JPS6243760B2 - - Google Patents

Info

Publication number
JPS6243760B2
JPS6243760B2 JP58141742A JP14174283A JPS6243760B2 JP S6243760 B2 JPS6243760 B2 JP S6243760B2 JP 58141742 A JP58141742 A JP 58141742A JP 14174283 A JP14174283 A JP 14174283A JP S6243760 B2 JPS6243760 B2 JP S6243760B2
Authority
JP
Japan
Prior art keywords
sludge
cracked gas
heat
heated
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58141742A
Other languages
Japanese (ja)
Other versions
JPS6031900A (en
Inventor
Terumi Uchimura
Kenichi Kamiide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14174283A priority Critical patent/JPS6031900A/en
Publication of JPS6031900A publication Critical patent/JPS6031900A/en
Publication of JPS6243760B2 publication Critical patent/JPS6243760B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は汚泥処理装置に関する。 汚泥を熱交換器で予熱した後、反応缶へ導入
し、空気で接触混和させるとともにボイラからの
蒸気で165℃以下に加熱し、低温加圧方式により
熱処理させるものがある。反応缶にて発生する分
解ガスは160℃程度の蒸気を含むガスであり、こ
の分解ガスの冷却およびガス中の水分除去を行な
つた後ガス処理を行なうに際し、従来はスクラバ
ーで水により冷却し、除湿後ガス処理を行なうの
が通例となつている。 ところが、このような従来のものでは、分解ガ
スの持ち出す熱は、主に汚泥と蒸気とによる反応
缶入熱の10%程度にも達し、この分が熱損失にな
るという問題がある。また、反応缶内において汚
泥中の油分が熱処理により遊離し、吹込まれた空
気により分解ガス中に飛散し、スクラバーで冷却
された際に回収されるため、スクラバーノズル等
が油分により閉塞するという問題もある。 そこで本発明は、分解ガスによる熱の持出しに
もとづく熱損失を防止することを目的とするとと
もに、汚泥中の油分によるスクラバーノズル等の
閉塞をも防止することを目的とするものである。 この目的を達成するため本発明は、汚泥を熱処
理する反応缶を設け、この反応缶にて発生した分
解ガスと軟水とを熱交換させて分解ガスから熱を
回収する分解ガス冷却器を設け、この分解ガス冷
却器にて加熱された軟水と前記反応缶に供給する
被処理汚泥とを熱交換させて被処理汚泥を加熱さ
せる汚泥加熱器を設けたことを特徴とする汚泥処
理装置を提供するものである。 したがつて、分解ガスの持ち出す熱は、反応缶
に供給する被処理汚泥を加熱することにより反応
缶に戻されることになるため、熱損失を防止で
き、この分反応缶へ供給すべき蒸気量を低減させ
ることができて省エネルギを図ることができ、し
かも熱交換器によつて熱回収を図るため従来のよ
うなスクラバーは不要となり、スクラバーノズル
等の閉塞の問題も解決できる。 以下、本発明の一実施例を図面にもとづいて説
明する。図面において1は汚泥処理系であり、汚
泥を移送させるポンプ2、後述の分解ガスから回
収した熱により汚泥を加熱させる熱交換式の汚泥
加熱器3、汚泥加熱器3によつて加熱された汚泥
をさらに加熱させる第1熱交換器4、反応缶5、
反応缶5で熱処理された汚泥を冷却させる第2熱
交換器6および排泥弁7がこの順序で接続されて
いる。8は蒸気供給路、9は空気供給路であり、
それぞれ反応缶5に接続されている。10は汚泥
の冷却および加熱系であり、第2熱交換器6にて
熱処理後の汚泥を冷却することにより反対に加熱
された軟水を第1熱交換器4に通し、この第1熱
交換器4にて汚泥を加熱させている。11は膨張
タンク、12は循環ポンプであり、これらにより
循環系を構成している。 13は反応缶5にて発生した分解ガスを図外の
ガス処理装置へ導くための分解ガス処理系であ
り、反応缶5にて発生した分解ガスを軟水と熱交
換させて冷却させる分解ガス冷却器14と、この
分解ガス冷却器14にて凝縮した水分と油分とを
分解ガスから分離除去させる分離除去装置15
と、圧力調節弁16とが設けられている。分離除
去装置15は、水分と油分とを分解ガスから分離
するサイクロン17と、サイクロン17からの水
分と油分とを一時貯留する凝縮水槽18とを有し
ている。また、一般に反応缶5内は加圧状態にあ
るため、上記水分と油分とを排出する場合には、
反応缶5内の圧力が抜けないように特別の配慮が
必要である。19はこのためにエアライン20か
ら、凝縮水槽18内に加圧空気を供給し、この凝
縮水槽18内を反応缶5内に合わせて加圧させる
給気弁、21は加圧状態の凝縮水槽18内へサイ
クロン17からの水分と油分とを供給させるサイ
クロン弁、22は凝縮水槽18内を大気に開放さ
せる排気弁、そして23は大気に開放された凝縮
水槽18内から水分と油水とを排出させる排水弁
である。 24は熱回収系であり、分解ガス冷却器14に
て分解ガスを冷却することにより反対に加熱され
た軟水を汚泥加熱器3に通し、前述のように汚泥
を加熱させている。25は冷却水貯留槽、26は
分解ガス冷却水ポンプであり、これらにより循環
系が構成されている。 汚泥処理の手順を説明する。ポンプ2を出た汚
泥の温度を20℃と仮定すると、この汚泥は汚泥加
熱器3で36℃まで加熱され、第1熱交換器4で
140℃まで加熱された後、反応缶5内に供給され
る。反応缶5内に供給された汚泥は、空気供給路
9からの空気で接触混和されるとともに、蒸気供
給路8からの蒸気で165℃以下に加熱され、低温
加圧方式により熱処理される。熱処理後の汚泥は
165℃で第2熱交換器6に送られ、軟水で70℃に
冷却された後、排泥弁7から次工程へ送られる。
第2熱交換器6に60℃で供給された軟水はここで
150℃に加熱され、第1熱交換器4で汚泥を加熱
することにより60℃まで温度低下され、循環され
る。 熱処理により発生した分解ガスは水蒸気と汚泥
中の油分の蒸気とを含み、165℃、8Kg/cm2
gaugeの状態で分解ガス冷却器14に送られ、50
℃に冷却される。これにともなつて、前記水蒸気
と油分の蒸気とが凝縮し、この凝縮分はサイクロ
ン17にて分離され、前述の操作によつて凝縮水
槽18から排出される。水分および油分が除去さ
れた分解ガスは、圧力調節弁16を経て図外のガ
ス処理装置に送られる。 熱回収系24において、30℃で分解ガス冷却器
14に供給された軟水は、分解ガスを冷却するこ
とによりこの分解ガスから熱を回収して80℃に加
熱され、汚泥加熱器3で汚泥を加熱することによ
り30℃まで温度低下され、循環される。 このように本発明によれば、分解ガスの持ち出
す熱を回収してこれにより汚泥を加熱するため、
第1表に示すように、従来第1熱交換器4で20℃
の汚泥を125℃まで加熱し、これを反応缶5内に
おいて蒸気供給路8から供給される蒸気にて165
℃に加熱していたものに比べ、反応缶5に入る汚
泥は140℃まで加熱されることになるため、これ
を165℃まで加熱すべき蒸気の量を、従来のもの
に対し74%にまで低減させることが可能となる。
