JPS6243982B2 - - Google Patents

Info

Publication number
JPS6243982B2
JPS6243982B2 JP2843080A JP2843080A JPS6243982B2 JP S6243982 B2 JPS6243982 B2 JP S6243982B2 JP 2843080 A JP2843080 A JP 2843080A JP 2843080 A JP2843080 A JP 2843080A JP S6243982 B2 JPS6243982 B2 JP S6243982B2
Authority
JP
Japan
Prior art keywords
molecular oxygen
mixture
reaction solution
water
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2843080A
Other languages
Japanese (ja)
Other versions
JPS56123930A (en
Inventor
Masahiro Fukui
Hideaki Himeno
Masakazu Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2843080A priority Critical patent/JPS56123930A/en
Publication of JPS56123930A publication Critical patent/JPS56123930A/en
Publication of JPS6243982B2 publication Critical patent/JPS6243982B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はアセトアルデヒド(以下AAと記す)
とn−ブチルアルデヒド(以下BAと記す)との
アルドール縮合物の脱水生成物の一つであるn−
ヘキセニルアルデヒド(以下HEと記す)の精製
に関するものである。
[Detailed Description of the Invention] The present invention relates to acetaldehyde (hereinafter referred to as AA)
n-, which is one of the dehydrated products of the aldol condensation product of
This paper relates to the purification of hexenyl aldehyde (hereinafter referred to as HE).

HEは青葉アルデヒドと呼ばれ、その名の示す
通り新緑の青葉の香気を有しており、人造花精
油、各種フローラルタイプの調合香料にグリーン
ノートを付与するのに用いられる。さらにそのア
セタール誘導体と共に、食品香料への付香も効果
的であり、あるいは昆虫類の誘引剤にも用途があ
り近年注目を浴びている。
HE is called green leaf aldehyde, and as its name suggests, it has the aroma of fresh green leaves, and is used to impart a green note to artificial flower essential oils and various floral-type blended fragrances. Furthermore, along with its acetal derivatives, it is also effective as a flavoring agent for food products, and is also used as an attractant for insects, which has attracted attention in recent years.

ところで、アルカリの存在下、AAとBAとお縮
合、脱水反応をすると、アルカリの種類、AA対
BAのモル比等の違いにより種々の割合の不飽和
アルデヒド類が生成することが知られている。主
な生成物は、クロトンアルデヒド(bp.104℃)、
2−エチルクロトンアルデヒド(bp.134℃)、HE
(bp.147℃)、2−エーチルヘキセニルアルデヒド
(bp.175℃)及び2−ビニルクロトンアルデヒド
(以下2−VCAと記す)である。これらの混合物
からクロトンアルデヒドと2−エチルクロトンア
ルデヒドとは低沸点留分として、2−エチルヘキ
セニルアルデヒドは高沸点留分として、それぞれ
分離できる。しかし中沸点留分としてHEを分離
しようとする時、ほとんど沸点差がないと思われ
る2−VCAが混入してくるため、蒸留によつて
HEを高純度化することができない。ここで具体
的な数字を示すと、例えばAA対BAのモル比4.0
で苛性ソーダ触媒で縮合脱水反応を行い、蒸留に
より低沸点留分を除いた後、中沸点留分として粗
HEを得る。この組成は例えばHE84.9% 2−
VCA14.1% 2−エチルクロトンアルデヒド1.0
%となり、これを再精留してもHEの純度をあげ
ることはできない。この2−VCAは刺激臭を持
つので、これがHEに混入すると、その香料とし
ての価値を著しく損うのである。
By the way, when AA and BA undergo a condensation and dehydration reaction in the presence of an alkali, the type of alkali and AA vs.
It is known that unsaturated aldehydes are produced in various proportions depending on the molar ratio of BA, etc. The main products are crotonaldehyde (bp.104℃),
2-Ethylcrotonaldehyde (bp.134℃), HE
(bp. 147°C), 2-ethylhexenylaldehyde (bp. 175°C), and 2-vinylcrotonaldehyde (hereinafter referred to as 2-VCA). From these mixtures, crotonaldehyde and 2-ethylcrotonaldehyde can be separated as low-boiling fractions, and 2-ethylhexenylaldehyde can be separated as high-boiling fractions. However, when trying to separate HE as a medium boiling point fraction, 2-VCA, which seems to have almost no difference in boiling point, is mixed in, so it is difficult to separate HE by distillation.
It is not possible to purify HE. To show specific numbers here, for example, the molar ratio of AA to BA is 4.0
A condensation dehydration reaction is carried out using a caustic soda catalyst, and after removing the low-boiling point fraction by distillation, the crude medium-boiling point fraction is
Get HE. This composition is, for example, HE84.9% 2-
VCA14.1% 2-ethylcrotonaldehyde 1.0
%, and even if this is rectified again, the purity of HE cannot be increased. Since 2-VCA has a pungent odor, when it is mixed into HE, its value as a fragrance material is significantly impaired.

