JP2009214089A - Carbon dioxide recovery apparatus and method therefor - Google Patents

Carbon dioxide recovery apparatus and method therefor Download PDF

Info

Publication number
JP2009214089A
JP2009214089A JP2008063597A JP2008063597A JP2009214089A JP 2009214089 A JP2009214089 A JP 2009214089A JP 2008063597 A JP2008063597 A JP 2008063597A JP 2008063597 A JP2008063597 A JP 2008063597A JP 2009214089 A JP2009214089 A JP 2009214089A
Authority
JP
Japan
Prior art keywords
carbon dioxide
heat exchanger
tower
liquid
absorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008063597A
Other languages
Japanese (ja)
Inventor
Kazuya Goto
和也 後藤
Masami Onoda
正巳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2008063597A priority Critical patent/JP2009214089A/en
Publication of JP2009214089A publication Critical patent/JP2009214089A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon dioxide recovery apparatus saving energy by reduction of cooling heat loss. <P>SOLUTION: The carbon dioxide recovery apparatus is provided with: an absorbing tower 101 absorbing carbon dioxide-containing gas into an absorbing liquid to form a rich liquid 120; a releasing tower 102 releasing and separating carbon dioxide and steam by heating the rich liquid 120 discharged from the absorbing tower 101 and returning formed lean liquid 123 to the absorbing tower 101; and a splitting device 107 splitting the rich liquid 120 discharged from the absorbing tower 101 into a first heat exchanger 103 and a second heat exchanger 104. The rich liquid 120 led to the first heat exchanger 103 and second heat exchanger 104 is heat-exchanged with the lean liquid 123 and steam 131 containing carbon dioxide, respectively, and supplied to the releasing tower 102. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二酸化炭素回収装置及び方法に関する。   The present invention relates to a carbon dioxide recovery apparatus and method.

近年、地球規模で懸念される地球温暖化問題に対する有効な対策としてCO2回収貯留技術が注目されており、特に、火力発電所や製鉄所等の大規模CO2源から発生する燃焼排ガスやプロセス排出ガスを対象に、CO2を水溶液により回収する方法が検討されている。   In recent years, CO2 capture and storage technology has attracted attention as an effective measure against the global warming problem of concern on a global scale. In particular, combustion exhaust gas and process exhaust gas generated from large-scale CO2 sources such as thermal power plants and steelworks A method for recovering CO2 with an aqueous solution has been studied.

従来のCO2回収装置として、例えば、特許文献1に開示された構成が知られている。図4に示すように、この二酸化炭素回収装置50は、燃焼排ガスを冷却する冷却塔51と、冷却された燃焼排ガス中の二酸化炭素を吸収液に吸収させる吸収塔52と、二酸化炭素吸収溶液を加熱して二酸化炭素と再生吸収液に分離する再生塔53とを備えている。再生塔53から排出された再生吸収液は、熱交換器54において吸収塔52から供給された二酸化炭素吸収溶液と熱交換された後に、第1の冷却器55を経て吸収塔52に供給される。また、再生塔53から排出された二酸化炭素を含む蒸気は、第2の冷却器56で凝縮され、気液分離器57において二酸化炭素と凝縮液とに分離された後、凝縮液が再生塔53に戻される。
特開2003−225537号公報
As a conventional CO2 recovery device, for example, a configuration disclosed in Patent Document 1 is known. As shown in FIG. 4, the carbon dioxide recovery device 50 includes a cooling tower 51 that cools combustion exhaust gas, an absorption tower 52 that absorbs carbon dioxide in the cooled combustion exhaust gas, and a carbon dioxide absorption solution. A regeneration tower 53 is provided that is heated to separate it into carbon dioxide and a regenerated absorbent. The regenerated absorbing liquid discharged from the regenerating tower 53 is heat-exchanged with the carbon dioxide absorbing solution supplied from the absorbing tower 52 in the heat exchanger 54, and then supplied to the absorbing tower 52 through the first cooler 55. . Further, the vapor containing carbon dioxide discharged from the regeneration tower 53 is condensed by the second cooler 56 and separated into carbon dioxide and condensate by the gas-liquid separator 57, and then the condensate is regenerated. Returned to
JP 2003-225537 A

特許文献1には、第1の冷却器55及び第2の冷却器56において排熱が大量に発生するため、冷却用の温水戻り水を暖房用等として利用することが記載されている。ところが、省エネルギー化の観点からは、第1の冷却器55及び第2の冷却器56で生じる冷却損失熱量を抑制して、外部からの供給熱量をできる限り小さくすることが好ましい。   Patent Document 1 describes that hot water return water for cooling is used for heating or the like because a large amount of exhaust heat is generated in the first cooler 55 and the second cooler 56. However, from the viewpoint of energy saving, it is preferable that the amount of heat supplied from the outside be reduced as much as possible by suppressing the amount of heat lost in cooling by the first cooler 55 and the second cooler 56.

そこで、本発明は、冷却損失熱の低減による省エネルギー化が可能な二酸化炭素回収装置及び方法の提供を目的とする。   Therefore, an object of the present invention is to provide a carbon dioxide recovery apparatus and method that can save energy by reducing the heat of cooling loss.