The present invention relates to a sludge treatment device. After preheating the sludge in a heat exchanger, it is introduced into a reactor and mixed with air, heated to below 165°C with steam from a boiler, and heat treated using a low-temperature pressurization method. The cracked gas generated in the reactor is a gas containing steam at a temperature of about 160°C, and when performing gas treatment after cooling the cracked gas and removing moisture from the gas, conventionally it was cooled with water using a scrubber. It is customary to perform gas treatment after dehumidification. However, in such a conventional reactor, the heat taken out by the cracked gas reaches about 10% of the heat input into the reactor, mainly due to sludge and steam, and this amount becomes a heat loss. In addition, oil in the sludge is liberated by heat treatment in the reactor, scattered in the cracked gas by the blown air, and recovered when cooled by the scrubber, resulting in the problem of oil blocking the scrubber nozzle, etc. There is also. Therefore, the present invention aims to prevent heat loss due to heat removal by cracked gas, and also to prevent clogging of scrubber nozzles and the like due to oil in sludge. To achieve this objective, the present invention provides a reaction vessel for heat-treating sludge, and a cracked gas cooler for recovering heat from the cracked gas by exchanging heat between the cracked gas generated in the reaction vessel and soft water. A sludge treatment device is provided, characterized in that it is equipped with a sludge heater that heats the sludge to be treated by exchanging heat between the soft water heated by the cracked gas cooler and the sludge to be treated that is supplied to the reaction vessel. It is something. Therefore, the heat carried out by the cracked gas is returned to the reactor by heating the sludge to be treated that is supplied to the reactor, thereby preventing heat loss and reducing the amount of steam that should be supplied to the reactor. Since the heat exchanger recovers heat, a conventional scrubber is not required, and the problem of clogging of the scrubber nozzle can be solved. Hereinafter, one embodiment of the present invention will be described based on the drawings. In the drawing, 1 is a sludge treatment system, which includes a pump 2 that transfers sludge, a heat exchange type sludge heater 3 that heats the sludge using heat recovered from cracked gas, which will be described later, and a sludge heated by the sludge heater 3. a first heat exchanger 4, a reaction vessel 5, which further heats the
A second heat exchanger 6 for cooling the sludge heat-treated in the reaction vessel 5 and a sludge discharge valve 7 are connected in this order. 8 is a steam supply path, 9 is an air supply path,
Each is connected to a reaction vessel 5. Reference numeral 10 denotes a sludge cooling and heating system, in which soft water heated by cooling the sludge after heat treatment in the second heat exchanger 6 is passed through the first heat exchanger 4. 4, the sludge is heated. 11 is an expansion tank, and 12 is a circulation pump, which constitute a circulation system. 13 is a cracked gas treatment system for guiding the cracked gas generated in the reaction can 5 to a gas processing device (not shown), and is a cracked gas cooling system that cools the cracked gas generated in the reaction can 5 by exchanging heat with soft water. a separation and removal device 15 that separates and removes moisture and oil condensed in the cracked gas cooler 14 from the cracked gas.
