JPH0616705B2 - General-purpose endo-β-N-acetylglucosaminidase and method for producing the same - Google Patents

General-purpose endo-β-N-acetylglucosaminidase and method for producing the same

Info

Publication number
JPH0616705B2
JPH0616705B2 JP18385985A JP18385985A JPH0616705B2 JP H0616705 B2 JPH0616705 B2 JP H0616705B2 JP 18385985 A JP18385985 A JP 18385985A JP 18385985 A JP18385985 A JP 18385985A JP H0616705 B2 JPH0616705 B2 JP H0616705B2
Authority
JP
Japan
Prior art keywords
endo
general
acetylglucosaminidase
type
sugar chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18385985A
Other languages
Japanese (ja)
Other versions
JPS6244180A (en
Inventor
仁勇 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oriental Yeast Co Ltd
Original Assignee
Oriental Yeast Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oriental Yeast Co Ltd filed Critical Oriental Yeast Co Ltd
Priority to JP18385985A priority Critical patent/JPH0616705B2/en
Publication of JPS6244180A publication Critical patent/JPS6244180A/en
Publication of JPH0616705B2 publication Critical patent/JPH0616705B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、新規な汎用型エンド−β−N−アセチルグル
コサミニダーゼ(以下、本発明酵素と略することもあ
る。)およびその製造法に関するものである。さらに詳
しくは、糖タンパク質のアスパラギン結合型糖鎖の高マ
ンノース型や混合型だけでなく、複合型糖鎖のN,N′
−ジアセチルキトビオース構造に対して作用する基質特
異性をも有し、そのN,N′−ジアセチルキトビオース
構造内のβ1→4結合の部分を加水分解する作用を有す
る、エンド−グリコシダーゼである汎用型エンド−β−
N−アセチルグルコサミニダーゼおよびこれをなたまめ
より採取する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel general-purpose endo-β-N-acetylglucosaminidase (hereinafter sometimes abbreviated as the enzyme of the present invention) and a method for producing the same. More specifically, in addition to the high mannose type and mixed type of asparagine-linked sugar chains of glycoprotein, N, N ′ of complex type sugar chains
An endo-glycosidase which also has a substrate specificity to act on the diacetylchitobiose structure and which has the effect of hydrolyzing the β1 → 4 bond part in the N, N′-diacetylchitobiose structure. A general-purpose end-β-
The present invention relates to N-acetylglucosaminidase and a method for collecting the same from lentils.

一般に、糖タンパク質は、酵素、ホルモン、免疫グロブ
リンや細胞表面など生物界に広く分布し、その糖鎖部分
の役割りの重要性が最近特に注目されてきており、多く
の研究者が糖鎖部分の機能解明に従事しているが未だ全
容解明には至っていない。その理由として、機能解明の
基礎となる糖鎖の構造について、糖タンパク質がアミノ
酸と糖という性質の異なる構成ユニットを持つことが研
究の障害になっていると考えられる。この意味におい
て、糖鎖構造を研究する場合、又、糖タンパク質の糖鎖
が生理活性に与える影響を研究する場合、糖タンパク質
から糖部分をオリゴ糖として切りはなすエンド−グリコ
シダーゼは非常に重要な酵素になるものと考えられる。
In general, glycoproteins are widely distributed in the living world such as enzymes, hormones, immunoglobulins and cell surfaces, and the importance of the role of the sugar chain portion has recently been particularly noted. I have been engaged in the elucidation of the function of, but the whole picture has not yet been elucidated. The reason for this is considered to be an obstacle to research regarding the structure of sugar chains, which is the basis for elucidation of functions, because glycoproteins have structural units of different properties, amino acids and sugars. In this sense, when studying the sugar chain structure and when studying the effect of sugar chains of glycoproteins on physiological activity, the endo-glycosidase that cuts the sugar moiety from the glycoprotein as an oligosaccharide is a very important enzyme. It is supposed to become.