本発明の前記目的は、二酸化炭素含有ガスを吸収液に吸収させてリッチ液を生成する吸収塔と、前記吸収塔から排出されたリッチ液を加熱することにより二酸化炭素を蒸気と共に放散させて分離し、生成されたリーン液を前記吸収塔に戻す放散塔と、前記放散塔から前記吸収塔に供給されるリーン液が通過する第1の熱交換器と、前記放散塔で分離された二酸化炭素含有蒸気が通過する第2の熱交換器と、前記吸収塔から排出されたリッチ液を前記第1の熱交換器及び第2の熱交換器に分流する分流装置とを備え、前記第1の熱交換器及び第2の熱交換器に導入されたリッチ液が、それぞれリーン液及び二酸化炭素含有蒸気と熱交換した後に、前記放散塔に供給されるように構成されていることを特徴とする二酸化炭素回収装置により達成される。   The object of the present invention is to absorb a carbon dioxide-containing gas into an absorption liquid to produce a rich liquid, and to separate and separate carbon dioxide with steam by heating the rich liquid discharged from the absorption tower. A stripping tower for returning the produced lean liquid to the absorption tower, a first heat exchanger through which the lean liquid supplied from the stripping tower to the absorption tower passes, and carbon dioxide separated by the stripping tower A second heat exchanger through which the contained steam passes, and a diversion device for diverting the rich liquid discharged from the absorption tower to the first heat exchanger and the second heat exchanger, The rich liquid introduced into the heat exchanger and the second heat exchanger is configured to be supplied to the stripping tower after heat exchange with the lean liquid and the carbon dioxide-containing steam, respectively. Achieved by carbon dioxide capture device That.

また、本発明の前記目的は、吸収塔において二酸化炭素含有ガスを吸収液に吸収させてリッチ液を生成する吸収工程と、前記吸収塔から排出されたリッチ液を放散塔において加熱することにより二酸化炭素を蒸気と共に放散させて分離し、生成されたリーン液を前記吸収塔に戻す再生工程とを備え、前記再生工程は、前記放散塔から前記吸収塔に供給されるリーン液を第1の熱交換器に通過させる工程と、前記放散塔で分離された二酸化炭素含有蒸気を第2の熱交換器に通過させる工程とを含み、前記吸収塔から排出されたリッチ液を分流して前記第1の熱交換器及び第2の熱交換器に導入し、それぞれリーン液及び二酸化炭素含有蒸気と熱交換した後に、前記放散塔に供給することを特徴とする二酸化炭素回収方法により達成される。   Further, the object of the present invention is to absorb the carbon dioxide-containing gas in the absorption tower in the absorption liquid to generate a rich liquid, and to heat the rich liquid discharged from the absorption tower in the diffusion tower. And a regeneration step for returning the generated lean liquid to the absorption tower by dispersing the carbon together with the vapor, and the regeneration step converts the lean liquid supplied from the diffusion tower to the absorption tower with a first heat. Including a step of passing through an exchanger and a step of passing the carbon dioxide-containing vapor separated in the stripping tower through a second heat exchanger, the rich liquid discharged from the absorption tower being diverted to the first This is achieved by a carbon dioxide recovery method characterized in that it is introduced into the heat exchanger and the second heat exchanger, heat exchanged with the lean liquid and the carbon dioxide-containing steam, respectively, and then supplied to the stripping tower.

本発明によれば、冷却損失の低減による省エネルギー化が可能な二酸化炭素回収装置及び方法を提供することができる。   According to the present invention, it is possible to provide a carbon dioxide recovery apparatus and method capable of saving energy by reducing cooling loss.

以下、本発明の実施の形態について、添付図面を参照して説明する。図1は、本発明の一実施形態に係る二酸化炭素回収装置の概略構成図である。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a carbon dioxide recovery device according to an embodiment of the present invention.

図1に示すように、二酸化炭素回収装置1は、導入した二酸化炭素含有ガスを、二酸化炭素を吸収する吸収液と接触させて、二酸化炭素を吸収したリッチ液120を生成する吸収塔101と、吸収塔101から排出されたリッチ液120を加熱することにより二酸化炭素を蒸気と共に放散させて分離し、二酸化炭素の大部分が除去されたリーン液123を吸収塔101に戻す放散塔102とを備えている。   As shown in FIG. 1, the carbon dioxide recovery device 1 is configured to bring the introduced carbon dioxide-containing gas into contact with an absorption liquid that absorbs carbon dioxide to generate a rich liquid 120 that absorbs carbon dioxide, A diffusion tower 102 that heats the rich liquid 120 discharged from the absorption tower 101 to dissipate and separate carbon dioxide together with the vapor and returns the lean liquid 123 from which most of the carbon dioxide has been removed to the absorption tower 101. ing.

吸収塔101は、例えば向流型気液接触装置からなり、下部から供給された二酸化炭素含有ガスを、上部から流下するリーン液123と気液接触させるように構成されている。吸収塔101に供給される二酸化炭素含有ガスは、特に限定されるものではないが、燃焼排ガスやプロセス排ガスなどを例示することができ、必要に応じて冷却処理後に導入してもよい。また、吸収液は、従来公知のものを利用可能であり、例えば、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)などのアミン系水溶液を例示することができる。吸収塔101で二酸化炭素が除去された脱CO2ガスは、吸収塔101の上部から排出される。   The absorption tower 101 is composed of, for example, a countercurrent gas-liquid contact device, and is configured to bring the carbon dioxide-containing gas supplied from the lower part into gas-liquid contact with the lean liquid 123 flowing down from the upper part. Although the carbon dioxide containing gas supplied to the absorption tower 101 is not specifically limited, combustion exhaust gas, process exhaust gas, etc. can be illustrated and may be introduce | transduced after cooling processing as needed. Moreover, a conventionally well-known thing can be utilized for absorption liquid, For example, amine-type aqueous solution, such as a monoethanolamine (MEA) and a diethanolamine (DEA), can be illustrated. The de-CO 2 gas from which carbon dioxide has been removed by the absorption tower 101 is discharged from the upper part of the absorption tower 101.

