JPS6243764B2 - - Google Patents

Info

Publication number
JPS6243764B2
JPS6243764B2 JP1804783A JP1804783A JPS6243764B2 JP S6243764 B2 JPS6243764 B2 JP S6243764B2 JP 1804783 A JP1804783 A JP 1804783A JP 1804783 A JP1804783 A JP 1804783A JP S6243764 B2 JPS6243764 B2 JP S6243764B2
Authority
JP
Japan
Prior art keywords
scale
weight
parts
powder
layer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1804783A
Other languages
Japanese (ja)
Other versions
JPS59144512A (en
Inventor
Toshimi Muto
Yoshihiro Kobayashi
Toshitaka Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yushiro Chemical Industry Co Ltd
Original Assignee
Yushiro Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yushiro Chemical Industry Co Ltd filed Critical Yushiro Chemical Industry Co Ltd
Priority to JP1804783A priority Critical patent/JPS59144512A/en
Publication of JPS59144512A publication Critical patent/JPS59144512A/en
Publication of JPS6243764B2 publication Critical patent/JPS6243764B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は鋼材を加熱するときのスケールの生成
を抑制し、かつ生成したスケールの剥離性を改善
する方法に関する。 (技術的背景) 鋼材は熱間加工に際し、通常加熱炉で1000℃〜
1300℃に加熱されたのち、加工機へ移送される。
この際、加熱炉内の酸素を含む雰囲気および移送
中の大気との接触により、鋼材表面が酸化されて
いわゆるスケールが生成する。スケールの生成は
鋼材の損失を招き、また加工時にこれが鋼材と工
具の間にかみこまれると、工具を損傷したり、ス
ケールが鋼材に圧入されて表面キズを生じ製品品
位の低下をきたす。 (従来技術) スケールの生成を抑制するためにいろいろな方
法がとられている。最も普通の方法は、鋼材を加
熱する前にいわゆるスケール抑制剤を塗布する方
法である。たとえば特公昭53−43124に酸化クロ
ムその他から成る組成物をスケールの生成抑制を
目的として鋼材に塗布することが開示されてい
る。スケール抑制剤として各種の金属または非金
属の混合物が知られている。ところが従来の方法
をもつてしては、スケールの抑制が十分でないだ
けでなく、スケール抑制剤を塗布してもなおかつ
生成したスケールおよびスケール抑制剤が鋼材に
強固に固着して、加工前にスケールブレーカで除
去しようとしても除去しきれず、上記のようなト
ラブルを発生する。 上記の現状であるからスケールの生成を十分に
抑制し、若干のスケールが発生してもこれが容易
に除去できるような鋼材の処理方法が強く望まれ
ている。 (発明の目的) 本発明はスケールの生成を抑制し、生成したス
ケールの剥離性を向上する。改善された鋼材の処
理方法を提供することを目的とするものである。 (発明の構成) 本発明は鋼の表面を、各々組成の異なる二つの
被覆層で被覆することを特徴とするものである。
すなわち本発明は、粘結剤および炭素粉を含有す
る組成物をもつて鋼材表面を被覆し、ついでその
組成物層表面を (イ) アルミニウム、クロム、チタン、マンガン、
銅、ニツケル、コバルト、マグネシウムおよび
鉄から選ばれた金属の粉末 10ないし50重量部、 (ロ) 上記(イ)に記載した金属の酸化物の粉末
5ないし30重量部、 (ハ) 無水ケイ酸 10ないし100重量部、 (ニ) カオリン、モンモリロナイト、ドロマイト系
耐火物の粉末 10ないし100重量部、 (ホ) 水ガラス 20ないし80重量部、 (ト) 水 適量 を含有する組成物をもつて被覆することを特徴と
する鋼材加熱時におけるスケールの生成および生
成したスケールの剥離性を改善する方法である。 本発明の構成要素について、以下に詳説する。 (下層組成物) 本発明において炭素粉としては、黒鉛、カーボ
ンブラツク、木炭粉等の一種以上を用いることが
でき、炭素粉の粘結剤としては水ガラスあるいは
水溶性高分子物質を使用することができる。水溶
性高分子物質としてはカルボキシメチルセルロー
スのような天然高分子物質の誘導体およびポリア
クリル酸のような合成高分子物質を広く用いるこ
とができる。 炭素粉と粘結剤を均一に混合したのち、必要に
よつては水を適宜加えて組成物を塗布しやすいよ
うに粘稠度を調節する。この際、炭素粉と粘結剤
との割合は、重量比で粘結剤よりも炭素粉が多い
ことが望ましい。 このようにして調製された炭素粉含有組成物
を、以下の記述においては下層組成物と表記す
る。 (金属粉末および金属酸化物の粉末) 本発明において前記(イ)の成分のうち特に望まし
いのはアルミニウム、クロムおよびチタンであ
り、(ロ)の成分のうち特に望ましいのはアルミニウ
ムの酸化物、クロムの酸化物およびチタンの酸化
物である。これらの金属および金属酸化物を用い
ると、とくにスケール生成を抑制する効果が大き
いからである。 (上層組成物) 前記の(イ)ないし(ト)の物質を含有する組成物(以
下これを上層組成物という。)を製造するには、
(イ)ないし(ホ)の物質を均一に混合したのち、鋼材へ
の塗布を容易にするために必要に応じて水を加え
て粘稠度を調節する。 (塗布量) 本発明において、鋼材表面に塗布すべき下層お
よび上層組成物の塗布量は乾燥重量として、下層
は2mg/cm2以上、上層は5mg/cm2以上であること
が望ましい。その理由は第2図および第3図の示
すように下層の塗布量が2mg/cm2未満であるとス
ケールの剥離性が劣り、上層の塗布量が5mg/cm2
未満であるとスケール生成の抑制効果が劣るから
である。 下層の塗布量は望ましくは5mg/cm2以上であ
り、上層は5mg/cm2以上、望ましくは20mg/cm2
上である。 (発明の作用と効果) 本発明の効果は、下層組成物と上層組成物〔前
記の(イ)ないし(ト)の物質を含有する組成物を上層組
成物という。〕から形成される二つの被覆層によ
つて発現されるものである。 炭素粉と前記上層組成物とを混合して組成物を
つくり、これを鋼材表面に塗布して単一被覆層を
形成した場合には、スケール抑制効果が劣り、そ
のうえ生成したスケールおよび、固着したスケー
ル抑制剤の除去が困難である。 本発明における上層組成物の塗布を省略した場
合、および下層組成物と上層組成物を塗布する順
序を逆にした場合には、加熱時に炭素粉が容易に
酸化して消失するので効果を生じない。 また本発明の下層組成物の塗布を省略して上層
組成物だけで鋼材を被覆しても、雰囲気を遮断
し、スケールを抑制する効果はある程度得られる
が十分でなく、また生成したスケールの除去が困
難である。その上、この上層組成物自体も、加熱
炉内で焼結されて鋼材表面に強固な固着層を形成
する。この固着層は除去し難く、スケールブレー
カーを用いても残存して、工具や鋼材の損傷の原
因となる。 本発明の方法によつて鋼材を処理すれば、スケ
ールの発生を極めて小量に抑えることができるの
で、鋼材の歩留りを高め、資源の節約に寄与する
ことができる。また、本発明の方法によつて鋼材
を処理すれば、処理剤を含めたスケールの剥離性
がよく、たとえばスケールブレーカを用いて簡単
に除去できるので、熱間加工時に工具を損傷した
り、鋼材に表面キズが発生することがない。 本発明の方法において、鋼材表面を被覆する二
つの層の作用効果について、次のように推定す
る。先づ、上層の組成物は、その還元作用および
物理的な遮蔽効果によつて雰囲気から鋼材表面へ
の酸素の到達を一次的に措止する。次に下層組成