従来特公昭48−12721、同48−12722において分
岐アルデヒドを単離精製する方法は報告されてい
るが、直鎖アルデヒドを選択的に分離する方法は
まだ報告されていない。
Although methods for isolating and purifying branched aldehydes have been reported in Japanese Patent Publications No. 48-12721 and No. 48-12722, a method for selectively separating linear aldehydes has not yet been reported.

本発明者らは、HEと2−VCAの分離を追求し
て鋭意研究を重ねた結果、2−VCAの反応性の
高い末端二重結合に着目し、これを分子状酸素も
しくは分子状酸素含有ガスにより液状酸化し重合
させることによつて、蒸留時の釜残とすることが
でき、HEは高純度で留出分離せしめうることを
見出し、本発明に到達したものである。
As a result of extensive research in pursuit of the separation of HE and 2-VCA, the present inventors focused on the highly reactive terminal double bond of 2-VCA, and discovered that it was possible to separate HE from molecular oxygen or molecular oxygen-containing The present invention was achieved by discovering that by oxidizing and polymerizing HE in a liquid state with a gas, it can be used as a residue during distillation, and that HE can be distilled and separated with high purity.

すなわち、本発明はAAとBAとのアルドール縮
合反応生成物を脱水することに由来し、HE及び
2−VCAを含む混合物(以下原料混合物とい
う)を分子状酸素又は分子状酸素含有ガスと接触
させて前記2−VCAを酸化し重合し、次いで得
られた混合物を蒸留することによりHEを精製す
る方法を要旨するものである。
That is, the present invention is derived from dehydrating an aldol condensation reaction product of AA and BA, and bringing a mixture containing HE and 2-VCA (hereinafter referred to as a raw material mixture) into contact with molecular oxygen or a molecular oxygen-containing gas. The present invention summarizes a method for purifying HE by oxidizing and polymerizing the 2-VCA and then distilling the resulting mixture.

前記AAとBAとのアルドール縮合反応生成物を
脱水することに由来する、というのは、AAとBA
とのアルドール縮合物を脱水したままのものも、
またその後何らかの処置をしたもの、例えばクロ
トンアルデヒド、2−エチルクロトンアルデヒ
ド、2−エチルヘキセニルアルデヒドなどを分留
により除いて残つたものも含む、という意味であ
る。クロトンアルデヒド、2−エチルクロトンア
ルデヒド及び2−エチルヘキセニルアルデヒド
は、樹脂の可塑性などの中間原料として有用なも
のであり、本発明における酸素ガスとの接触によ
り一部破壊されるから、予め(本発明実施の前
に)分留等の手段により除いておくのが好まし
い。
This is derived from dehydrating the aldol condensation reaction product of AA and BA.
The dehydrated aldol condensate with
It also includes those that have undergone some subsequent treatment, such as those that remain after removing crotonaldehyde, 2-ethylcrotonaldehyde, 2-ethylhexenylaldehyde, etc. by fractional distillation. Crotonaldehyde, 2-ethylcrotonaldehyde, and 2-ethylhexenylaldehyde are useful as intermediate raw materials for plasticizing resins, etc., and are partially destroyed by contact with oxygen gas in the present invention. It is preferable to remove it by means such as fractional distillation (before the implementation).

前記分子状酸素又は分子状酸素含有ガスとして
は、純酸素又は希釈された酸素含有ガス例えば酸
素と窒素等の不活性ガスとの混合ガスを使用する
ことができる。なかでも安価な点から空気が最も
好ましい。このようなガスの存在下常圧又は加圧
下に反応を行なうのが好ましい。
As the molecular oxygen or molecular oxygen-containing gas, pure oxygen or a diluted oxygen-containing gas, such as a mixed gas of oxygen and an inert gas such as nitrogen, can be used. Among them, air is the most preferable because it is inexpensive. It is preferable to carry out the reaction in the presence of such a gas at normal pressure or under elevated pressure.