放散塔102は、例えば向流型気液接触装置であり、貯留液の加熱は、リボイラー108において、外部供給熱である高温蒸気140と熱交換することにより行われる。放散塔102の内部で放散された二酸化炭素含有蒸気は、放散塔102の上部から排出される。   The stripping tower 102 is, for example, a countercurrent gas-liquid contact device, and the stored liquid is heated by exchanging heat with the high-temperature steam 140 that is externally supplied heat in the reboiler 108. The carbon dioxide containing vapor diffused inside the stripping tower 102 is discharged from the upper part of the stripping tower 102.

また、本実施形態の二酸化炭素回収装置1は、放散塔102から吸収塔101に供給されるリーン液123が通過する第1の熱交換器103と、放散塔102で分離された二酸化炭素含有蒸気131が通過する第2の熱交換器104と、吸収塔101から排出されたリッチ液120を第1の熱交換器103及び第2の熱交換器104に分流する分流装置107とを更に備えている。第1の熱交換器103及び第2の熱交換器104に供給されたリッチ液120は、それぞれリーン液123及び二酸化炭素含有蒸気131との熱交換により加熱された後、放散塔102に供給される。   In addition, the carbon dioxide recovery apparatus 1 of the present embodiment includes the first heat exchanger 103 through which the lean liquid 123 supplied from the stripping tower 102 to the absorption tower 101 passes, and the carbon dioxide-containing steam separated by the stripping tower 102. And a second heat exchanger 104 through which 131 passes, and a flow dividing device 107 for diverting the rich liquid 120 discharged from the absorption tower 101 to the first heat exchanger 103 and the second heat exchanger 104. Yes. The rich liquid 120 supplied to the first heat exchanger 103 and the second heat exchanger 104 is heated by heat exchange with the lean liquid 123 and the carbon dioxide-containing steam 131, respectively, and then supplied to the diffusion tower 102. The

放散塔102から吸収塔101に供給されるリーン液123の流路において、第1の熱交換器103と吸収塔101との間には第1の冷却器106が設けられており、外部から供給される冷水などの冷媒143によりリーン液123を冷却する。また、第2の熱交換器104には、第2の冷却器105及び気液分離器132が接続されており、第2の熱交換器104を通過した二酸化炭素含有蒸気は、第2の冷却器105において、外部から供給される冷水などの冷媒142により冷却されて蒸気が凝縮され、気液分離器132において凝縮水133と二酸化炭素134とに分離される。分離された凝縮水133は、放散塔102に戻される一方、二酸化炭素134は回収される。   In the flow path of the lean liquid 123 supplied from the stripping tower 102 to the absorption tower 101, a first cooler 106 is provided between the first heat exchanger 103 and the absorption tower 101, and is supplied from the outside. The lean solution 123 is cooled by the refrigerant 143 such as cold water. The second heat exchanger 104 is connected to the second cooler 105 and the gas-liquid separator 132, and the carbon dioxide-containing steam that has passed through the second heat exchanger 104 is second cooled. In the vessel 105, the vapor is condensed by being cooled by a refrigerant 142 such as cold water supplied from the outside, and is separated into condensed water 133 and carbon dioxide 134 in the gas-liquid separator 132. The separated condensed water 133 is returned to the stripping tower 102, while the carbon dioxide 134 is recovered.

分流装置107は、第1の熱交換器103及び第2の熱交換器104のそれぞれに対して、配管121,122を介してリッチ液120を所望の流量比となるように分流する。具体的には、分流装置107から第2の熱交換器104に供給するリッチ液120の流量の、吸収塔101から分流装置107に導入されるリッチ液120の流量に対する比(分流比)をαとしたときに、αの値が0.05以上0.5以下であることが好ましく、0.05以上0.15以下がより好ましい。   The diversion device 107 diverts the rich liquid 120 to the first heat exchanger 103 and the second heat exchanger 104 through the pipes 121 and 122 so that a desired flow rate ratio is obtained. Specifically, the ratio (diversion ratio) of the flow rate of the rich liquid 120 supplied from the flow dividing device 107 to the second heat exchanger 104 to the flow rate of the rich liquid 120 introduced from the absorption tower 101 to the flow dividing device 107 is expressed as α. The value of α is preferably 0.05 or more and 0.5 or less, and more preferably 0.05 or more and 0.15 or less.

分流比αの値は、使用条件を考慮して予め設定されていてもよく、或いは、弁開度や邪魔板などの調整により、使用者が適宜変更できるように構成されていてもよい。αの値を設定するための流量は、本実施形態では体積流量を用いているが、質量流量であってもよい。   The value of the diversion ratio α may be set in advance in consideration of the use conditions, or may be configured so that the user can appropriately change it by adjusting the valve opening degree or the baffle plate. As the flow rate for setting the value of α, the volume flow rate is used in the present embodiment, but it may be a mass flow rate.

以上の構成を備える二酸化炭素回収装置1によれば、吸収塔101において、二酸化炭素含有ガスを吸収液に吸収させてリッチ液120を生成する吸収工程が行われる。吸収塔101から排出されたリッチ液120は、放散塔102において、リボイラー108に循環供給されて加熱され、二酸化炭素及び蒸気が放散される。この二酸化炭素含有蒸気は放散塔102の上部から排出される一方、リーン液123が吸収塔101に戻される。こうして、二酸化炭素を吸収したリッチ液120をリーン液123にして再利用可能にする再生工程が行われる。   According to the carbon dioxide recovery apparatus 1 having the above configuration, an absorption step of generating the rich liquid 120 by absorbing the carbon dioxide-containing gas in the absorption liquid is performed in the absorption tower 101. The rich liquid 120 discharged from the absorption tower 101 is circulated and supplied to the reboiler 108 and heated in the diffusion tower 102, and carbon dioxide and vapor are released. The carbon dioxide-containing vapor is discharged from the upper part of the diffusion tower 102, while the lean liquid 123 is returned to the absorption tower 101. In this way, a regeneration process is performed in which the rich liquid 120 that has absorbed carbon dioxide is made into the lean liquid 123 and can be reused.