物は上層組成物が阻止しきれなかつた比較的低い
分圧の酸素の鋼材表面への到達を炭素の還元作用
と層の物理的遮蔽効果によつて最終的に阻止し、
スケールの発生を抑える。また下層の存在によつ
て上層組成物の鋼材への密着性を抑え、上層組成
物を含めたスケールの剥離を容易にする。 (実施例) 次に実施例を掲げて本発明を具体的に説明す
る。ただし本発明はこれらによつてなんら制限さ
れるものではない。 (処理方法) 以下の各実施例において、あらかじめ秤量した
鋼材(SPCC、80×60×1.2mm)を試験片として用
い、その両面にまず下層組成物をよく練つて刷毛
で均一に塗布し、110℃で30分乾燥してから秤量
して、下層組成物の塗布量を乾燥塗布量として求
めた。次に下層組成物の被覆層の上に上層組成物
をよく練つて刷毛で塗布し、下層組成物と同様に
して上層組成物の塗布量を求めた。このようにし
て二つの層からなるスケール防止剤で被覆した鋼
材試験片を1200℃の空気雰囲気電気炉内で1時間
加熱したのち、とり出し、下記の方法でスケール
抑制効果およびスケール剥離性の改善効果を評価
した。 (スケール抑制効果およびスケール剥離性の評価
方法) 第1図は試験装置の要部の斜視図であつて、図
中の矢印は試験片の移動方向を示す。 第1図のように配置した上下2個づつ、計4個
のノズル2の間を鋼材試験片1を長手方向に水平
に移動して通過させ、その間ノズルから室温の水
を噴射して、スケールおよびスケール抑制剤を除
去し、110℃で30分間乾燥して秤量した。その時
の重量をW1とした。 試験装置の操作条件は下記のとおりである。 吐出圧力(各ノズル) 100Kg/cm2 ノズル径 1.7mmφ 吐出量 17/min ノズルと試験片の距離 50mm 平行に並ぶノズル間の距離 30mm 試験片の移動速度 2mm/sec 上記の処理をしてなお残つているスケールおよ
びスケール抑制剤を、機械的衝撃を与えることに
よつて完全に除去し、秤量した。その時の重量を
W2とした。スケール抑制剤塗布前の鋼板試験片
の重量をW0とし、次式によつて酸化減量率およ
びスケール除去率を求めた。 酸化減量率=〔(W0−W2)/W0〕×100% スケール除去率 =〔(W0−W1)/W0−W2〕×100% 酸化減量率の小さいほどスケール抑制効果が大
きく、スケール除去率の大きいほどスケールの剥
離性がよいと評価する。 実施例 1 下層組成物として黒鉛16重量部、水ガラス6重
量部、水30重量部を混合してよく練り、鋼材試験
片の両面に均一に塗布した。上記の方法で塗布量
を求めたのち、この被覆層の上にアルミニウム粉
30重量部、酸化アルミニウム粉22重量部、無水ケ
イ酸粉55重量部、カオリン55重量部、水ガラス50
重量部、水15重量部を混合してよく練つて作つた
上層組成物を塗布し、前記の方法で塗布量を求め
た。塗布量は下層20mg/cm2、上層80mg/cm2であつ
た。次に前記の順に従つて、酸化減量率およびス
ケール除去率を求めた。結果を後記の表−1に示
す。 実施例 2 実施例1における下層組成物の塗布量を10mg/
cm2とし、他の実施例1と全く同じに処理し、試験
を行つた。結果を表−2に示す。 実施例 3 実施例1の下層組成物および上層組成物をとも
に20mg/cm2づつ塗布し、他は実施例1と同じに処
理して試験した。結果を表−1に記す。 比較例 1 実施例1の下層組成物を塗布することなく、上
層組成物を直接試験片に塗布した。その塗布量は
100mg/cm2であつた。他は実施例1と同じに処理
して試験した。結果を表−1に記す。 比較例 2 実施例1の下層組成物のみを塗布し、上層組成
物は塗布しなかつた。塗布量は80mg/cm2であつ
た。他は実施例1と同じに処理して試験した。結
果を表−1に記す。 比較例 3 黒鉛16重量部、アルミニウム粉30重量部、酸化
アルミニウム粉22重量部、無水ケイ酸粉55重量
部、水ガラス56重量部、水45重量部を混合して塗
布した。塗布量は100mg/cm2であつた。他は実施
例1と同じに処理して試験した。結果を表−1に
記す。
(Industrial Application Field) The present invention relates to a method for suppressing the formation of scale when heating steel materials and improving the removability of the generated scale. (Technical background) When steel materials are hot worked, they are usually heated to 1000℃ or more in a heating furnace.
After being heated to 1300℃, it is transferred to a processing machine.
At this time, the surface of the steel material is oxidized due to contact with the oxygen-containing atmosphere in the heating furnace and the atmosphere during transportation, and so-called scale is generated. Formation of scale causes loss of steel material, and if it gets caught between the steel material and the tool during machining, it can damage the tool or cause the scale to be press-fitted into the steel material, causing surface scratches and degrading the quality of the product. (Prior Art) Various methods have been used to suppress scale formation. The most common method is to apply so-called scale inhibitors to the steel before heating it. For example, Japanese Patent Publication No. 53-43124 discloses applying a composition consisting of chromium oxide and other materials to steel materials for the purpose of inhibiting scale formation. Mixtures of various metals or non-metals are known as scale inhibitors. However, with conventional methods, not only is scale suppression insufficient, but even after applying a scale inhibitor, the generated scale and scale inhibitor firmly adhere to the steel material, and the scale is removed before processing. Even if you try to remove it with a breaker, it will not be removed completely and the above problems will occur. Due to the above-mentioned current situation, there is a strong desire for a steel processing method that can sufficiently suppress the formation of scale, and even if some scale does occur, it can be easily removed. (Object of the Invention) The present invention suppresses scale formation and improves the removability of the generated scale. The object is to provide an improved method for processing steel materials. (Structure of the Invention) The present invention is characterized in that the surface of steel is coated with two coating layers each having a different composition.