そこで、本発明者らは、種々の給源中におけるエンド−
グリコシダーゼについて鋭意研究したところ、なたまめ
より抽出した溶液中に新規な汎用型エンド−β−N−ア
セチルグルコサミニダーゼを見出すに至った。
Therefore, the present inventors have found that in various sources,
As a result of diligent research on glycosidases, a novel general-purpose endo-β-N-acetylglucosaminidase has been found in a solution extracted from lentils.

従来、エンド−β−N−アセチルグルコサミニダーゼは
バクテリア等から得られたものが知られているが、いず
れも特定の糖鎖に対してのみ作用するものであった。
Conventionally, endo-β-N-acetylglucosaminidase is known to be obtained from bacteria and the like, but all of them act only on a specific sugar chain.

即ち、アスパラギン結合型糖鎖の構成としては、高マン
ノース型、混合型、複合型に分けられる。次に各型の式
と作用部位を示す。
That is, the constitution of the asparagine-linked sugar chain is classified into high mannose type, mixed type and complex type. Next, the formula of each type and the site of action are shown.

1. 高マンノース型 2. 混合型 3. 複合型 上記各型において、従来のエンド−β−N−アセチルグ
ルコサミニダーゼは高マンノース型と混合型の糖鎖には
作用するが、シアル酸の結合したままの複合型には作用
しない。また、別の給源のものは高マンノース型糖鎖に
は強く作用するが、複合型糖鎖には高濃度の2−メルカ
プトエタノールとノニデット(nonidet)−P40などのタ
ンパク質の変成剤の存在下でなければ作用しないという
ものであった。
1. High mannose type 2. Mixed type 3. Composite type In each of the above types, the conventional endo-β-N-acetylglucosaminidase acts on the high-mannose type and mixed type sugar chains, but does not act on the complex type in which sialic acid remains bound. Also, another source strongly acts on high-mannose type sugar chains, but on complex type sugar chains in the presence of high concentrations of 2-mercaptoethanol and protein denaturants such as nonidet-P40. If it wasn't, it wouldn't work.

しかし、なたまめより得られた本発明酵素は、高マンノ
ース型や混合型の糖鎖だけでなく、シアル酸の結合した
ままの複合型糖鎖にも強く作用し、しかも活性発現のた
めにタンパク質を変成させてしまうような2−メルカプ
トエタノールやノニデット(nonidet)−P40などを必要
としないという、いわば汎用型といえる新規なエンド−
β−N−アセチルグルコサミニダーゼと認められるもの
である。
However, the enzyme of the present invention obtained from Nameame strongly acts not only on high-mannose type or mixed type sugar chains, but also on complex type sugar chains in which sialic acid remains bound, and for the purpose of activity expression. A new end that can be said to be a general-purpose type that does not require 2-mercaptoethanol or nonidet-P40 that denatures proteins.
It is recognized as β-N-acetylglucosaminidase.

本発明酵素は、糖タンパク質の糖鎖がその糖タンパク質
の生理活性ではたす役割りを解明していく研究には重要
なものとなることは明らかである。
It is clear that the enzyme of the present invention is important for the research to elucidate the role of the sugar chain of glycoprotein in the physiological activity of the glycoprotein.

即ち、糖タンパク質のタンパク部分を化学的に変成させ
てしまう物質を何ら必要とすることなく活性発現する本
発明酵素は、公知の酵素よりもより広い基質特異性を有
することによってより有用なものである。
That is, the enzyme of the present invention that is active without any substance that chemically denatures the protein portion of glycoprotein is more useful because it has a wider substrate specificity than known enzymes. is there.