本発明における、原料混合物と酸素ガスとの接
触を観察してみると、例えば上に例示した粗HE
に空気を吹込んでいつた時の経時変化を見ると、
2−VCAは時間と共に減少し過酸化物濃度は初
期に増加するものの、約0.2ミリモル/グラムを
上限とする極大値をもつ曲線を描く。このことか
らアルデヒドから過酸が生じ次いでその分解によ
つて生じた遊離ラジカルが末端オレフインの重合
を促進するという、いわゆる自触媒反応が進行し
ていると考えられる。酸価はほぼ一定の割合で上
昇する。これは2−VCAと共に、HEがカルボン
酸に変化していくためであるが、この分のHEの
ロスは避けられない。しかし、一方生成物である
トランス−2−ヘキセン酸も香料としての価値が
あり、又実際に分離回収できるものである。
Observing the contact between the raw material mixture and oxygen gas in the present invention, for example, the crude HE exemplified above
Looking at the changes over time after blowing air into the
Although 2-VCA decreases with time and peroxide concentration initially increases, a curve with a maximum value of about 0.2 mmol/g is drawn. From this, it is considered that a so-called autocatalytic reaction is proceeding in which peracid is generated from aldehyde and free radicals generated by its decomposition promote polymerization of terminal olefin. The acid value increases at an almost constant rate. This is because HE changes into carboxylic acid together with 2-VCA, but this loss of HE is unavoidable. However, the product trans-2-hexenoic acid also has value as a perfume and can actually be separated and recovered.

自動酸化の方法としてはバツチ式の撹拌槽でも
よく、あるいは向流式の塔型反応装置でもよい。
反応温度は高い程2−VCAの減少速度は大きい
が、望ましくない副生成物が増える傾向があるか
ら、10℃から100℃が適当である。反応時間は原
料混合物中の2−VCA含有量、空気吹き込み
量、気液接触効率などによつて異なるが、ガスク
ロマトグラフイーで内容物を追跡して2−VCA
が所定量(例えば0.1%以下)になる時間とすれ
ばよい。反応時間が長ければ長い程、2−VCA
はよく除けるが、HEのロスが大きくなるため、
通常10−40時間で反応を終えるのがよい。
The autooxidation method may be a batch type stirring tank or a countercurrent type tower reactor.
The higher the reaction temperature, the greater the rate of reduction of 2-VCA, but since there is a tendency for undesirable by-products to increase, a temperature of 10°C to 100°C is appropriate. The reaction time varies depending on the 2-VCA content in the raw material mixture, the amount of air blowing, the gas-liquid contact efficiency, etc., but the content can be monitored by gas chromatography and the 2-VCA
The time may be set such that the amount of time becomes a predetermined amount (for example, 0.1% or less). The longer the reaction time, the more 2-VCA
can be removed well, but the loss of HE increases, so
It is usually best to complete the reaction in 10-40 hours.

反応時間を短縮する目的には、鉄、銅、コバル
ト、ニツケル、マンガン等の遷移金属の塩の添加
が効果的であり、蔭イオン種としては、塩化物又
は臭化物が好ましい。これら塩類の添加量として
は原料混合物の10〜1000ppmが好ましく、これ
よりも多くても少なくても速度が低化する傾向が
ある。溶媒は一般には反応を調節して爆発的反応
を防いだり、また触媒の金属塩の溶解度を増して
反応を速める上に効果があり、本発明において
は、例えば脂肪酸、ハロゲン化芳香族化合物、飽
和脂肪族炭化水素などのように自動酸化を受けに
くい溶媒がよい。しかし、無溶媒でもさしつかえ
ない。
For the purpose of shortening the reaction time, it is effective to add salts of transition metals such as iron, copper, cobalt, nickel, and manganese, and as the negative ion species, chloride or bromide is preferred. The amount of these salts added is preferably 10 to 1000 ppm of the raw material mixture, and even if it is larger or smaller than this, the speed tends to decrease. Solvents are generally effective in controlling the reaction to prevent explosive reactions, and in increasing the solubility of the metal salts of the catalyst to speed up the reaction. A solvent that does not easily undergo autoxidation, such as an aliphatic hydrocarbon, is preferable. However, it may be used without a solvent.

