JPS6142192B2 - - Google Patents

Info

Publication number
JPS6142192B2
JPS6142192B2 JP55078252A JP7825280A JPS6142192B2 JP S6142192 B2 JPS6142192 B2 JP S6142192B2 JP 55078252 A JP55078252 A JP 55078252A JP 7825280 A JP7825280 A JP 7825280A JP S6142192 B2 JPS6142192 B2 JP S6142192B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
cooling water
circuit
metallurgical furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55078252A
Other languages
Japanese (ja)
Other versions
JPS572978A (en
Inventor
Sumio Iwamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP7825280A priority Critical patent/JPS572978A/en
Publication of JPS572978A publication Critical patent/JPS572978A/en
Publication of JPS6142192B2 publication Critical patent/JPS6142192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、冶金炉排ガス処理装置の大気開放型
冷却水循環回路に係り、特に冷却水の保有熱を蓄
熱し、間歇的に変動する冷却水の保有熱量を、一
定熱量として取り出すようにすると共に、冷却器
入口の冷却水温度を一定にさせ、冷却器で吸収し
た熱を、冷却水の蒸発熱によつて無駄に放散しな
いようにした冷却水の循環回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling water circulation circuit that is open to the atmosphere for a metallurgical furnace exhaust gas treatment device, and in particular stores the heat retained in the cooling water and converts the intermittent fluctuations in the amount of heat retained in the cooling water into a constant amount of heat. This invention relates to a cooling water circulation circuit which makes the temperature of the cooling water at the inlet of the cooler constant and prevents the heat absorbed by the cooler from being wastefully dissipated by the heat of evaporation of the cooling water.

冶金炉から発生する高温のガスは、冷却器内に
導かれて冷却され、除塵された後回収される。冷
却器の周壁は、ジヤケツト或るいは水管で構成さ
れていて、この冷却器の周壁内を循環している冷
却水によつて、排ガスは冷却される。
High-temperature gas generated from the metallurgical furnace is guided into a cooler, cooled, and collected after removing dust. The peripheral wall of the cooler is composed of a jacket or a water pipe, and the exhaust gas is cooled by cooling water circulating within the peripheral wall of the cooler.

一般に冶金炉の運転は、間歇的に行われる。即
ち、冶金炉の中に酸素を吹き込んで(以下吹錬と
いう)精錬する吹錬時と、精錬完了後酸素の吹き
込みを中断し、溶融した溶鋼を冶金炉内から取り
出す、いわゆる非吹錬時とがある。
Generally, metallurgical furnaces are operated intermittently. That is, there is a blowing time in which oxygen is blown into the metallurgical furnace for refining (hereinafter referred to as blowing), and a so-called non-blowing time in which the blowing of oxygen is stopped after the completion of refining and the molten steel is taken out from the metallurgical furnace. There is.

従つて吹錬中は、高温のガスが大量に発生する
が、非吹錬中は、ガスの発生はない。更に吹錬中
であつても、吹錬の初期、最盛期及び末期におい
て、ガスの温度と発生量が変動する。その為に冷
却器内を循環している冷却水の吸収熱量も変動す
る。
Therefore, a large amount of high-temperature gas is generated during blowing, but no gas is generated during non-blowing. Furthermore, even during blowing, the temperature and amount of gas generated fluctuate at the initial, peak, and final stages of blowing. Therefore, the amount of heat absorbed by the cooling water circulating in the cooler also fluctuates.

この冶金炉の間歇運転に伴つて変動する冷却水
の保有熱エネルギを有効に利用するには、冶金炉
の間歇運転とは無関係に、一定の熱エネルギを取
り出せるようにする必要がある。
In order to effectively utilize the retained thermal energy of the cooling water, which varies with the intermittent operation of the metallurgical furnace, it is necessary to be able to extract a constant amount of thermal energy regardless of the intermittent operation of the metallurgical furnace.