再生工程においては、放散塔102から排出されたリーン液123が、第1の熱交換器103及び第1の冷却塔106を通過して吸収塔101に供給されると共に、放散塔102で分離された二酸化炭素含有蒸気131が、第2の熱交換器104及び第2の冷却塔105を通過して気液分離器132に供給される。   In the regeneration step, the lean liquid 123 discharged from the diffusion tower 102 passes through the first heat exchanger 103 and the first cooling tower 106 and is supplied to the absorption tower 101 and is separated by the diffusion tower 102. The vapor 131 containing carbon dioxide passes through the second heat exchanger 104 and the second cooling tower 105 and is supplied to the gas-liquid separator 132.

吸収塔101から排出されたリッチ液120は、分流装置107で分流されて、第1の熱交換器103及び第2の熱交換器104に導入され、それぞれリーン液123及び二酸化炭素含有蒸気131と熱交換した後に、放散塔102に供給される。これにより、第1の熱交換器103及び第2の熱交換器104の双方を利用して、放散塔102に導入するリッチ液120の温度を十分高めることができ、放散塔102において二酸化炭素を蒸散させるための熱エネルギーを低減することができる。   The rich liquid 120 discharged from the absorption tower 101 is diverted by the diversion device 107 and introduced into the first heat exchanger 103 and the second heat exchanger 104, and the lean liquid 123 and the carbon dioxide-containing steam 131 are respectively obtained. After heat exchange, it is supplied to the diffusion tower 102. Thereby, the temperature of the rich liquid 120 introduced into the stripping tower 102 can be sufficiently increased by using both the first heat exchanger 103 and the second heat exchanger 104, and carbon dioxide is removed from the stripping tower 102. The heat energy for transpiration can be reduced.

一方、第1の冷却器106及び第2の冷却器105に導入されるリーン液123及び二酸化炭素含有蒸気131の温度は低くすることができることから、第1の冷却器106及び第2の冷却器105における冷却負荷を軽減して冷却損失を抑制することができる。気液分離器132で分離された凝縮水133は、本実施形態においては放散塔102に戻すように構成しているが、吸収塔101に戻すことも可能であり、或いは他の用途に利用してもよい。   On the other hand, since the temperatures of the lean liquid 123 and the carbon dioxide-containing steam 131 introduced into the first cooler 106 and the second cooler 105 can be lowered, the first cooler 106 and the second cooler The cooling load in 105 can be reduced and the cooling loss can be suppressed. The condensed water 133 separated by the gas-liquid separator 132 is configured to be returned to the stripping tower 102 in this embodiment, but can also be returned to the absorption tower 101 or used for other purposes. May be.

図2は、本実施形態の示す二酸化炭素回収装置1において、分流比αに対する外部供給熱の測定結果を示すグラフである。吸収液には、モノエタノールアミン(MEA)の30重量%水溶液を用い、製鉄所の高炉ガス相当のCO2を含有するガス(20%−CO2)を対象にCO2回収を行った。   FIG. 2 is a graph showing the measurement result of the externally supplied heat with respect to the diversion ratio α in the carbon dioxide recovery apparatus 1 shown in the present embodiment. As the absorbing solution, a 30 wt% aqueous solution of monoethanolamine (MEA) was used, and CO2 recovery was performed for a gas containing CO2 equivalent to the blast furnace gas (20% -CO2) of the steelworks.

図2において、CO2放散熱(141)は、吸収液の種類により決定される物理量であり、分流比αの大きさに拘らずほぼ一定である。これに対し、第1の冷却器106で発生する冷却損失熱(143)及び第2の冷却器105で発生する冷却損失熱(142)は、いずれも分流比αの大きさによって変化する。本実施形態の二酸化炭素回収装置1は、CO2放散熱(141)、冷却損失熱(142)及び冷却損失熱(143)の総和である外部供給熱(140)が小さくなるように、分流装置7によりリッチ液120を分流することができるので、省エネルギー化を図ることができる。   In FIG. 2, the CO2 dissipated heat (141) is a physical quantity determined by the type of the absorbing liquid, and is substantially constant regardless of the magnitude of the diversion ratio α. On the other hand, both the cooling loss heat (143) generated in the first cooler 106 and the cooling loss heat (142) generated in the second cooler 105 change depending on the magnitude of the flow dividing ratio α. The carbon dioxide recovery device 1 of the present embodiment is configured so that the externally supplied heat (140), which is the sum of the CO2 diffused heat (141), the cooling loss heat (142), and the cooling loss heat (143), becomes small. Thus, the rich liquid 120 can be diverted, so that energy saving can be achieved.

より詳しくは、分流比αを0.05以上にすることで、図2に実線で示すように、外部供給熱(140)の低減効果を確認することができ、更にαを増加させていくと、第2の冷却器105に導入される二酸化炭素含有蒸気131の温度が低下して冷却損失熱(142)が少なくなり、外部供給熱(140)が低減される。しかし、αが0.5より大きい領域では、第1の冷却器106に導入されるリーン液123の温度が高くなるために冷却損失熱(143)が急激に増加し、CO2回収に必要な外部供給熱(140)が増加する。したがって、外部供給熱(140)を抑制するために、αの値を0.05以上0.5以下に設定することが好ましい。   More specifically, by setting the diversion ratio α to 0.05 or more, as shown by the solid line in FIG. 2, the effect of reducing the externally supplied heat (140) can be confirmed, and when α is further increased. As a result, the temperature of the carbon dioxide-containing steam 131 introduced into the second cooler 105 is reduced, so that the cooling loss heat (142) is reduced and the externally supplied heat (140) is reduced. However, in the region where α is larger than 0.5, the temperature of the lean liquid 123 introduced into the first cooler 106 becomes high, so that the heat of cooling loss (143) increases rapidly, and the external temperature necessary for CO2 recovery is increased. Supply heat (140) increases. Therefore, in order to suppress externally supplied heat (140), the value of α is preferably set to 0.05 or more and 0.5 or less.