本発明酵素は、糖タンパク質のアスパラギン結合型糖鎖
の高マンノース型や混合型だけでなく、シアル酸の結合
したままの複合型糖鎖にも作用するという広い基質特異
性を有するので、糖タンパク質の糖鎖の機能的、生理的
役割を研究する上において、本発明酵素をその糖タンパ
ク質に作用させることにより複合型を含めたほとんどの
アスパラギン結合型糖鎖の取り除かれたタンパク質の活
性を調べることが可能となるため、この方面における本
発明酵素の利用が期待される。又、一部の糖タンパク質
の糖鎖構造が腫瘍により通常の糖鎖構造と異なる構造に
変化するという報告が多く発表されている。この様なこ
とから糖鎖の構造も医学、生化学、生理学的に注目され
ており、糖鎖をタンパク質部分から遊離させる作用を持
つ本発明酵素は、糖鎖の構造決定の際にも有用な酵素と
して利用されることが期待される。
The enzyme of the present invention has a wide substrate specificity that it acts not only on the high-mannose type or mixed type of the asparagine-linked sugar chain of glycoprotein, but also on the complex type sugar chain of sialic acid as it is bound. In order to study the functional and physiological role of sugar chains of Escherichia coli, the activity of the protein from which most of the asparagine-linked sugar chains including the complex type is removed by acting the enzyme of the present invention on the glycoprotein Therefore, the enzyme of the present invention is expected to be used in this direction. In addition, many reports have been published that the sugar chain structure of some glycoproteins changes to a structure different from the normal sugar chain structure depending on the tumor. From these facts, the structure of the sugar chain has been attracting attention medically, biochemically, and physiologically, and the enzyme of the present invention having the action of releasing the sugar chain from the protein part is also useful in determining the structure of the sugar chain. Expected to be used as an enzyme.

本発明酵素は、水性媒質等により、なたまめより抽出分
離される。抽出液には酵素活性を有するのでそのまま粗
精製酵素として使用することができる。
The enzyme of the present invention is extracted and separated from the soybeans by an aqueous medium or the like. Since the extract has an enzymatic activity, it can be used as a crudely purified enzyme as it is.

抽出液は通常の酵素精製法に従って使用目的に応じた精
製段階に精製することができる。上記のなたまめとは、
なたまめの根、茎、葉、花、種子、さや、生体液など特
に限定するものではなく、特定の部位、あるいはいくつ
かの部位を混合したものが使用できる。又、抽出法は特
に限定されず、常法により行われる。例えば、なたまめ
からの抽出は通常、水または緩衝液により行うことがで
きる。
The extract can be purified by a conventional enzyme purification method at a purification step according to the purpose of use. What is the above name beans?
The roots, stems, leaves, flowers, seeds, pods, biological fluids, etc. of the namelets are not particularly limited, and specific parts or a mixture of several parts can be used. Moreover, the extraction method is not particularly limited, and an ordinary method is used. For example, extraction from lentils can usually be performed with water or buffer.

一般的には、なたまめの種子を取り出し、これを粉砕機
で粉砕し、0.1Mリン酸緩衝液で4℃程度で12時間抽出
し、抽出液に硫安を加えて、30−40%硫安とし、沈澱区
分を分離し、これを水に溶解し、透析し、脱塩する。透
析内液をDEAE−トヨパールに吸着させて、リニアグラジ
エント法により溶出し、得られた活性区分をリン酸緩衝
液に対して透析し、透析内液をハイドロキシアパタイト
カラムに吸着させ、リニアグラジエント法により溶出
し、得られた溶出区分をリン酸緩衝液に対して透析し、
透析内液を濃縮し、濃縮液をセフアクリルS−200でゲ
ル濾過し、得られた活性区分を水に対して透析し、透析
内液を凍結乾燥することによって本発明酵素標品を得る
ことができる。
Generally, the seeds of lentil are taken out, crushed with a crusher, extracted with 0.1 M phosphate buffer at 4 ° C for 12 hours, and ammonium sulphate is added to the extract to give 30-40% ammonium sulphate. The precipitate fraction is separated, dissolved in water, dialyzed and desalted. The dialysis inner solution was adsorbed on DEAE-Toyopearl and eluted by the linear gradient method, the obtained active fraction was dialyzed against phosphate buffer solution, the dialysis inner solution was adsorbed on the hydroxyapatite column, and the linear gradient method was used. Elute, dialyzing the obtained elution section against phosphate buffer,
It is possible to obtain the enzyme preparation of the present invention by concentrating the dialysis inner solution, subjecting the concentrate to gel filtration with Cefacrylic S-200, dialysis of the obtained active fraction against water, and lyophilizing the dialysis inner solution. it can.

次に、実施例5で得られた汎用型エンド−β−N−アセ
チルグルコサミニダーゼの理化学的性質を示す。
Next, the physicochemical properties of the general-purpose endo-β-N-acetylglucosaminidase obtained in Example 5 are shown.