又、冶金炉から発生するガス(CO)は、爆発
の危険性と人体への有毒性があるので、冷却器等
の設計は、安全性が最優先される。従つて冷却器
の強度上、冷却器内を循環している冷却水の圧力
を高圧にしないようにし、且つ高温ガスのふく射
熱の吸収を気水混合水の状態で取出すことによつ
て温度を一定とし冷却器の周壁に熱応力がかから
ないように、冷却水の循環回路は大気開放型が採
用されている。
Furthermore, the gas (CO) generated from metallurgical furnaces has the danger of explosion and is toxic to the human body, so safety is given top priority when designing coolers, etc. Therefore, due to the strength of the cooler, the pressure of the cooling water circulating inside the cooler must not be high, and the temperature can be kept constant by absorbing the radiant heat of the high-temperature gas in the form of a mixture of steam and water. In order to avoid applying thermal stress to the peripheral wall of the cooler, the cooling water circulation circuit is open to the atmosphere.

従来、係る大気開放型冷却水循環回路におい
て、冷却器で吸収した熱エネルギは、冷却器で蒸
発熱として吸収し、蒸気として放散し、冷却器内
を循環する冷却水の温度が上昇しないようにして
いた。
Conventionally, in such a cooling water circulation circuit that is open to the atmosphere, the thermal energy absorbed by the cooler is absorbed by the cooler as heat of evaporation and dissipated as steam to prevent the temperature of the cooling water circulating in the cooler from rising. Ta.

このようにして、蒸発熱として大気中に放散し
ていた熱エネルギは、何も利用されず無駄に放散
されていた。
In this way, the thermal energy that had been dissipated into the atmosphere as heat of evaporation was wasted and was not utilized.

本発明は、間歇的に変動する冷却水の熱量を一
定に取り出せるようにすると共に、蒸発熱として
無駄に放散していた熱をも回収するようにした冷
却水循環回路を提供せんとするものである。
The present invention aims to provide a cooling water circulation circuit that is capable of extracting a constant amount of heat from the cooling water, which fluctuates intermittently, and also recovers the heat that was wasted as evaporative heat. .

即ち本発明は、冶金炉冷却水循環回路と、蓄熱
回路と、熱利用回路を設け、弁操作によつて吹錬
中と非吹錬中とを切り換えるようにし、吹錬中は
上記三つの回路を結合し、蓄熱回路と熱利用回路
によつて、冷却器出口の冷却水の熱エネルギを吸
収し冷却器内での冷却水の蒸発をなくすようにし
て、冷却器での吸収熱を完全に回収すると共に冷
却器を保護し、一方非吹錬中は冶金炉冷却水循環
回路と蓄熱回路及び熱利用回路とを分離し、蓄熱
回路に蓄熱された熱エネルギを熱利用回路によつ
て利用し、吹錬、非吹錬に無関係に、一定量の熱
エネルギを利用し得るようにしたことを特徴とす
る。
That is, the present invention provides a metallurgical furnace cooling water circulation circuit, a heat storage circuit, and a heat utilization circuit, and switches between blowing and non-blowing by operating a valve, and the above three circuits are switched on during blowing. The thermal energy of the cooling water at the outlet of the cooler is absorbed by the heat storage circuit and the heat utilization circuit, eliminating evaporation of the cooling water within the cooler, and completely recovering the heat absorbed by the cooler. At the same time, during non-blowing, the metallurgical furnace cooling water circulation circuit, the heat storage circuit, and the heat utilization circuit are separated, and the thermal energy stored in the heat storage circuit is used by the heat utilization circuit, and the blowing It is characterized in that a certain amount of thermal energy can be used regardless of whether it is heated or not.