図2に実線で示す外部供給熱(140)は、図1に示す第1の熱交換器103として、非常に大きな伝熱面積を有する理想的な熱交換器(装置A)を用いた場合の結果であり、熱効率が約0.7となり、高温のリーン液123の熱を最大限利用することにより、第1の冷却器106における冷却損失熱(143)を最も軽減させている。ここで、熱効率は、リッチ液120とリーン液123との間の実際の交換熱量を、リーン液123とリッチ液120との間の最大温度差に相当する熱量で除した値である。   The externally supplied heat (140) indicated by a solid line in FIG. 2 is obtained when an ideal heat exchanger (apparatus A) having a very large heat transfer area is used as the first heat exchanger 103 shown in FIG. As a result, the thermal efficiency is about 0.7, and the heat of cooling loss (143) in the first cooler 106 is most reduced by making maximum use of the heat of the high-temperature lean liquid 123. Here, the thermal efficiency is a value obtained by dividing the actual exchange heat quantity between the rich liquid 120 and the lean liquid 123 by the heat quantity corresponding to the maximum temperature difference between the lean liquid 123 and the rich liquid 120.

これに対し、第1の熱交換器103として、熱効率がより低いもの(装置B及び装置C)をそれぞれ使用したところ、図2に2点鎖線及び破線で示すように、αの好ましい範囲は狭まる傾向であった。装置Cは、従来の二酸化炭素回収装置の設計において選択されるような仕様の熱交換器をそのまま流用しており、装置Bよりも熱効率が低いものであるが、この場合の好ましいαの範囲は、0.05以上0.15以下と最も狭くなっている。   On the other hand, when the first heat exchanger 103 having lower thermal efficiency (apparatus B and apparatus C) is used, the preferable range of α is narrowed as indicated by a two-dot chain line and a broken line in FIG. It was a trend. The apparatus C uses a heat exchanger having a specification as selected in the design of a conventional carbon dioxide recovery apparatus as it is, and has a lower thermal efficiency than the apparatus B. In this case, a preferable range of α is , 0.05 to 0.15 or less.

このように、分流比αは、最適条件で使用する限り、0.05以上0.5以下の範囲に設定することが有効であるが、使用する第1の熱交換器の熱効率によって好ましい範囲が変化する。また、この熱効率はスケールの付着等により経時的に低下するおそれもあることを考慮すれば、熱効率の値に拘わらず外部供給熱の良好な低減効果を得るために、分流比αを0.05以上0.15以下に設定することがより好ましい。   Thus, as long as the diversion ratio α is used under the optimum conditions, it is effective to set it in the range of 0.05 or more and 0.5 or less. Change. Further, in consideration of the possibility that the thermal efficiency may decrease with time due to adhesion of scales, in order to obtain a good reduction effect of the externally supplied heat regardless of the thermal efficiency value, the shunt ratio α is set to 0.05. More preferably, it is set to 0.15 or less.

以上、本発明の一実施形態について詳述したが、本発明の具体的な態様は上記実施形態に限定されない。例えば、本実施形態においては、第2の熱交換器104を放散塔102の外部に配置しているが、この第2の熱交換器104を放散塔102の内部に配置し、二酸化炭素含有蒸気131とリッチ液120との熱交換を、放散塔102の内部で行うように構成してもよい。   As mentioned above, although one Embodiment of this invention was explained in full detail, the specific aspect of this invention is not limited to the said embodiment. For example, in the present embodiment, the second heat exchanger 104 is disposed outside the stripping tower 102. However, the second heat exchanger 104 is disposed inside the stripping tower 102, and the carbon dioxide-containing steam is disposed. You may comprise so that heat exchange with 131 and the rich liquid 120 may be performed inside the diffusion tower 102. FIG.

また、本実施形態における分流装置107は、吸収塔101の外部でリッチ液120の流路を分岐させ、配管121,122を介して第1の熱交換器103及び第2の熱交換器104に供給するようにしているが、第1の熱交換器103及び第2の熱交換器104の双方に所望の流量比で供給できる構成であれば、本実施形態のものには限定されない。例えば、図3に示すように、吸収塔101に対して2つの配管121,122を接続して、各配管121,122にポンプやバルブ(いずれも図示せず)を介在させることにより、ポンプの駆動電圧やバルブの開度を制御して、各配管121,122を流れるリッチ液の流量比を調整することができるので、これらのポンプやバルブを備える配管121,122を分流装置として機能させることもできる。なお、図3において、図1と同様の構成部分には同一の符号を付している。   Further, the flow dividing device 107 in the present embodiment branches the flow path of the rich liquid 120 outside the absorption tower 101, and passes through the pipes 121 and 122 to the first heat exchanger 103 and the second heat exchanger 104. Although it supplies, it will not be limited to the thing of this embodiment if it is the structure which can supply to both the 1st heat exchanger 103 and the 2nd heat exchanger 104 with a desired flow rate ratio. For example, as shown in FIG. 3, two pipes 121 and 122 are connected to the absorption tower 101, and pumps and valves (both not shown) are interposed in the pipes 121 and 122, respectively. Since the flow rate ratio of the rich liquid flowing through the pipes 121 and 122 can be adjusted by controlling the drive voltage and the valve opening, the pipes 121 and 122 having these pumps and valves can function as a flow dividing device. You can also. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals.

次に実施例を挙げて、本発明を更に詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail. However, the present invention is not limited to the following examples.