1.基質特異性 糖タンパク質のアスパラギン結合型糖鎖のN,N′−ジ
アセチルキトビオース構造の部分に作用し、下図の矢印 で示されるN−アセチルグルコサミンのβ1→4結合を
加水分解し、糖タンパク質よりオリゴ糖を遊離する活性
を持ち、アスパラギン結合型糖鎖の高マンノース型や混
合型だけでなく、複合型にも作用する。
1. Substrate specificity It acts on the N, N'-diacetylchitobiose structure part of the asparagine-linked sugar chain of glycoprotein, and the arrow in the figure below Hydrolyze the β1 → 4 bond of N-acetylglucosamine, which has the activity of releasing oligosaccharides from glycoproteins, and acts not only on the high-mannose type or mixed type of asparagine-linked sugar chains, but also on the complex type. To do.

2.作 用 Huang.C.−Cらの方法(Carbohydr.Res.13,127−137,
1970)に準じて調製した一般的な高マンノース型糖鎖を
基質とした場合、下記の反応式のごとく基質の矢印 で示す部分を加水分解する作用を有する。
2. Work Huang.C.-C et al. Method (Carbohydr.Res. 13 , 127-137,
When a general high-mannose type sugar chain prepared according to 1970) is used as the substrate, the arrow of the substrate is as shown in the reaction formula below. It has the effect of hydrolyzing the portion indicated by.

本酵素の活性はこの糖鎖に限らず、あらゆる高マンノー
ス型に作用する。基質が混合型や複合型でシアル酸が結
合したものであっても、やはりアスパラギンに結合して
いるN−アセチルグルコサミンと、そのグルコサミンの
4位の炭素に結合しているN−アセチルグルコサミンと
の間の結合を加水分解する。
The activity of this enzyme is not limited to this sugar chain but acts on any high-mannose type. Even if the substrate is a mixed type or a complex type with sialic acid bound, N-acetylglucosamine still bound to asparagine and N-acetylglucosamine bound to the 4-position carbon of the glucosamine Hydrolyze the bonds between.

3.分子量 62,000(セフアクリルS−200によるゲル濾過の溶出位
置より) 4.至適pH 5.0 5.安定pH 中性付近で安定 6.Km値 ManGlc NAc2ASN−DNSに対するKm値は0.18mMである。
3. Molecular weight 62,000 (from elution position of gel filtration with Cefacrylic S-200) 4. Optimum pH 5.0 5. Stable pH Stable near neutral 6. Km value The Km value for Man 6 Glc NAc 2 ASN-DNS is 0.18 mM.

7.力価の測定方法 本発明酵素の力価の測定は、イワセ(Iwase.I)らの方
法(アナリティカル・バイオケミストリー(Anal.Bioch
em)113,93−95,1981)に準じて行う。すなわち、グ
レイ(Gray.W.R)の方法(メソド・イン・エンチモロジ
イ(Methods in Enzymology),Vol.11,pp.139〜15
1)により調製した基質1μgを含む0.1M酢酸緩衝液pH
5、20μlに酵素溶液を5μl添加し、反応後の溶液中
に含まれる物質を高速液体クロマトグラフィーで分離し
加水分解分の定量を行うことにより力価を測定する。37
℃で1分間に1μmol の基質を分解する酵素量を1単位
(Unit:本明細書において「U」と略称する)とする。
7. Method for Measuring Titer The titer of the enzyme of the present invention can be measured by the method of Iwase.I et al. (Analytical Biochemistry (Anal.Bioch).
em) 113 , 93-95, 1981). That is, Gray.WR (Methods in Enzymology), Vol. 11 , pp. 139-15
0.1M acetate buffer pH containing 1 μg of the substrate prepared in 1)
The titer is measured by adding 5 μl of the enzyme solution to 5 and 20 μl, separating the substances contained in the solution after the reaction by high performance liquid chromatography, and quantifying the hydrolyzed content. 37
One unit (Unit: abbreviated as “U” in the present specification) is the amount of enzyme that decomposes 1 μmol of substrate at 1 ° C. for 1 minute.