以下、本発明の詳細を図に示した一実施例で説
明する。図において、冶金炉1で発生したガス
は、冷却器2で冷却された後、図示省略の除塵器
で除塵され、回収又は放散される。冷却器2の冷
却水出口側は、導管16によつて熱交換器34を
介して気水分離タンク3に接続され、その入口側
は導管17,18,19により気水分離タンク3
の冷却水出口側に接続され、閉じられた冶金炉冷
却水循環回路を構成している。この冶金炉冷却水
循環回路の冷却器入口側導管の途中には、循環ポ
ンプ6が配設されている。
Hereinafter, details of the present invention will be explained with reference to an embodiment shown in the drawings. In the figure, gas generated in a metallurgical furnace 1 is cooled by a cooler 2, then removed by a dust remover (not shown), and recovered or diffused. The cooling water outlet side of the cooler 2 is connected to the steam/water separation tank 3 by a conduit 16 via a heat exchanger 34, and the inlet side thereof is connected to the steam/water separation tank 3 by conduits 17, 18, 19.
It is connected to the cooling water outlet side of the metallurgical furnace, forming a closed metallurgical furnace cooling water circulation circuit. A circulation pump 6 is disposed in the middle of the conduit on the cooler inlet side of the metallurgical furnace cooling water circulation circuit.

次に4は蓄熱器で、導管20によつてその高温
側は熱交換器34の二次側出口と接続され、低温
側は導管24,25によつて蓄熱回路の熱交換器
34の二次側入口に接続され、閉じられた蓄熱回
路を構成する。尚、図中29は流量調節弁、35
は温度検出器である。又、5は熱回収装置で、そ
の入口側は導管22によつて蓄熱タンク4の高温
側に接続され、その出口側は導管23によつて蓄
熱回路の熱交換器34二次側入口導管に接続され
ていると共に、導管24,25によつて蓄熱回路
の蓄熱器4の低温側にも接続されている。図中7
は熱水ポンプ、8は給水ポンプにして夫々導管2
6,27を介して、蓄熱器4の低温側と気水分離
タンク3に給水できるようになつている。又、3
2,33は逆止弁、30は流量調節弁、31は流
量検出器である。
Next, reference numeral 4 denotes a heat storage device, the high temperature side of which is connected to the secondary side outlet of the heat exchanger 34 through a conduit 20, and the low temperature side connected to the secondary side outlet of the heat exchanger 34 of the heat storage circuit through conduits 24 and 25. It is connected to the side inlet and forms a closed heat storage circuit. In addition, 29 in the figure is a flow control valve, 35
is a temperature sensor. Further, 5 is a heat recovery device, the inlet side of which is connected to the high temperature side of the heat storage tank 4 through a conduit 22, and the outlet side thereof connected to the secondary side inlet conduit of the heat exchanger 34 of the heat storage circuit through a conduit 23. It is also connected by conduits 24, 25 to the low temperature side of the heat storage device 4 of the heat storage circuit. 7 in the diagram
is a hot water pump, 8 is a water supply pump, and each conduit 2
6 and 27, water can be supplied to the low temperature side of the heat storage device 4 and the steam/water separation tank 3. Also, 3
2 and 33 are check valves, 30 is a flow rate control valve, and 31 is a flow rate detector.

以上のように構成した本実施例の作用を以下に
説明する。先ず吹錬中において、吹錬開始の信号
によつて、流量調節弁29に最低水量が流れるよ
うに開となつて、蓄熱回路と熱利用回路とが連絡
される。冶金炉1から発生した高温ガスは、冷却
器2で冷却される。この時冷却器2内を循環して
いる冷却水は熱を吸収する。このように熱を吸収
した冷却水は、導管16を経て熱交換器34の一
次側に入る。熱交換器34で蓄熱回路の二次側冷
却水に熱を与え気水分離タンク3に入る。熱交換
器34で熱を吸収した二次冷却水は蓄熱タンク4
の高温側(上部)に流入する。このようにして、
蓄熱タンク4の高温側に流入した高温水は、熱回
収装置に必要な量だけ、流量調節弁30、流量検
出器31、熱水ポンプ7によつて熱回収装置5に
供給され、残余の高温冷却水は、蓄熱タンク4に
貯溜される。一方熱回収装置5を出た低温の冷却
水は、蓄熱タンク4の低温側の冷却水と合流し、
熱交換器34の二次側入口に入る。
The operation of this embodiment configured as above will be explained below. First, during blowing, in response to a blowing start signal, the flow control valve 29 is opened so that the minimum amount of water flows, and the heat storage circuit and the heat utilization circuit are connected. High temperature gas generated from the metallurgical furnace 1 is cooled by a cooler 2. At this time, the cooling water circulating within the cooler 2 absorbs heat. The cooling water that has absorbed heat in this manner enters the primary side of the heat exchanger 34 via the conduit 16. The heat exchanger 34 gives heat to the secondary side cooling water of the heat storage circuit and enters the steam/water separation tank 3. The secondary cooling water that has absorbed heat in the heat exchanger 34 is transferred to the heat storage tank 4
flows into the high temperature side (upper part) of the In this way,
The high-temperature water that has flowed into the high-temperature side of the heat storage tank 4 is supplied to the heat recovery device 5 by the flow control valve 30, flow rate detector 31, and hot water pump 7 in the amount required for the heat recovery device, and the remaining high temperature water is Cooling water is stored in a heat storage tank 4. On the other hand, the low-temperature cooling water leaving the heat recovery device 5 joins with the cooling water on the low-temperature side of the heat storage tank 4,
It enters the secondary inlet of the heat exchanger 34.

