Example 2 was added to 5mM phosphate buffer p
DEAE-Toyoperl (
The mixture was passed through a 15 x 200 cm column packed with Toyo Soda Co., Ltd.).
吸着した酵素を食塩O〜0.1Mのリニアグラジェント
法で溶出し活性区分を集めた。得られた活性区分中には
270mUの活性が存在した。The adsorbed enzyme was eluted using a linear gradient method from 0 to 0.1M sodium chloride, and the active fraction was collected. There was 270 mU of activity in the resulting active fraction.
実施例4゜
実施例3で得られた活性区分を5mMリン酸緩衝液(p
i(7,0)で透析し、この透析内液を同一緩衝液で平
衡化したハイドロキシアパタイトカラム(10X 15
0mm)に通した。吸着した酵素をpH7,0リン酸緩
衝液濃度5〜100n+Mのリニアグラジェント法で溶
出し、溶出された活性区分を集めて得られた活性区分中
の本酵素活性は240mU存在した。Example 4 The active fraction obtained in Example 3 was added to 5mM phosphate buffer (p
i(7,0), and the dialyzed solution was equilibrated with the same buffer using a hydroxyapatite column (10X 15
0 mm). The adsorbed enzyme was eluted using a linear gradient method using a pH 7.0 phosphate buffer solution with a concentration of 5 to 100 n+M, and the eluted active fraction was collected. The enzyme activity in the active fraction was 240 mU.
実施例5゜
実施例4で得られた活性区分を透析・濃縮後、5鱈リン
酸緩衝液で平衡化した5ephacryl S −20
0(ファルマシアファインケミカルズ社製)カラム(1
,5X 150cm)を用いてゲル濾過を行った。溶出
された活性区分を集めて濃縮後、水で透析し、この透析
内液を凍結乾燥して、エンド−β−N−アセチルグルコ
サミニダーゼの精製標品を得た。Example 5゜After dialysis and concentration of the active fraction obtained in Example 4, 5ephacryl S-20 was equilibrated with 5cod phosphate buffer.
0 (manufactured by Pharmacia Fine Chemicals) column (1
, 5×150 cm). The eluted active fractions were collected and concentrated, then dialyzed against water, and the dialyzed solution was freeze-dried to obtain a purified sample of endo-β-N-acetylglucosaminidase.
Claims (3)
′−ジアセチルキトビオース構造の部分に作用し、下図
の矢印(⇒)で示されるN−アセチルグルコサミンのβ
1→4結合を加水分解し、糖タンパク質よりオリゴ糖を
遊離する活性を持ち、アスパラギン結合型糖鎖の高マン
ノース型や混合型だけでなく、複合型にも作用する基質
特異性を有するエンド−グリコシダーゼである汎用型エ
ンド−β−N−アセチルグルコサミニダーゼ。 ▲数式、化学式、表等があります▼(1) N, N of asparagine-linked sugar chains of glycoproteins
’-Diacetylchitobiose structure, and the β of N-acetylglucosamine shown by the arrow (⇒) in the figure below
It has the activity of hydrolyzing 1→4 bonds and releasing oligosaccharides from glycoproteins, and has substrate specificity that acts not only on high-mannose and mixed types of asparagine-linked sugar chains, but also on complex types. A general-purpose endo-β-N-acetylglucosaminidase that is a glycosidase. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼
たオリゴ糖をも含むことを特徴とする特許請求の範囲第
1項記載の汎用型エンド−β−N−アセチルグルコサミ
ニダーゼ。(2) The general-purpose endo-β-N-acetylglucosaminidase according to claim 1, wherein the glycoprotein also contains a glycopeptide or an oligosaccharide bound to an amino acid.