That is, the present invention coats the surface of a steel material with a composition containing a binder and carbon powder, and then coats the surface of the composition layer with (a) aluminum, chromium, titanium, manganese,
10 to 50 parts by weight of powder of a metal selected from copper, nickel, cobalt, magnesium and iron, (b) Powder of oxide of the metal listed in (a) above
5 to 30 parts by weight, (c) 10 to 100 parts by weight of silicic anhydride, (d) 10 to 100 parts by weight of powder of kaolin, montmorillonite, and dolomite refractories, (e) 20 to 80 parts by weight of water glass, (t) ) This is a method for improving the formation of scale during heating of steel materials and the removability of the generated scale, which is characterized by coating the steel with a composition containing an appropriate amount of water. The components of the present invention will be explained in detail below. (Lower layer composition) In the present invention, as the carbon powder, one or more of graphite, carbon black, charcoal powder, etc. can be used, and as the binder for the carbon powder, water glass or a water-soluble polymer substance can be used. Can be done. As water-soluble polymeric substances, derivatives of natural polymeric substances such as carboxymethylcellulose and synthetic polymeric substances such as polyacrylic acid can be widely used. After the carbon powder and the binder are mixed uniformly, if necessary, water is appropriately added to adjust the viscosity so that the composition can be easily applied. At this time, it is desirable that the ratio of carbon powder to binder is larger than that of binder in terms of weight ratio. The carbon powder-containing composition prepared in this manner will be referred to as a lower layer composition in the following description. (Metal Powder and Metal Oxide Powder) In the present invention, aluminum, chromium, and titanium are particularly desirable among the components (a), and particularly desirable among the components (b) are aluminum oxide and chromium. and titanium oxide. This is because the use of these metals and metal oxides is particularly effective in suppressing scale formation. (Top layer composition) To produce a composition containing the substances (a) to (g) above (hereinafter referred to as the top layer composition),
After uniformly mixing the substances (a) to (e), water is added as necessary to adjust the consistency in order to facilitate application to steel materials. (Coating amount) In the present invention, the coating amounts of the lower layer and upper layer compositions to be applied to the surface of the steel material are desirably 2 mg/cm 2 or more for the lower layer and 5 mg/cm 2 or more for the upper layer as dry weight. The reason for this is that, as shown in Figures 2 and 3, if the coating amount of the lower layer is less than 2 mg/cm 2 , the scale removability is poor, and if the coating amount of the upper layer is less than 5 mg/cm 2 .