図1に示す二酸化炭素回収装置1において、モノエタノールアミン(MEA)の30重量%水溶液を吸収液として用い、製鉄所の高炉ガス相当のCO2を含有するガス(20%−CO2)を対象に、CO2回収を実施した。第1の熱交換器103は、熱効率0.7を達成し得る装置Aを使用し(図2参照)、分流装置107の分流比αは、0.3に設定した(実施例1)。また、第2の熱交換器104にリッチ液を全く流さない(すなわち、α=0)以外は実施例1と同じ条件で、CO2回収を実施した(従来法1)。この結果を表1に示す。   In the carbon dioxide recovery apparatus 1 shown in FIG. 1, a 30% by weight aqueous solution of monoethanolamine (MEA) is used as an absorbent, and a gas containing 20% CO2 equivalent to blast furnace gas at a steel works (20% -CO2), CO2 capture was carried out. As the first heat exchanger 103, an apparatus A that can achieve a thermal efficiency of 0.7 (see FIG. 2) was used, and the diversion ratio α of the diversion apparatus 107 was set to 0.3 (Example 1). Further, CO2 recovery was carried out under the same conditions as in Example 1 except that no rich liquid was allowed to flow through the second heat exchanger 104 (that is, α = 0) (conventional method 1). The results are shown in Table 1.

Figure 2009214089

表1から明らかなように、実施例1においては外部供給熱(140)が、3.53MJ/kg−CO2となり、従来法1の外部供給熱(140)である3.96MJ/kg−CO2に対して11%のエネルギー低減効果を示した。
Figure 2009214089

As is apparent from Table 1, in Example 1, the externally supplied heat (140) is 3.53 MJ / kg-CO2, which is 3.96 MJ / kg-CO2, which is the externally supplied heat (140) of the conventional method 1. On the other hand, an energy reduction effect of 11% was shown.

本発明の一実施形態に係る二酸化炭素回収装置の概略構成図である。It is a schematic structure figure of a carbon dioxide recovery device concerning one embodiment of the present invention. 分流装置の分流比に対する外部供給熱の変化を示すグラフである。It is a graph which shows the change of the external supply heat with respect to the flow dividing ratio of a flow dividing apparatus. 本発明の他の実施形態に係る二酸化炭素回収装置の概略構成図である。It is a schematic block diagram of the carbon dioxide recovery apparatus which concerns on other embodiment of this invention. 従来の二酸化炭素回収装置の概略構成図である。It is a schematic block diagram of the conventional carbon dioxide recovery apparatus.

符号の説明Explanation of symbols

1 二酸化炭素回収装置
101 吸収塔
102 放散塔
103 第1の熱交換器
104 第2の熱交換器
105 第2の冷却器
106 第1の冷却器
107 分流装置
120 リッチ液
123 リーン液
131 二酸化炭素含有蒸気
140 外部供給熱
141 CO2放散熱
142 第2の冷却器における冷却損失熱
143 第1の冷却器における冷却損失熱
DESCRIPTION OF SYMBOLS 1 Carbon dioxide recovery apparatus 101 Absorption tower 102 Dissipation tower 103 1st heat exchanger 104 2nd heat exchanger 105 2nd cooler 106 1st cooler 107 Shunt apparatus 120 Rich liquid 123 Lean liquid 131 Carbon dioxide containing Steam 140 External supply heat 141 CO2 dissipated heat 142 Cooling loss heat 143 in the second cooler 143 Cooling loss heat in the first cooler

Claims (4)

二酸化炭素含有ガスを吸収液に吸収させてリッチ液を生成する吸収塔と、
前記吸収塔から排出されたリッチ液を加熱することにより二酸化炭素を蒸気と共に放散させて分離し、生成されたリーン液を前記吸収塔に戻す放散塔と、
前記放散塔から前記吸収塔に供給されるリーン液が通過する第1の熱交換器と、
前記放散塔で分離された二酸化炭素含有蒸気が通過する第2の熱交換器と、
前記吸収塔から排出されたリッチ液を前記第1の熱交換器及び第2の熱交換器に分流する分流装置とを備え、
前記第1の熱交換器及び第2の熱交換器に導入されたリッチ液が、それぞれリーン液及び二酸化炭素含有蒸気と熱交換した後に、前記放散塔に供給されるように構成されていることを特徴とする二酸化炭素回収装置。
An absorption tower that absorbs the carbon dioxide-containing gas into the absorption liquid and generates a rich liquid;
A diffusion tower that dissipates and separates carbon dioxide with steam by heating the rich liquid discharged from the absorption tower, and returns the produced lean liquid to the absorption tower;
A first heat exchanger through which a lean liquid supplied from the stripping tower to the absorption tower passes;
A second heat exchanger through which the carbon dioxide-containing vapor separated in the diffusion tower passes;
A diversion device for diverting the rich liquid discharged from the absorption tower to the first heat exchanger and the second heat exchanger,
The rich liquid introduced into the first heat exchanger and the second heat exchanger is configured to be supplied to the stripping tower after exchanging heat with the lean liquid and the carbon dioxide-containing steam, respectively. Carbon dioxide recovery device characterized by
前記第1の熱交換器を通過したリーン液を冷却する第1の冷却器と、
前記第2の熱交換器を通過した二酸化炭素含有蒸気を冷却する第2の冷却器とを更に備える請求項1に記載の二酸化炭素回収装置。
A first cooler that cools the lean liquid that has passed through the first heat exchanger;
The carbon dioxide recovery apparatus according to claim 1, further comprising a second cooler that cools the carbon dioxide-containing steam that has passed through the second heat exchanger.
前記分流装置は、前記第2の熱交換器に供給するリッチ液の流量の、前記吸収塔から導入されるリッチ液の流量に対する比αが、0.05以上0.5以下の範囲に設定される請求項1または2に記載の二酸化炭素回収装置。 In the diversion device, a ratio α of a flow rate of the rich liquid supplied to the second heat exchanger to a flow rate of the rich liquid introduced from the absorption tower is set in a range of 0.05 to 0.5. The carbon dioxide recovery device according to claim 1 or 2. 吸収塔において二酸化炭素含有ガスを吸収液に吸収させてリッチ液を生成する吸収工程と、
前記吸収塔から排出されたリッチ液を放散塔において加熱することにより二酸化炭素を蒸気と共に放散させて分離し、生成されたリーン液を前記吸収塔に戻す再生工程とを備え、
前記再生工程は、
前記放散塔から前記吸収塔に供給されるリーン液を第1の熱交換器に通過させる工程と、
前記放散塔で分離された二酸化炭素含有蒸気を第2の熱交換器に通過させる工程とを含み、
前記吸収塔から排出されたリッチ液を分流して前記第1の熱交換器及び第2の熱交換器に導入し、それぞれリーン液及び二酸化炭素含有蒸気と熱交換した後に、前記放散塔に供給することを特徴とする二酸化炭素回収方法。
An absorption step of absorbing the carbon dioxide-containing gas into the absorption liquid in the absorption tower to generate a rich liquid;
The rich liquid discharged from the absorption tower is heated in the diffusion tower to dissipate and separate carbon dioxide together with the vapor, and the regeneration step returns the produced lean liquid to the absorption tower.
The regeneration step includes
Passing the lean liquid supplied from the stripping tower to the absorption tower through a first heat exchanger;
Passing the carbon dioxide-containing vapor separated in the stripping tower through a second heat exchanger,
The rich liquid discharged from the absorption tower is divided and introduced into the first heat exchanger and the second heat exchanger, and after heat exchange with the lean liquid and the carbon dioxide-containing steam, is supplied to the diffusion tower. The carbon dioxide recovery method characterized by performing.
JP2008063597A 2008-03-13 2008-03-13 Carbon dioxide recovery apparatus and method therefor Pending JP2009214089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063597A JP2009214089A (en) 2008-03-13 2008-03-13 Carbon dioxide recovery apparatus and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063597A JP2009214089A (en) 2008-03-13 2008-03-13 Carbon dioxide recovery apparatus and method therefor