ルコサミニダーゼを採取することを特徴とする汎用型エ
ンド−β−N−アセチルグルコサミニダーゼの製造法。(3) A method for producing general-purpose endo-β-N-acetylglucosaminidase, which comprises collecting general-purpose endo-β-N-acetylglucosaminidase from soy beans.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18385985A JPH0616705B2 (en) | 1985-08-23 | 1985-08-23 | General-purpose endo-β-N-acetylglucosaminidase and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18385985A JPH0616705B2 (en) | 1985-08-23 | 1985-08-23 | General-purpose endo-β-N-acetylglucosaminidase and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6244180A true JPS6244180A (en) | 1987-02-26 |
JPH0616705B2 JPH0616705B2 (en) | 1994-03-09 |
Family
ID=16143070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18385985A Expired - Lifetime JPH0616705B2 (en) | 1985-08-23 | 1985-08-23 | General-purpose endo-β-N-acetylglucosaminidase and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0616705B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0425019A1 (en) | 1989-10-27 | 1991-05-02 | The Procter & Gamble Company | Methods and compositions employing certain lysozymes and endoglycosidases |
US5238843A (en) * | 1989-10-27 | 1993-08-24 | Genencor International, Inc. | Method for cleaning a surface on which is bound a glycoside-containing substance |
US5258304A (en) * | 1989-10-27 | 1993-11-02 | Genencor International, Inc. | Method of removing microorganisms from surfaces with Type II endoglycosidase |
US5356803A (en) * | 1989-10-27 | 1994-10-18 | Genencor International, Inc. | Antimicrobial composition containing Type II endoglycosidase and antimicrobial agent |
JPH0899988A (en) * | 1994-09-29 | 1996-04-16 | Takehiko Yamamoto | Production of oligosaccharide containing sialic acids |
-
1985
- 1985-08-23 JP JP18385985A patent/JPH0616705B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0425019A1 (en) | 1989-10-27 | 1991-05-02 | The Procter & Gamble Company | Methods and compositions employing certain lysozymes and endoglycosidases |
US5041236A (en) * | 1989-10-27 | 1991-08-20 | The Procter & Gamble Company | Antimicrobial methods and compositions employing certain lysozymes and endoglycosidases |
US5238843A (en) * | 1989-10-27 | 1993-08-24 | Genencor International, Inc. | Method for cleaning a surface on which is bound a glycoside-containing substance |
US5258304A (en) * | 1989-10-27 | 1993-11-02 | Genencor International, Inc. | Method of removing microorganisms from surfaces with Type II endoglycosidase |
US5356803A (en) * | 1989-10-27 | 1994-10-18 | Genencor International, Inc. | Antimicrobial composition containing Type II endoglycosidase and antimicrobial agent |
JPH0899988A (en) * | 1994-09-29 | 1996-04-16 | Takehiko Yamamoto | Production of oligosaccharide containing sialic acids |
Also Published As
Publication number | Publication date |
---|---|
JPH0616705B2 (en) | 1994-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
English et al. | A cell wall-degrading endopolygalacturonase secreted by Colletotrichum lindemuthianum | |
Fukuda et al. | Endo-beta-galactosidase of Escherichia freundii. Purification and endoglycosidic action on keratan sulfates, oligosaccharides, and blood group active glycoprotein. | |
Scudder et al. | Isolation and characterization of an endo-β-galactosidase from Bacteroides fragilis | |
Allen | A lectin from the exudate of the fruit of the vegetable marrow (Cucurbita pepo) that has a specificity for β-1, 4-linked N-acetylglucosamine oligosaccharides | |
EP0215766B1 (en) | Isolation of unreduced oligosaccharides | |
Thanassi et al. | Enzymic degradation of fucoidan by enzymes from the hepatopancreas of abalone, Haliotus species | |
Desai et al. | Some properties of the lectin from Datura stramonium (thorn-apple) and the nature of its glycoprotein linkages | |
CA2372744A1 (en) | A method for extraction and purification of cartilage type proteoglycan | |
Matta et al. | Glycosidases of Aspergillus niger: IV. Purification and characterization of α-mannosidase | |
Bella Jr et al. | Rat small intestinal mucin: isolation and characterization of a water-soluble mucin fraction | |
CA1180292A (en) | Short chain oligosaccharides possessing biological properties, their preparation and their use as medicaments | |
Ikadai et al. | Biochemical Studies on the Acrosome Reaction of the Starfish, Asterias Amurensis II. Purification and Characterization of Acrosome Reaction‐Inducing Substance | |
CA1280987C (en) | Antibacterial composition | |
EP0257003B1 (en) | An enzyme preparation capable of degrading glycosaminoglycan, and a method for producing said preparation | |
JPS6244180A (en) | Universal-type endo-beta-n-acetylglucosaminidase and production thereof | |
MATSUSHITA et al. | Purification and properties of an α-D-xylosidase from Aspergillus niger | |
JPH068322B2 (en) | Pectin manufacturing method | |
ITOH et al. | Purification and characterization of α-galactosidase from watermelon | |
Lis et al. | [47] Erythrina lectins | |
Li et al. | [57] Endo-β-galactosidase from Escherichia freundii | |
JPH0683674B2 (en) | Cellobiose manufacturing method | |
Zikakis et al. | Chitinase-chitobiase from soybean seeds and puffballs | |
Uda et al. | Purification and Characterization of β-N-Acetylhexosaminidase from the Ascidian, Halocynthia roretzi | |
JPH0662852A (en) | Fucoidanase | |
Demir et al. | Carbonic anhydrase from Vicia canencens leaves |