さて、このように処理した反応液をそのまま蒸
留することは残存する過酸化物により爆発の危険
があり、さらに副生物の分解により異臭が製品
HEの中に混入する可能性がある。そこで反応液
に水を加え又は水蒸気を吹込んで(反応液当初か
ら充分な水があればそのまま)大気圧下または減
圧下で蒸留するのが好ましい。この時反応液に存
在する水、反応液に加える水及び反応液に吹込む
水蒸気の量は、該反応液に対して0.1〜1倍程度
好ましくは0.5〜5倍程度が適当である。この蒸
留は、留出して来る水をリサイクルしながら行な
つてもよい。リサイクルされる水の量は新たに前
記反応液に加えられる水の量として計算される。
留出して来る水をリサイクルする場合には前記蒸
留の当初に反応液に加える水の量が該反応液に対
して重量比0.05でも行なえる。この蒸留後の釜残
は二層に分離しており、下層の有機層は橙色のか
なり粘稠な液体である。しかしこの粘稠な液体は
アセトン、メタノール等で容易に洗い流せるもの
である。留出した有機層と水層とを分離し、有機
層をあらためて、通常の減圧蒸留に処することに
より高純度のHEを得ることができる。
Distilling the reaction solution treated in this way as it is poses a risk of explosion due to the remaining peroxide, and furthermore, the decomposition of by-products may cause an unpleasant odor to the product.
It may be mixed into HE. Therefore, it is preferable to add water or blow steam into the reaction solution (if there is sufficient water from the beginning of the reaction solution, as it is) and distill it under atmospheric pressure or reduced pressure. At this time, the amount of water present in the reaction solution, water added to the reaction solution, and steam blown into the reaction solution is suitably about 0.1 to 1 times, preferably about 0.5 to 5 times, the amount of the reaction solution. This distillation may be carried out while recycling the distilled water. The amount of recycled water is calculated as the amount of water newly added to the reaction solution.
When the distilled water is recycled, the amount of water added to the reaction solution at the beginning of the distillation can be carried out even if the weight ratio to the reaction solution is 0.05. The residue after this distillation is separated into two layers, the lower organic layer being an orange and fairly viscous liquid. However, this viscous liquid can be easily washed away with acetone, methanol, etc. High purity HE can be obtained by separating the distilled organic layer and aqueous layer and subjecting the organic layer to normal vacuum distillation.

以下に実施例を掲げて本発明をさらに具体的に
説明する。以下の例において、組成は全てガスク
ロマトグラムの面積%を表わす。ガスクロマトグ
ラフイーの条件は、カラム:PEG6000(25%)、
カラム長:2m、温度:140℃、キヤリヤーガ
ス:N2(0.8Kg/cm2)、検出器:FIDである。
The present invention will be described in more detail below with reference to Examples. In the following examples, all compositions refer to area % of the gas chromatogram. The conditions for gas chromatography were: Column: PEG6000 (25%);
Column length: 2 m, temperature: 140°C, carrier gas: N 2 (0.8 Kg/cm 2 ), detector: FID.

実施例 1 50SUS製撹拌槽に、粗HE25Kg(組成;HE:
90.7%、2−VCA:9.1%、2−エチルクロトン
アルデヒド:0.2%)を仕込み、300rpmの撹拌下
温度25℃から30℃の範囲で空気を8.6/minで
吹き込み38時間反応させた。反応液の組成は、
HE:96.9%、2−VCA:0.12%で、酸価は
135KOHmg/g、過酸化物濃度は0.16ミリモル/
gであつた。この反応液に水15Kgを加え100mmHg
の圧力で蒸留を行ない、その間留出してくる水に
相当する量の水を少しずつ蒸留釜に補充した。結
局、水の仕込合計は48Kgで留出した有機層15.0
Kg、水層30.4Kgであつた。この有機層の組成は、
HE:98.7%、2−VCA:0.09%であつた。次に
この留出有機層15.0Kgを20精留塔(ガラスリン
グ充填塔、理論段数10段)で、50mmHgの圧力
下、留出温度70℃で精留し、12.7Kgの精製HEが
得られた。その組成は、HE:98.8%、2−
VCA:0.08%であつた。HEの回収率は55.3%で
ある。
Example 1 25 kg of crude HE (composition; HE:
90.7% 2-VCA, 9.1% 2-VCA, 0.2% 2-ethylcrotonaldehyde) were charged, and the mixture was reacted for 38 hours by blowing air at a rate of 8.6/min at a temperature ranging from 25°C to 30°C while stirring at 300 rpm. The composition of the reaction solution is
HE: 96.9%, 2-VCA: 0.12%, acid value is
135KOHmg/g, peroxide concentration 0.16 mmol/
It was hot at g. Add 15 kg of water to this reaction solution and raise the temperature to 100 mmHg.
Distillation was carried out at a pressure of , during which time the still was replenished little by little with an amount of water equivalent to the water distilled out. In the end, the total amount of water used was 48 kg and the organic layer distilled was 15.0 kg.
kg, and the water layer was 30.4 kg. The composition of this organic layer is
HE: 98.7%, 2-VCA: 0.09%. Next, 15.0 kg of this distilled organic layer was rectified in a 20 rectification tower (glass ring packed tower, number of theoretical plates: 10) under a pressure of 50 mmHg and a distillation temperature of 70°C, and 12.7 kg of purified HE was obtained. Ta. Its composition is HE: 98.8%, 2-
VCA: 0.08%. The recovery rate of HE was 55.3%.