and a pressure regulating valve 16 are provided. The separation and removal device 15 includes a cyclone 17 that separates moisture and oil from the cracked gas, and a condensed water tank 18 that temporarily stores the moisture and oil from the cyclone 17. Additionally, since the interior of the reaction vessel 5 is generally under pressure, when draining the moisture and oil,
Special care must be taken to prevent the pressure inside the reactor 5 from escaping. For this purpose, 19 supplies pressurized air from the airline 20 into the condensate tank 18, and pressurizes the inside of the condensate tank 18 to match the inside of the reaction vessel 5. 21 is a pressurized condensate tank. Cyclone valve 18 supplies moisture and oil from the cyclone 17, 22 is an exhaust valve that opens the inside of the condensed water tank 18 to the atmosphere, and 23 discharges moisture and oil from the inside of the condensed water tank 18 that is open to the atmosphere. This is a drain valve. 24 is a heat recovery system, in which soft water heated by cooling the cracked gas in the cracked gas cooler 14 is passed through the sludge heater 3 to heat the sludge as described above. 25 is a cooling water storage tank, 26 is a cracked gas cooling water pump, and these constitute a circulation system. Explain the procedure of sludge treatment. Assuming that the temperature of the sludge leaving the pump 2 is 20°C, this sludge is heated to 36°C in the sludge heater 3, and then heated to 36°C in the first heat exchanger 4.
After being heated to 140°C, it is supplied into the reaction vessel 5. The sludge supplied into the reaction vessel 5 is contacted and mixed with air from the air supply path 9, heated to 165° C. or lower by steam from the steam supply path 8, and heat-treated by a low-temperature pressurization method. The sludge after heat treatment is
It is sent to the second heat exchanger 6 at 165°C, cooled to 70°C with soft water, and then sent to the next process from the sludge valve 7.
The soft water supplied to the second heat exchanger 6 at 60℃ is here
The sludge is heated to 150°C, and the temperature is lowered to 60°C by heating the sludge in the first heat exchanger 4, and the sludge is circulated. The cracked gas generated by the heat treatment contains water vapor and oil vapor in the sludge, and is heated to 165℃ and 8Kg/ cm2 .
It is sent to the decomposed gas cooler 14 in the state of gauge, and 50
Cooled to ℃. Along with this, the water vapor and the oil vapor are condensed, and this condensed content is separated by the cyclone 17 and discharged from the condensed water tank 18 by the above-mentioned operation. The cracked gas from which water and oil have been removed is sent to a gas processing device (not shown) via a pressure regulating valve 16. In the heat recovery system 24, the soft water supplied to the cracked gas cooler 14 at 30°C recovers heat from the cracked gas by cooling the cracked gas, is heated to 80°C, and is heated to 80°C. The temperature is lowered to 30°C by heating and circulated. As described above, according to the present invention, the heat taken out of the cracked gas is recovered and the sludge is heated thereby.
As shown in Table 1, conventionally the first heat exchanger 4 was heated at 20°C.
The sludge of
Since the sludge entering reactor 5 will be heated to 140°C, the amount of steam needed to heat it to 165°C has been reduced to 74% compared to the conventional one. It becomes possible to reduce this.