This is because if it is less than that, the effect of suppressing scale generation will be poor. The coating amount of the lower layer is preferably 5 mg/cm 2 or more, and the coating amount of the upper layer is 5 mg/cm 2 or more, preferably 20 mg/cm 2 or more. (Actions and Effects of the Invention) The effects of the present invention are obtained by forming a lower layer composition and an upper layer composition [the composition containing the substances (A) to (G) above is referred to as the upper layer composition. ] is expressed by two coating layers formed from the above. When a composition is prepared by mixing carbon powder and the above-mentioned upper layer composition, and this is applied to the surface of the steel material to form a single coating layer, the scale suppression effect is inferior, and in addition, the generated scale and fixed Difficult to remove scale inhibitors. In the present invention, if the application of the upper layer composition is omitted, or if the order of applying the lower layer composition and the upper layer composition is reversed, the carbon powder will easily oxidize and disappear during heating, so no effect will be produced. . Furthermore, even if the coating of the lower layer composition of the present invention is omitted and the steel material is coated with only the upper layer composition, the effect of blocking the atmosphere and suppressing scale can be obtained to some extent, but it is not sufficient, and the generated scale can be removed. is difficult. Moreover, this upper layer composition itself is also sintered in the heating furnace to form a strong fixed layer on the surface of the steel material. This fixed layer is difficult to remove and remains even when a scale breaker is used, causing damage to tools and steel materials. If steel materials are processed by the method of the present invention, the generation of scale can be suppressed to an extremely small amount, thereby increasing the yield of steel materials and contributing to resource conservation. In addition, if steel materials are treated by the method of the present invention, the scale including the treatment agent can be easily removed using a scale breaker, for example, so that there is no risk of damaging tools during hot working or from steel materials. No surface scratches will occur. In the method of the present invention, the effects of the two layers covering the surface of the steel material are estimated as follows. First, the upper layer composition temporarily prevents oxygen from reaching the steel surface from the atmosphere through its reducing action and physical shielding effect. Next, the lower layer composition finally prevents the relatively low partial pressure of oxygen that could not be prevented by the upper layer composition from reaching the steel surface through the reducing action of carbon and the physical shielding effect of the layer.
Prevents scale from forming. Furthermore, the presence of the lower layer suppresses the adhesion of the upper layer composition to the steel material, making it easier to peel off scale including the upper layer composition. (Example) Next, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to these in any way. (Processing method) In each of the following examples, a pre-weighed steel material (SPCC, 80 x 60 x 1.2 mm) was used as a test piece, and the lower layer composition was kneaded well on both sides and applied uniformly with a brush. After drying at ℃ for 30 minutes, it was weighed to determine the coating amount of the lower layer composition as the dry coating amount. Next, on the coating layer of the lower layer composition, the upper layer composition was thoroughly kneaded and applied with a brush, and the coating amount of the upper layer composition was determined in the same manner as for the lower layer composition. After heating the steel specimen coated with the two-layered scale inhibitor in this way in an electric furnace in an air atmosphere at 1200°C for 1 hour, it was taken out and the following method was used to improve the scale inhibition effect and scale removability. The effectiveness was evaluated. (Evaluation method of scale suppression effect and scale