実施例 2 粗HE17.0Kg(組成;HE:92.9%、2−VCA
7.1%)に塩化第二鉄(Fecl3・6H2O)1.7gを加
え、300rpmの撹拌下、温度40℃で空気を8.6/
minで吹き込み、16時間反応させた。この時の反
応液の組成はHE:97.5%、2−VCA:0.3%で、
酸価は77KOHmg/gであつた。この反応液を実
施例1と同様に水を加えて蒸留させて、HEの純
度98.6%、2−VCAの含有量0.15%の有機層11.4
Kgを得た。
Example 2 Crude HE17.0Kg (composition; HE: 92.9%, 2-VCA
Add 1.7 g of ferric chloride (Fecl 3.6H 2 O) to 7.1%), stir at 300 rpm, and stir at 40°C with air at 8.6%
The mixture was blown in at min. and reacted for 16 hours. The composition of the reaction solution at this time was HE: 97.5%, 2-VCA: 0.3%,
The acid value was 77KOHmg/g. This reaction solution was distilled with water added in the same manner as in Example 1, and an organic layer containing 98.6% HE purity and 0.15% 2-VCA content was obtained.
Got Kg.

Claims (1)

【特許請求の範囲】 1 アセトアルデヒドとn−ブチルアルデヒドと
のアルドール縮合物を脱水することに由来し、n
−ヘキセニルアルデヒド及び2−ビニルクロトン
アルデヒドを含む混合物(以下原料混合物とい
う)を、分子状酸素又は分子状酸素含有ガスと接
触させて前記2−ビニルクロトンアルデヒドを酸
化し重合し、次いで得られた混合物を蒸留するこ
とを特徴とするn−ヘキセニルアルデヒドの精製
方法。 2 原料混合物が、アセトアルデヒドとn−ブチ
ルアルデヒドとのアルドール縮合反応生成物を脱
水して得られる混合物を分留することにより得ら
れるn−ヘキセニルアルデヒドに富んだ留分であ
ることを特徴とする第1項記載の方法。 3 原料混合物と分子状酸素又は分子状酸素含有
ガスとの接触を10〜100℃で行なうことを特徴と
する第1項又は第2項記載の方法。 4 前記分子状酸素又は分子状酸素含有ガスとし
て空気を使用することを特徴とする第1項ないし
第3項のいずれかに記載の方法。 5 原料混合物に遷移金属の塩を添加して、分子
状酸素又は分子状酸素含有ガスと接触させること
を特徴とする第1項ないし第4項のいずれかに記
載の方法。 6 前記蒸留をするとき、前記反応により得られ
混合物に水を加え又は水蒸気を吹込んで蒸留する
ことを特徴とする第1項ないし第5項のいずれか
に記載の方法。 7 前記蒸留をするとき、前記反応により得られ
た混合物に水を加え又は水蒸気を吹込んで(該混
合物に当初から充分に水があるときはそのまま)
蒸留し、この時反応液に存在する水、反応液に加
える水及び反応液に吹込む水蒸気の量を該反応液
に対して0.1〜10倍とすることを特徴とする第1
項ないし第5項のいずれかに記載の方法。
[Claims] 1 Derived from dehydrating an aldol condensate of acetaldehyde and n-butyraldehyde, n
- A mixture containing hexenylaldehyde and 2-vinylcrotonaldehyde (hereinafter referred to as a raw material mixture) is brought into contact with molecular oxygen or a molecular oxygen-containing gas to oxidize and polymerize the 2-vinylcrotonaldehyde, and then the resulting mixture A method for purifying n-hexenylaldehyde, which comprises distilling n-hexenylaldehyde. 2. The raw material mixture is a fraction rich in n-hexenylaldehyde obtained by fractionating a mixture obtained by dehydrating an aldol condensation reaction product of acetaldehyde and n-butyraldehyde. The method described in Section 1. 3. The method according to item 1 or 2, characterized in that the raw material mixture and molecular oxygen or molecular oxygen-containing gas are brought into contact at 10 to 100°C. 4. The method according to any one of items 1 to 3, characterized in that air is used as the molecular oxygen or molecular oxygen-containing gas. 5. The method according to any one of items 1 to 4, characterized in that a salt of a transition metal is added to the raw material mixture and brought into contact with molecular oxygen or a molecular oxygen-containing gas. 6. The method according to any one of items 1 to 5, wherein the distillation is carried out by adding water or blowing steam into the mixture obtained by the reaction. 7. When performing the above distillation, add water or blow steam into the mixture obtained by the above reaction (if there is sufficient water in the mixture from the beginning, leave it as is)
The first method is characterized in that the amount of water present in the reaction solution, water added to the reaction solution, and steam blown into the reaction solution is 0.1 to 10 times the amount of the reaction solution.
The method according to any one of Items 1 to 5.
JP2843080A 1980-03-06 1980-03-06 Purifying method of n-hexenylaldehyde (n-hexylene aldehyde) Granted JPS56123930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2843080A JPS56123930A (en) 1980-03-06 1980-03-06 Purifying method of n-hexenylaldehyde (n-hexylene aldehyde)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2843080A JPS56123930A (en) 1980-03-06 1980-03-06 Purifying method of n-hexenylaldehyde (n-hexylene aldehyde)