以下、本発明の実施例として示す。ただし、本発明はこ
の実施例に限定されるものではない。
Hereinafter, examples of the present invention will be described. However, the present invention is not limited to this embodiment.

実施例1. なたまめ10gを粉砕機で粉砕し、得られた粉砕物を100
mlのビーカーに入れ、さらに 0.1Mリン酸緩衝液(pH
7.0)40mlを加えて冷室(4℃)で撹拌し抽出した。1
2時間後、この溶液を遠心分離し、上清液を粗抽出液と
した。粗抽出液中の本酵素活性は300mU存在した。
Example 1. 10 g of ground bean is crushed with a crusher, and the obtained crushed product is 100
Add it to a beaker of ml and add 0.1M phosphate buffer (pH
7.0) 40 ml was added, and the mixture was stirred and extracted in a cold room (4 ° C.). 1
After 2 hours, this solution was centrifuged, and the supernatant was used as a crude extract. The enzyme activity in the crude extract was 300 mU.

実施例2. 実施例1で得られた粗抽出液36mlに硫安20.2gを撹拌
しながら加え、硫安が溶解後室温で放置した。1時間後
この硫安溶液を遠心分離し、得られた沈澱区分を 10m
lの水に溶解後、5mMリン酸緩衝液 pH7.0に対して透析
した。得られた透析内液中の本酵素活性は290mU存在し
た。
Example 2. Ammonium sulfate (20.2 g) was added to 36 ml of the crude extract obtained in Example 1 with stirring, and the mixture was allowed to stand at room temperature after the ammonium sulfate was dissolved. After 1 hour, the ammonium sulfate solution was centrifuged, and the resulting precipitate was collected for 10 m.
After dissolving in 1 l of water, it was dialyzed against 5 mM phosphate buffer pH 7.0. The enzyme activity in the obtained dialysate was 290 mU.

実施例3. 実施例2で得られた透析内液を、5mMリン酸緩衝液pH7.
0で平衡化したDEAE−Toyoperl(東洋曹達社製)の充て
んされた15×200cmのカラムに通した。吸着した酵素を
食塩0〜0.1Mのリニアグラジエント法で溶出し活性区
分を集めた。得られた活性区分中には270mUの活性が存
在した。
Example 3. The dialysis inner solution obtained in Example 2 was treated with 5 mM phosphate buffer pH 7.
The mixture was passed through a 15 × 200 cm column filled with DEAE-Toyoperl (manufactured by Toyo Soda Co., Ltd.) equilibrated with 0. The adsorbed enzyme was eluted by a linear gradient method with 0 to 0.1 M salt and the active fractions were collected. There was 270 mU of activity in the resulting activity compartment.

実施例4. 実施例3で得られた活性区分を5mMリン酸緩衝液(pH7.
0)で透析し、この透析内液を同一緩衝液で平衡化した
ハイドロキシアパタイトカラム(10×150mm)に通し
た。吸着した酵素をpH7.0リン酸緩衝液濃度5〜100mM
のリニアグラジエント法で溶出し、溶出された活性区分
を集めて得られた活性区分中の本酵素活性は240mU存在
した。
Example 4. The active fraction obtained in Example 3 was treated with 5 mM phosphate buffer (pH 7.
The solution was dialyzed with (0) and the dialyzed solution was passed through a hydroxyapatite column (10 × 150 mm) equilibrated with the same buffer solution. Adsorbed enzyme pH 7.0 phosphate buffer solution concentration 5-100 mM
The enzyme activity was 240 mU in the active fractions obtained by collecting the eluted active fractions by elution by the linear gradient method.