【表】 しかも油分は分解ガス冷却器14で凝縮された
後分散除去されるため、従来のようなスクラバー
ノズル等の閉塞の問題も解消されることになる。
また、本実施例のような分離除去装置15を用い
ることにより、反応缶5内の圧力を保持したまま
凝縮分を排出できる。 以上述べたように本発明によると、分解ガスの
持ち出す熱は、反応缶に供給する被処理汚泥を加
熱することにより反応缶に戻されることになるた
め、熱損失を防止でき、この分反応缶へ供給すべ
き蒸気量を低減させることができて省エネルギを
図ることができ、しかも熱交換器によつて熱回収
を図るため従来のようなスクラバーは不要とな
り、スクラバーノズル等の閉塞の問題も解決でき
る。さらに、反応缶内の圧力を保持した状態で分
解ガスの分離除去及び凝縮分の排出を行うことが
出来る。
[Table] Moreover, since the oil is dispersed and removed after being condensed in the cracked gas cooler 14, the problem of clogging of scrubber nozzles, etc., which was conventional, can be solved.
Furthermore, by using the separation and removal device 15 as in this embodiment, the condensed matter can be discharged while maintaining the pressure inside the reaction vessel 5. As described above, according to the present invention, the heat carried out by the cracked gas is returned to the reaction vessel by heating the sludge to be treated that is supplied to the reaction vessel. It is possible to reduce the amount of steam that needs to be supplied to the system, thereby saving energy.Moreover, since heat is recovered using a heat exchanger, there is no need for a conventional scrubber, which eliminates the problem of clogging of scrubber nozzles, etc. Solvable. Furthermore, the cracked gas can be separated and removed and the condensed product can be discharged while maintaining the pressure inside the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を説明するための概略構
成図である。 1……汚泥処理系、3……汚泥加熱器、4……
第1熱交換器、5……反応缶、6……第2熱交換
器、10……汚泥の冷却および加熱系、13……
分解ガス処理系、14……分解ガス冷却器、15
……分離除去装置、24……熱回収系。
The drawings are schematic configuration diagrams for explaining embodiments of the present invention. 1...Sludge treatment system, 3...Sludge heater, 4...
First heat exchanger, 5... Reactor, 6... Second heat exchanger, 10... Sludge cooling and heating system, 13...
Cracking gas treatment system, 14... Cracking gas cooler, 15
... Separation and removal device, 24 ... Heat recovery system.