Publications (2)

Publication Number Publication Date
JPS56123930A JPS56123930A (en) 1981-09-29
JPS6243982B2 true JPS6243982B2 (en) 1987-09-17

Family

ID=12248439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2843080A Granted JPS56123930A (en) 1980-03-06 1980-03-06 Purifying method of n-hexenylaldehyde (n-hexylene aldehyde)

Country Status (1)

Country Link
JP (1) JPS56123930A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180854A (en) * 1988-07-14 1993-01-19 Union Carbide Chemicals & Plastics Technology Corporation Process for catalyst aldehyde product separation

Also Published As

Publication number Publication date
JPS56123930A (en) 1981-09-29

Similar Documents

Publication Publication Date Title
JP3243623B2 (en) Co-production of propylene oxide and styrene monomer
KR101618927B1 (en) Purification of propylene oxide
RU2280639C2 (en) Method for oxidative treatment of recirculation flow in preparing acetic acid by carbonylation of methanol (variants)
SU436491A3 (en) Method for isolating ethylene oxide
US4402794A (en) Purification of butylene oxides by extractive distillation with selected extractive distillation solvents
KR920007872B1 (en) Process for recovery of methacrylic acid
US3278562A (en) Oxidation process using peracetic acid
CN1390190A (en) Method for purifying acrylic acid obtained by oxidation of propylene and/or acrolein
JPS6243982B2 (en)
JP3552306B2 (en) Method for producing propylene oxide and styrene monomer
JP2602707B2 (en) Method for recovering rhodium from hydroformylation reaction product
US4379025A (en) Water removal from butylene oxides by liquid extraction with selected extractive solvents
JPH0244296B2 (en)
JPH0748346A (en) Integrated production of di-tert-butyl peroxide
US3522279A (en) Oxidation process
US3997615A (en) Process for recovery of ortho-phenylphenol
CN101119959A (en) Process for recovering organic compounds contained in (meth) acrylic acid-containing mixtures by extraction with a protic solvent
TW200404756A (en) Oxidation process
US3449219A (en) Process for fractionating propylene from propylene oxide in the presence of hydrocarbon flux
US3480519A (en) Method for the separation of c6 to c10 alpha olefins from c6 to c10 alpha olefin epoxides by azeotropic and vacuum distillation
EP1539658A1 (en) Process for the preparation of styrene or substituted styrene
US4379026A (en) Process for the purification of benzaldehyde
US3957873A (en) Peracetic acid oxidation of amines to amine oxides
US3392200A (en) Method of recovering methyl ethyl ketone
CN114195692B (en) 3- (2-hydroxy-2-propyl) cumene hydroperoxide and preparation method thereof