実施例5. 実施例4で得られた活性区分を透析・濃縮後、5mMリン
酸緩衝液で平衡化したSephacryl S−200(ファルマシ
アファインケミカルズ社製)カラム(1.5×150cm)を用
いてゲル濾過を行った。溶出された活性区分を集めて濃
縮後、水で透析し、この透析内液を凍結乾燥して、エン
ド−β−N−アセチルグルコサミニダーゼの精製標品を
得た。
Example 5. The active fraction obtained in Example 4 was dialyzed and concentrated, and then gel filtration was performed using a Sephacryl S-200 (Pharmacia Fine Chemicals) column (1.5 × 150 cm) equilibrated with 5 mM phosphate buffer. The eluted active fractions were collected, concentrated, dialyzed with water, and the dialyzed solution was freeze-dried to obtain a purified preparation of endo-β-N-acetylglucosaminidase.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記の性質を有するエンド−グリコシダー
ゼである汎用型エンド−β−N−アセチルグルコサミニ
ダーゼ。 A:基質特異性 糖タンパク質のアスパラギン結合型糖鎖のN,N′−ジ
アセチルキトビオース構造の部分に作用し、下図の矢印 で示されるN−アセチルグルコサミンのβ1→4結合を
加水分解し、糖タンパク質よりオリゴ糖を遊離する活性
を持ち、アスパラギン結合型糖鎖の高マンノース型や混
合型だけでなく、複合型にも作用する。 B:作 用 一般的な高マンノース型糖鎖(Huang.C.−Cらによる)
を基質とした場合、下図の矢印 で示す部分を加水分解する作用を有する。 C:至適pH 5.0 D:安定pH 中性付近で安定
1. A general-purpose endo-β-N-acetylglucosaminidase which is an endo-glycosidase having the following properties. A: Substrate specificity It acts on the N, N'-diacetylchitobiose structure part of the asparagine-linked sugar chain of glycoprotein, and the arrow in the figure below Hydrolyze the β1 → 4 bond of N-acetylglucosamine, which has the activity of liberating oligosaccharides from glycoproteins, and acts not only on the high-mannose type or mixed type of asparagine-linked sugar chains, but also on the complex type. To do. B: General high-mannose type sugar chain (according to Huang.C.-C et al.)
When using as a substrate, the arrow in the figure below It has the effect of hydrolyzing the portion indicated by. C: Optimal pH 5.0 D: Stable pH Stable near neutral
【請求項2】糖タンパク質が、糖ペプチドやアミノ酸の
結合したオリゴ糖をも含むことを特徴とする特許請求の
範囲第1項記載の汎用型エンド−β−N−アセチルグル
コサミニダーゼ。
2. The general-purpose endo-β-N-acetylglucosaminidase according to claim 1, wherein the glycoprotein also contains an oligosaccharide to which a glycopeptide or an amino acid is bound.
【請求項3】なたまめより下記の性質を有するエンド−
グリコシダーゼである汎用型エンド−β−N−アセチル
グルコサミニダーゼを採取することを特徴とする該汎用
型エンド−β−N−アセチルグルコサミニダーゼの製造
法。 A:基質特異性 糖タンパク質のアスパラギン結合型糖鎖のN,N′−ジ
アセチルキトビオース構造の部分に作用し、下図の矢印 で示されるN−アセチルグルコサミンのβ1→4結合を
加水分解し、糖タンパク質よりオリゴ糖を遊離する活性
を持ち、アスパラギン結合型糖鎖の高マンノース型や混
合型だけでなく、複合型にも作用する。 B:作 用 一般的な高マンノース型糖鎖(Huang.C.−Cらによる)
を基質とした場合、下図の矢印 で示す部分を加水分解する作用を有する。 C:至適pH 5.0 D:安定pH 中性付近で安定
3. An end having the following properties based on a lentil:
A method for producing a general-purpose endo-β-N-acetylglucosaminidase, which comprises collecting a general-purpose endo-β-N-acetylglucosaminidase that is a glycosidase. A: Substrate specificity It acts on the N, N'-diacetylchitobiose structure part of the asparagine-linked sugar chain of glycoprotein, and the arrow in the figure below Hydrolyze the β1 → 4 bond of N-acetylglucosamine, which has the activity of releasing oligosaccharides from glycoproteins, and acts not only on the high-mannose type or mixed type of asparagine-linked sugar chains, but also on the complex type. To do. B: General high-mannose type sugar chain (according to Huang.C.-C et al.)
When using as a substrate, the arrow in the figure below It has the effect of hydrolyzing the portion indicated by. C: Optimal pH 5.0 D: Stable pH Stable near neutral
JP18385985A 1985-08-23 1985-08-23 General-purpose endo-β-N-acetylglucosaminidase and method for producing the same Expired - Lifetime JPH0616705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18385985A JPH0616705B2 (en) 1985-08-23 1985-08-23 General-purpose endo-β-N-acetylglucosaminidase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18385985A JPH0616705B2 (en) 1985-08-23 1985-08-23 General-purpose endo-β-N-acetylglucosaminidase and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6244180A JPS6244180A (en) 1987-02-26
JPH0616705B2 true JPH0616705B2 (en) 1994-03-09