このようにして、吹錬中は蓄熱タンク4に蓄熱
し乍ら熱回収装置5によつて熱エネルギを利用
し、それに伴つて熱回収装置5によつて冷却水温
度を降温し、蓄熱タンク4の低温側と合流して、
熱交換器34に入り、一次冷却水の熱を奪い冷却
器2に入る冷却水温度を一定にしている。そして
吹錬の初期、最盛期、末期において、冶金炉1か
ら発生するガスの量と温度が変動した場合でも、
温度検出器35の信号によつて、流量調節弁29
の開度が、その変動に応じて熱交換器34の二次
側出口の温度が100℃一定になるよう冷却水量を
調節する。
In this way, during blowing, heat is stored in the heat storage tank 4 while the heat energy is utilized by the heat recovery device 5. Along with this, the temperature of the cooling water is lowered by the heat recovery device 5, and the heat energy is stored in the heat storage tank 4. merges with the low temperature side of
The cooling water enters the heat exchanger 34 and removes heat from the primary cooling water, thereby keeping the temperature of the cooling water entering the cooler 2 constant. Even if the amount and temperature of the gas generated from the metallurgical furnace 1 fluctuates during the initial, peak, and final stages of blowing,
Based on the signal from the temperature sensor 35, the flow rate control valve 29
The amount of cooling water is adjusted according to the change in the opening degree so that the temperature at the secondary outlet of the heat exchanger 34 is constant at 100°C.

次に、非吹錬時について説明する。吹錬終了に
よつて、温度検出器5の温度が下がり温度調節弁
29が閉となる。この時、冶金炉冷却水循環回路
は、気水分離タンク3に溜つている温水を、循環
ポンプ6によつて、冷却器2内に導き循環させ
る。一方蓄熱タンク4に貯溜された熱水は、熱水
ポンプ7によつて、熱回収装置5に供給され、熱
回収装置5を出た低温の冷却水は、蓄熱タンク4
の低温側に戻される。このようにして非吹錬中
は、蓄熱タンク4に貯えられた冷却水の保有熱エ
ネルギを利用している。
Next, the non-blowing time will be explained. Upon completion of the blowing, the temperature of the temperature detector 5 decreases and the temperature control valve 29 closes. At this time, in the metallurgical furnace cooling water circulation circuit, the hot water stored in the steam/water separation tank 3 is guided into the cooler 2 by the circulation pump 6 and circulated therein. On the other hand, the hot water stored in the heat storage tank 4 is supplied to the heat recovery device 5 by the hot water pump 7, and the low-temperature cooling water that exits the heat recovery device 5 is transferred to the heat storage tank 4.
is returned to the lower temperature side. In this way, during non-blowing, the retained thermal energy of the cooling water stored in the heat storage tank 4 is utilized.