Publications (1)

Publication Number Publication Date
JP2009214089A true JP2009214089A (en) 2009-09-24

Family

ID=41186536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063597A Pending JP2009214089A (en) 2008-03-13 2008-03-13 Carbon dioxide recovery apparatus and method therefor

Country Status (1)

Country Link
JP (1) JP2009214089A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240629A (en) * 2009-04-10 2010-10-28 Toshiba Corp Carbon dioxide recovery system
JP2011000525A (en) * 2009-06-17 2011-01-06 Mitsubishi Heavy Ind Ltd Co2 recovering device and co2 recovering method
JP2011517615A (en) * 2008-03-13 2011-06-16 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for removing carbon dioxide from gas
JP2012000538A (en) * 2010-06-14 2012-01-05 Ihi Corp Method and apparatus for recovering carbon dioxide
JP2012011333A (en) * 2010-07-01 2012-01-19 Asahi Kasei Corp Agent for absorbing carbon dioxide, and method of separating carbon dioxide using the same
EP2455154A1 (en) 2010-11-17 2012-05-23 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method
US8192530B2 (en) 2007-12-13 2012-06-05 Alstom Technology Ltd System and method for regeneration of an absorbent solution
JP2012110805A (en) * 2010-11-22 2012-06-14 Ihi Corp Method and apparatus of recovering carbon dioxide
KR101191085B1 (en) * 2009-12-23 2012-10-15 한국전력공사 Apparatus and method of solvent scrubbing co2 capture system
WO2013008914A1 (en) 2011-07-13 2013-01-17 株式会社Ihi Method and device for recovering carbon dioxide
JP2013017929A (en) * 2011-07-08 2013-01-31 Ihi Corp Carbon dioxide reduction method and reduction device
WO2013061761A1 (en) 2011-10-28 2013-05-02 株式会社Ihi Carbon dioxide recovery method and recovery device
JP2013129581A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp Gas separation and recovery method
JP2013173656A (en) * 2012-02-27 2013-09-05 Toshiba Corp Carbon dioxide separation recovery system and operation method thereof
JP2013184090A (en) * 2012-03-06 2013-09-19 Toshiba Corp Carbon dioxide recovery apparatus and carbon dioxide recovery method
WO2013161100A1 (en) 2012-04-24 2013-10-31 株式会社Ihi Carbon dioxide recovery method and recovery device
JP2014004525A (en) * 2012-06-25 2014-01-16 Toshiba Corp Carbon dioxide recovery apparatus and method for operating the same
KR20140038263A (en) * 2012-09-20 2014-03-28 한국전력공사 Apparatus for capturing co2 using chemical solvent
US8864878B2 (en) 2011-09-23 2014-10-21 Alstom Technology Ltd Heat integration of a cement manufacturing plant with an absorption based carbon dioxide capture process
WO2014175338A1 (en) 2013-04-26 2014-10-30 株式会社Ihi Device for recovering and method for recovering carbon dioxide
US8911538B2 (en) 2011-12-22 2014-12-16 Alstom Technology Ltd Method and system for treating an effluent stream generated by a carbon capture system
JP2015024374A (en) * 2013-07-26 2015-02-05 株式会社Ihi Carbon dioxide recovery method and recovery device
US9028654B2 (en) 2012-02-29 2015-05-12 Alstom Technology Ltd Method of treatment of amine waste water and a system for accomplishing the same
US9101912B2 (en) 2012-11-05 2015-08-11 Alstom Technology Ltd Method for regeneration of solid amine CO2 capture beds
US9133407B2 (en) 2011-02-25 2015-09-15 Alstom Technology Ltd Systems and processes for removing volatile degradation products produced in gas purification
US9375676B2 (en) 2011-01-27 2016-06-28 Ihi Corporation Method of recovering carbon dioxide and recovery apparatus
CN106731600A (en) * 2016-12-20 2017-05-31 新疆敦华石油技术股份有限公司 A kind of collecting carbonic anhydride liquefying plant
CN107149865A (en) * 2017-05-24 2017-09-12 华中农业大学 CO based on vapor mass transfer enhancement waste heat recovery2Chemical absorbing System and method for
US10456734B2 (en) 2016-11-01 2019-10-29 Mitsubishi Heavy Industries Engineering, Ltd. CO2 recovery system and method of recovering CO2
CN111715032A (en) * 2019-03-22 2020-09-29 国家能源投资集团有限责任公司 CO (carbon monoxide)2Trapping device and method
WO2021084830A1 (en) 2019-10-30 2021-05-06 三菱重工エンジニアリング株式会社 Carbon dioxide recovering system and carbon dioxide recovering method
CN114405218A (en) * 2022-02-14 2022-04-29 中国矿业大学 Low partial pressure waste gas CO2Trapping and purifying refining process
CN114632402A (en) * 2020-12-16 2022-06-17 中冶京诚工程技术有限公司 Flue gas carbon dioxide capture system and capture method
CN116371152A (en) * 2023-03-23 2023-07-04 中国能源建设集团广东省电力设计研究院有限公司 Carbon trapping system and method
CN116492816A (en) * 2023-03-23 2023-07-28 中国能源建设集团广东省电力设计研究院有限公司 High CO 2 Loaded absorbent carbon capture desorption system and method
CN116531918A (en) * 2022-01-26 2023-08-04 中国石油天然气集团有限公司 Energy-saving low-partial pressure carbon dioxide capturing system and method