Family

ID=16143070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18385985A Expired - Lifetime JPH0616705B2 (en) 1985-08-23 1985-08-23 General-purpose endo-β-N-acetylglucosaminidase and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0616705B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041236A (en) * 1989-10-27 1991-08-20 The Procter & Gamble Company Antimicrobial methods and compositions employing certain lysozymes and endoglycosidases
US5238843A (en) * 1989-10-27 1993-08-24 Genencor International, Inc. Method for cleaning a surface on which is bound a glycoside-containing substance
DK0425016T3 (en) * 1989-10-27 1996-05-06 Genencor Int Antimicrobial method and formulation using type II endoglycosidase and antimicrobial agent
US5258304A (en) * 1989-10-27 1993-11-02 Genencor International, Inc. Method of removing microorganisms from surfaces with Type II endoglycosidase
JPH0899988A (en) * 1994-09-29 1996-04-16 Takehiko Yamamoto Production of oligosaccharide containing sialic acids

Also Published As

Publication number Publication date
JPS6244180A (en) 1987-02-26

Similar Documents

Publication Publication Date Title
Allen et al. The purification, composition and specificity of wheat-germ agglutinin
Kilpatrick et al. Purification of the lectin from Datura stramonium.
US4184917A (en) Process for producing a structurally modified interferon
Jollès [12] Lysozymes from rabbit spleen and dog spleen
Nelsestuen et al. The carbohydrate of bovine prothrombin: Partial structural determination demonstrating the presence of α-galactose residues
Desai et al. Some properties of the lectin from Datura stramonium (thorn-apple) and the nature of its glycoprotein linkages
CA1266265A (en) Isolation of unreduced oligosaccharides
DE2440529C3 (en) Hyaluronidase preparation from human placenta
US4061538A (en) Enzymatically oxidizing interferon
CA1180292A (en) Short chain oligosaccharides possessing biological properties, their preparation and their use as medicaments
Desai et al. The purification of potato lectin by affinity chromatography on an N, N′, N ″-triacetylchitotriose-Sepharose matrix
Ikadai et al. Biochemical Studies on the Acrosome Reaction of the Starfish, Asterias Amurensis II. Purification and Characterization of Acrosome Reaction‐Inducing Substance
AMANO et al. Isolation and characterization of structural components of Bacillus cereus AHU 1356 cell walls
EP0475383B1 (en) Polysaccharide composition or polysaccharide having heparinoid activity, process for producing the same, and anticoagulant containing the same as active ingredient
Crowley et al. Datura stramonium lectin: isolation and characterization of the homogeneous lectin
JPH0616705B2 (en) General-purpose endo-β-N-acetylglucosaminidase and method for producing the same
Wu et al. Interaction of a Novel Tn (GalNAcα1→) Ser/Thr) Glycoprotein with Gal, GalNAc and GlcNAc Specific Lectins
Neiderhiser et al. The purification and properties of the glycoproteins of pig gallbladder bile
Kramer et al. [35] Assay and purification of phospholipase A2 from human synovial fluid in rheumatoid arthritis
US4382887A (en) Novel glycopeptide and methods of isolating and using the same
Reese et al. Purification of levansucrase by precipitation with levan
Peumans et al. Isolation and partial characterization of a new lectin from seeds of the greater celandine (Chelidonium majus)
JPH0662852A (en) Fucoidanase
CN1379088A (en) Radish chitin bindin and its preparing process
KR970011556B1 (en) Purification method of fomitella fraxinea rdagb 129 extracts