removability) FIG. 1 is a perspective view of the main parts of the test device, and the arrow in the figure indicates the direction of movement of the test piece. The steel specimen 1 is moved horizontally in the longitudinal direction and passed through a total of four nozzles 2, two on the top and two on the top, arranged as shown in Fig. and the scale inhibitor was removed, dried at 110°C for 30 minutes, and weighed. The weight at that time was defined as W 1 . The operating conditions of the test equipment are as follows. Discharge pressure (each nozzle) 100Kg/cm 2 nozzle diameter 1.7mmφ Discharge rate 17/min Distance between nozzle and test piece 50mm Distance between parallel nozzles 30mm Moving speed of test piece 2mm/sec Even after the above treatment The attached scale and scale inhibitor were completely removed by mechanical impact and weighed. weight at that time
I set it as W 2 . The weight of the steel plate test piece before application of the scale inhibitor was taken as W 0 , and the oxidation loss rate and scale removal rate were determined using the following equations. Oxidation loss rate = [(W 0 − W 2 ) / W 0 ] × 100% Scale removal rate = [(W 0 − W 1 ) / W 0 − W 2 ] × 100% The smaller the oxidation loss rate, the more effective it is to suppress scale. It is evaluated that the larger the scale removal rate is, the better the scale removability is. Example 1 As a lower layer composition, 16 parts by weight of graphite, 6 parts by weight of water glass, and 30 parts by weight of water were mixed and kneaded well, and the mixture was uniformly applied to both sides of a steel specimen. After determining the coating amount using the above method, apply aluminum powder on top of this coating layer.
30 parts by weight, 22 parts by weight of aluminum oxide powder, 55 parts by weight of silicic acid powder, 55 parts by weight of kaolin, 50 parts by weight of water glass
The upper layer composition prepared by mixing 15 parts by weight of water and 15 parts by weight of water was applied, and the coating amount was determined by the method described above. The coating amount was 20 mg/cm 2 for the lower layer and 80 mg/cm 2 for the upper layer. Next, the oxidation loss rate and scale removal rate were determined in accordance with the above-mentioned order. The results are shown in Table 1 below. Example 2 The coating amount of the lower layer composition in Example 1 was changed to 10 mg/
cm 2 and treated and tested in exactly the same manner as in Example 1. The results are shown in Table-2. Example 3 The lower layer composition and the upper layer composition of Example 1 were both coated at 20 mg/cm 2 each, and other treatments were carried out in the same manner as in Example 1 for testing. The results are shown in Table-1. Comparative Example 1 The upper layer composition was applied directly to the test piece without applying the lower layer composition of Example 1. The amount of application is
It was 100mg/ cm2 . The rest was treated and tested in the same manner as in Example 1. The results are shown in Table-1. Comparative Example 2 Only the lower layer composition of Example 1 was applied, and the upper layer composition was not applied. The coating amount was 80 mg/cm 2 . The rest was treated and tested in the same manner as in Example 1. The results are shown in Table-1. Comparative Example 3 16 parts by weight of graphite, 30 parts by weight of aluminum powder, 22 parts by weight of aluminum oxide powder, 55 parts by weight of anhydrous silicic acid powder, 56 parts by weight of water glass, and 45 parts by weight of water were mixed and applied. The coating amount was 100 mg/cm 2 . The rest was treated and tested in the same manner as in Example 1. The results are shown in Table-1.