Claims (1)

【特許請求の範囲】[Claims] 1 汚泥を熱処理する反応缶を設け、この反応缶
にて発生した分解ガスと軟水とを熱交換させて分
解ガスから熱を回収する分解ガス冷却器を設け、
この分解ガス冷却器にて加熱された軟水と前記反
応缶に供給する被処理汚泥とを熱交換させて被処
理汚泥を加熱させる汚泥加熱器を設け、前記分解
ガス冷却器にて冷却された分解ガスから凝縮した
水分と油分を分離除去させるサイクロンとこの分
離された水分と油分を貯留する凝縮水槽とこの凝
縮水槽に加圧空気を供給するエアラインとを有す
る分離除去装置を設けたことを特徴とする汚泥処
理装置。
1. A reaction vessel for heat treating sludge is provided, and a cracked gas cooler is provided for recovering heat from the cracked gas by exchanging heat between the cracked gas generated in the reaction vessel and soft water,
A sludge heater is provided which heats the sludge to be treated by exchanging heat between the soft water heated by the cracked gas cooler and the sludge to be treated supplied to the reaction vessel, and the sludge heated by the cracked gas cooler is heated. It is characterized by a separation and removal device having a cyclone that separates and removes moisture and oil condensed from gas, a condensation water tank that stores the separated moisture and oil, and an airline that supplies pressurized air to this condensation water tank. sludge treatment equipment.
JP14174283A 1983-08-01 1983-08-01 Sewage treating method and apparatus Granted JPS6031900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14174283A JPS6031900A (en) 1983-08-01 1983-08-01 Sewage treating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14174283A JPS6031900A (en) 1983-08-01 1983-08-01 Sewage treating method and apparatus

Publications (2)

Publication Number Publication Date
JPS6031900A JPS6031900A (en) 1985-02-18
JPS6243760B2 true JPS6243760B2 (en) 1987-09-16

Family

ID=15299142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14174283A Granted JPS6031900A (en) 1983-08-01 1983-08-01 Sewage treating method and apparatus

Country Status (1)

Country Link
JP (1) JPS6031900A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010403B1 (en) * 2013-09-06 2017-01-13 Veolia Water Solutions & Tech METHOD AND DEVICE FOR CONTINUOUS THERMAL HYDROLYSIS WITH RECIRCULATION STEAM RECIRCULATION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209700A (en) * 1981-06-18 1982-12-23 Kubota Ltd Recovery of heat from decomposed gas generated by heat- treatment of sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209700A (en) * 1981-06-18 1982-12-23 Kubota Ltd Recovery of heat from decomposed gas generated by heat- treatment of sludge

Also Published As

Publication number Publication date
JPS6031900A (en) 1985-02-18

Similar Documents

Publication Publication Date Title
US4714109A (en) Gas cooling with heat recovery
RU2300530C2 (en) Method of recuperation of heat
WO1994026393A1 (en) Controlling emissions from glycol dehydrators
WO1985001671A1 (en) A process for continuously removing and recovering respectively a gas dissolved in a liquid, particularly ammonia from aqueous ammonia waste water
US4001374A (en) Process for removing ammonia from gases
GB2137523A (en) Absorbing noxious gases
US5326081A (en) Method and apparatus for cooling hot gases
JPS6243760B2 (en)
US3010832A (en) Method and apparatus for continuous heat-treatment of heat-sensitive liquids
US4126431A (en) Method for the preliminary treatment of crude gas from a thermic carbon refinement process
US4763721A (en) Process for the cooling or heating of a gas
US4141816A (en) Preventing ammonium chloride deposition in hydrogen recycle stream
US3554690A (en) Apparatus and method for removing carbon dioxide from process gases
JPH08290904A (en) Treatment of tail gas in sulfur recovery unit
US4432789A (en) Method of minimizing energy consumption when reducing iron oxide with reducing gases
CN112279443A (en) System and method for simultaneously concentrating desulfurized saline wastewater and relieving' white smoke
US4468315A (en) Hydrogenation of coal
GB2080691A (en) Process and apparatus for disposal of noxious vapours emanating from wort and mash during production of beer in brewery installations
PL162958B1 (en) Method for the hydrogen sulphide removal from a gas after partial oxidation
US2890931A (en) Method of treating absorber solutions used in gas purification
JPH05126315A (en) Method of water supply and water drainage of deaerator in waste heat recovery boiler and device thereof
US1417067A (en) Process for recovering sulphur dioxide from waste metallurgical gases
GB777459A (en) Improvements in or relating to hydrocarbon reforming with platinum catalyst and regeneration system therefor
JPS6142192B2 (en)
JPS6082197A (en) Treatment of sludge