而して、気水分離タンク3及び蓄熱タンク4
は、大気開放であるので、多少の水蒸気は大気中
に逃げる。従つてその補給のため、給水ポンプ8
によつて、夫々給水するようになつている。
Therefore, the steam/water separation tank 3 and the heat storage tank 4
Since it is open to the atmosphere, some water vapor escapes into the atmosphere. Therefore, in order to replenish the water, a water supply pump 8 is used.
Water is supplied to each area by

以上詳述した通り本発明によれば、冶金炉冷却
水循環回路と蓄熱回路及び熱利用回路を設け、弁
操作によつて、冶金炉冷却水循環回路を利用して
蓄熱回路及び熱利用回路との連絡を切換えるよう
にしたので、吹錬中であると非吹錬中であるとに
無関係に冷却水の保有熱を連続的に取り出すこと
ができ、然かも吹錬中の冷却器入口冷却水温度を
一定にすることによつて、気水分離タンク内での
冷却水の蒸発を阻止することができ、蒸発熱によ
つて放散される熱量を、熱利用設備及び蓄熱タン
クによつて全て回収することができ、更には冷却
器の強度上、圧力上昇と冷却水温度上昇をなく
し、熱応力による熱疲労を防止して、安全性をも
高めることが可能となる等、その効果は極めて顕
著である。
As detailed above, according to the present invention, a metallurgical furnace cooling water circulation circuit, a heat storage circuit, and a heat utilization circuit are provided, and the metallurgical furnace cooling water circulation circuit is used to communicate with the heat storage circuit and the heat utilization circuit by valve operation. This allows the heat retained in the cooling water to be extracted continuously, regardless of whether blowing is in progress or not. By keeping the temperature constant, it is possible to prevent the cooling water from evaporating in the steam/water separation tank, and all of the heat dissipated by the heat of evaporation can be recovered by the heat utilization equipment and heat storage tank. The effect is extremely significant, as it eliminates pressure rises and cooling water temperature rises due to the strength of the cooler, prevents thermal fatigue caused by thermal stress, and improves safety. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であり、フローチヤ
ートによつて簡略化して示した図である。 1……冶金炉、2……冷却器、3……気水分離
タンク、4……蓄熱タンク、5……熱回収装置、
6……循環ポンプ、7……熱水ポンプ、8……給
水ポンプ。
FIG. 1 shows one embodiment of the present invention, which is simplified by a flowchart. 1... Metallurgical furnace, 2... Cooler, 3... Steam/water separation tank, 4... Heat storage tank, 5... Heat recovery device,
6... Circulation pump, 7... Hot water pump, 8... Water supply pump.

Claims (1)