【表】 上記の実施例の示すように本発明の方法で鋼材
を処理すると酸化減量率が小さく、スケール除去
率が大きい。このことは本発明の方法で鋼材を処
理すると、鋼材のスケールの発生量を抑えまた生
成したスケールおよびスケール除去率の剥離性を
よくすることができることを示すものである。
[Table] As shown in the above examples, when steel materials are treated by the method of the present invention, the oxidation loss rate is small and the scale removal rate is high. This shows that when steel materials are treated by the method of the present invention, the amount of scale generated on the steel materials can be suppressed, and the peelability of the generated scales and the scale removal rate can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスケール抑制効果およびスケール剥離
性の評価試験に使用する試験装置の斜視図であ
る。第2図は実施例1による酸化減少率を示すグ
ラフである。第3図は実施例1によるスケール除
去率を示すグラフである。 1……試験片、2……ノズル。
FIG. 1 is a perspective view of a test apparatus used for evaluation tests of scale suppression effect and scale removability. FIG. 2 is a graph showing the oxidation reduction rate according to Example 1. FIG. 3 is a graph showing the scale removal rate according to Example 1. 1...Test piece, 2...Nozzle.

Claims (1)

【特許請求の範囲】 1 粘結剤および炭素粉を含有する組成物をもつ
て鋼材表面を被覆し、ついでその組成物層表面を (イ) アルミニウム、クロム、チタン、マンガン、
銅、ニツケル、コバルト、マグネシウムおよび
鉄から選ばれた金属の粉末 10ないし50重量部、 (ロ) 上記(イ)に記載した金属の酸化物の粉末
5ないし30重量部、 (ハ) 無水ケイ酸 10ないし100重量部、 (ニ) カオリン、モンモリロナイト、ドロマイト系
耐火物の粉末 10ないし100重量部、 (ホ) 水ガラス 20ないし80重量部、 (ト) 水 適量 を含有する組成物をもつて被覆することを特徴と
する鋼材加熱時におけるスケールの生成および生
成したスケールの剥離性を改善する方法。
[Scope of Claims] 1. The surface of a steel material is coated with a composition containing a binder and carbon powder, and then the surface of the composition layer is coated with (a) aluminum, chromium, titanium, manganese,
10 to 50 parts by weight of powder of a metal selected from copper, nickel, cobalt, magnesium and iron, (b) Powder of oxide of the metal listed in (a) above
5 to 30 parts by weight, (c) 10 to 100 parts by weight of silicic anhydride, (d) 10 to 100 parts by weight of powder of kaolin, montmorillonite, and dolomite refractories, (e) 20 to 80 parts by weight of water glass, (t) ) A method for improving the formation of scale during heating of a steel material and the removability of the generated scale, the method comprising coating with a composition containing an appropriate amount of water.
JP1804783A 1983-02-08 1983-02-08 Method of suppressing generation of scale on steel material and method of improving stripping property Granted JPS59144512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1804783A JPS59144512A (en) 1983-02-08 1983-02-08 Method of suppressing generation of scale on steel material and method of improving stripping property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1804783A JPS59144512A (en) 1983-02-08 1983-02-08 Method of suppressing generation of scale on steel material and method of improving stripping property

Publications (2)

Publication Number Publication Date
JPS59144512A JPS59144512A (en) 1984-08-18
JPS6243764B2 true JPS6243764B2 (en) 1987-09-16

Family

ID=11960775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1804783A Granted JPS59144512A (en) 1983-02-08 1983-02-08 Method of suppressing generation of scale on steel material and method of improving stripping property

Country Status (1)

Country Link
JP (1) JPS59144512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331967U (en) * 1989-08-05 1991-03-28
JPH0546931Y2 (en) * 1987-09-21 1993-12-09

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518231B2 (en) * 1986-11-07 1996-07-24 住友金属工業株式会社 How to prevent seizure during hot working of steel
DE102004049413A1 (en) * 2004-10-08 2006-04-13 Volkswagen Ag Process for coating metallic surfaces
JP5353105B2 (en) * 2008-07-31 2013-11-27 新日鐵住金株式会社 Surface treatment liquid for heat treatment steel and method for producing heat treatment steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546931Y2 (en) * 1987-09-21 1993-12-09
JPH0331967U (en) * 1989-08-05 1991-03-28

Also Published As

Publication number Publication date
JPS59144512A (en) 1984-08-18

Similar Documents

Publication Publication Date Title
JP3546040B2 (en) Coating composition for forming insulating film, non-oriented electrical steel sheet coated with the coating composition, and method of forming insulating film on the steel sheet
JPS6243764B2 (en)
JP2941948B2 (en) Stainless steel acid treatment
JP4169844B2 (en) Method for preventing oxidation of graphite electrode for arc electric furnace
CN104017424B (en) The production method of water-based titanium ingot is high temperature resistant oxygen uptake coating and application and titanium ingot
CN103992686B (en) The production method of high temperature resistant oxygen uptake coating and application and titanium ingot
CN104017426B (en) The production method of high temperature resistant protective cover and application and titanium ingot
US4248908A (en) Hot-dip metallic coatings on low carbon alloy steel
CN104017422B (en) For the high temperature resistant protective cover of titanium and the production method of application and titanium ingot thereof
JP2720925B2 (en) Low spatter wire and method of manufacturing the same
CN104017423B (en) The production method of aqueous high-temperature-resistant coating and application and titanium ingot
CN104017421B (en) The production method of water-based titanium ingot high-temperature oxidation resistant coating and application and titanium ingot
CN103992683B (en) The production method of aqueous protective coating and application and titanium ingot
JPH0641472A (en) Corrosion inhibitor for metal
CN104004401B (en) The production method of protective cover and application and titanium ingot
JPS61246267A (en) Self-sedimenting composition
CN104004400B (en) The production method of water-based resistance to high temperature oxidation protective cover and application and titanium ingot
JP2901492B2 (en) Low spatter wire for carbon dioxide shielded arc welding and method for producing the same
JPH10140233A (en) Method for preventing development of oxide film generated during heating or hot-working of ti alloy material
JP2003003271A (en) Corrosion protective covered composition and preparation agent for preparing corrosion protective covered composition
SU735060A1 (en) Composition for electric insulating coating of electric engineering steels
JPH0586415A (en) Composition for preventing oxidation and carburizing of steel material
CN103992684B (en) The production method of high temperature resistance oxygen uptake coating and application and titanium ingot
CN103992682B (en) The production method of high-temperature oxidation resistant coating and application and titanium ingot
JPH01170600A (en) Preventive agent for adhesion of welding spatter