【特許請求の範囲】[Claims] 1 冶金炉ガス冷却器から出た水蒸気と飽和水の
混合水を気水分離タンクに導き、該気水分離タン
クに溜つた飽和水を再び循環ポンプを介して冶金
炉ガス冷却器に導くようにした冶金炉冷却水循環
回路と、該冶金炉冷却水循環回路のガス冷却器と
気水分離タンクの間に熱交換器を接続し、蓄熱タ
ンクの低温側を前記熱交換器の二次入口側に接続
し、熱交換器の二次出口側から蓄熱タンクの高温
側に接続して成る蓄熱回路と、該蓄熱回路の蓄熱
タンクの高温側と熱回収装置入口側とを熱水ポン
プを介して導管にて接続し、一方熱回収装置の出
口側を蓄熱回路の蓄熱タンクの低温側に夫々接続
して成る熱利用回路とから成り、冶金炉の吹錬中
は蓄熱回路と熱利用回路により蓄熱し乍ら熱エネ
ルギを回収すると共に、冷却器冷却水の熱量を吸
収し、非吹錬中は蓄熱タンクに蓄熱した熱エネル
ギを利用し、このように弁操作によつて吹錬、非
吹錬時に切り換えるようにした冶金炉排ガス処理
装置の冷却水循環回路。
1. A mixture of water vapor and saturated water discharged from the metallurgical furnace gas cooler is led to a steam/water separation tank, and the saturated water accumulated in the steam/water separation tank is led back to the metallurgical furnace gas cooler via the circulation pump. A heat exchanger is connected between the metallurgical furnace cooling water circulation circuit, the gas cooler and the steam-water separation tank of the metallurgical furnace cooling water circulation circuit, and the low temperature side of the heat storage tank is connected to the secondary inlet side of the heat exchanger. A heat storage circuit is connected from the secondary outlet side of the heat exchanger to the high temperature side of the heat storage tank, and the high temperature side of the heat storage tank and the inlet side of the heat recovery device of the heat storage circuit are connected to a conduit via a hot water pump. and a heat utilization circuit, in which the outlet side of the heat recovery device is connected to the low temperature side of the heat storage tank of the heat storage circuit, respectively, and during blowing in the metallurgical furnace, heat is stored in the heat storage circuit and the heat utilization circuit. At the same time, the heat energy is recovered from the air, and the heat amount of the cooler cooling water is absorbed, and during non-blowing, the heat energy stored in the heat storage tank is used, and in this way, the valve can be operated to switch between blowing and non-blowing. A cooling water circulation circuit for a metallurgical furnace exhaust gas treatment equipment.
JP7825280A 1980-06-10 1980-06-10 Cooling water circulating circuit for exhaust gas treating device of metallurgic furnace Granted JPS572978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7825280A JPS572978A (en) 1980-06-10 1980-06-10 Cooling water circulating circuit for exhaust gas treating device of metallurgic furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7825280A JPS572978A (en) 1980-06-10 1980-06-10 Cooling water circulating circuit for exhaust gas treating device of metallurgic furnace

Publications (2)

Publication Number Publication Date
JPS572978A JPS572978A (en) 1982-01-08
JPS6142192B2 true JPS6142192B2 (en) 1986-09-19

Family

ID=13656800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7825280A Granted JPS572978A (en) 1980-06-10 1980-06-10 Cooling water circulating circuit for exhaust gas treating device of metallurgic furnace

Country Status (1)

Country Link
JP (1) JPS572978A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252848U (en) * 1985-09-19 1987-04-02
JPH0723505B2 (en) * 1985-10-26 1995-03-15 株式会社中山製鋼所 Operation method of billet heating equipment using exhaust gas
JP4840722B2 (en) * 2006-03-07 2011-12-21 住友金属鉱山株式会社 Converter exhaust gas cooling system and converter exhaust gas cooling system operating method

Also Published As

Publication number Publication date
JPS572978A (en) 1982-01-08

Similar Documents

Publication Publication Date Title
JP2009214089A (en) Carbon dioxide recovery apparatus and method therefor
CN101315183A (en) Flue gas waste heat recovery system of metallurgy electric furnace
US3204629A (en) Water heater
JP2523336B2 (en) Device for heating steam formed from cooling water
JPS6142192B2 (en)
JP4092262B2 (en) Water supply method to boiler of coke dry fire extinguishing equipment
JP6207086B2 (en) Absorption heat pump apparatus with heat supply means for regeneration of amine absorption liquid
HU177192B (en) Combined boiler equipment utilizing the heat of flue gas for glass ovens of recuperative system
JPH08503292A (en) Method and apparatus for cooling high temperature gas
EP2910292B1 (en) Steam providing system and co2 recovery facilities provided with same
US3428117A (en) Apparatus for cooling hot waste gases
US1341114A (en) Method of recovering sulfur dioxid from gases
JP3309482B2 (en) Pressurized fluidized bed power generator
CN209602089U (en) Dry method Sulphuric acid device
JPS6142190B2 (en)
JPS5762390A (en) Emergency gas cooling device
JPS6115357B2 (en)
JPS6140007B2 (en)
JP3699520B2 (en) Waste heat recovery device
KR20160016012A (en) Cooling system using sea water, and cooling method thereof
JPS56142393A (en) Recovery of waste heat
NO166055B (en) Shooting range.
JPS5934959B2 (en) Heat recovery method
JPS61195907A (en) Heat recovering device for blast furnace
JPS6227512A (en) Cooler for converter waste gas