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192530B2 (en) 2007-12-13 2012-06-05 Alstom Technology Ltd System and method for regeneration of an absorbent solution
JP2011517615A (en) * 2008-03-13 2011-06-16 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for removing carbon dioxide from gas
JP2010240629A (en) * 2009-04-10 2010-10-28 Toshiba Corp Carbon dioxide recovery system
JP2011000525A (en) * 2009-06-17 2011-01-06 Mitsubishi Heavy Ind Ltd Co2 recovering device and co2 recovering method
US8702839B2 (en) 2009-06-17 2014-04-22 Mitsubishi Heavy Industries, Ltd. CO2 recovery apparatus and CO2 recovery method
US8414694B2 (en) 2009-06-17 2013-04-09 Mitsubishi Heavy Industries, Ltd. CO2 recovery apparatus and CO2 recovery method
KR101191085B1 (en) * 2009-12-23 2012-10-15 한국전력공사 Apparatus and method of solvent scrubbing co2 capture system
JP2012000538A (en) * 2010-06-14 2012-01-05 Ihi Corp Method and apparatus for recovering carbon dioxide
JP2012011333A (en) * 2010-07-01 2012-01-19 Asahi Kasei Corp Agent for absorbing carbon dioxide, and method of separating carbon dioxide using the same
AU2011250763B2 (en) * 2010-11-17 2015-05-14 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method
CN102527191A (en) * 2010-11-17 2012-07-04 株式会社东芝 Carbon dioxide recovery apparatus and carbon dioxide recovery method
US9731244B2 (en) 2010-11-17 2017-08-15 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method
JP2012106180A (en) * 2010-11-17 2012-06-07 Toshiba Corp Carbon dioxide recovery apparatus and carbon dioxide recovery method
EP2455154A1 (en) 2010-11-17 2012-05-23 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method
US9155991B2 (en) 2010-11-17 2015-10-13 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method
CN102527191B (en) * 2010-11-17 2015-04-22 株式会社东芝 Carbon dioxide recovery apparatus and carbon dioxide recovery method
JP2012110805A (en) * 2010-11-22 2012-06-14 Ihi Corp Method and apparatus of recovering carbon dioxide
US9375676B2 (en) 2011-01-27 2016-06-28 Ihi Corporation Method of recovering carbon dioxide and recovery apparatus
US9133407B2 (en) 2011-02-25 2015-09-15 Alstom Technology Ltd Systems and processes for removing volatile degradation products produced in gas purification
JP2013017929A (en) * 2011-07-08 2013-01-31 Ihi Corp Carbon dioxide reduction method and reduction device
WO2013008914A1 (en) 2011-07-13 2013-01-17 株式会社Ihi Method and device for recovering carbon dioxide
US8864878B2 (en) 2011-09-23 2014-10-21 Alstom Technology Ltd Heat integration of a cement manufacturing plant with an absorption based carbon dioxide capture process
WO2013061761A1 (en) 2011-10-28 2013-05-02 株式会社Ihi Carbon dioxide recovery method and recovery device
JP2013129581A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp Gas separation and recovery method
US8911538B2 (en) 2011-12-22 2014-12-16 Alstom Technology Ltd Method and system for treating an effluent stream generated by a carbon capture system
JP2013173656A (en) * 2012-02-27 2013-09-05 Toshiba Corp Carbon dioxide separation recovery system and operation method thereof
US9028654B2 (en) 2012-02-29 2015-05-12 Alstom Technology Ltd Method of treatment of amine waste water and a system for accomplishing the same
US10005032B2 (en) 2012-03-06 2018-06-26 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method
JP2013184090A (en) * 2012-03-06 2013-09-19 Toshiba Corp Carbon dioxide recovery apparatus and carbon dioxide recovery method
US9314741B2 (en) 2012-03-06 2016-04-19 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method
US9339762B2 (en) 2012-03-06 2016-05-17 Kabushiki Kaisha Toshiba Carbon dioxide recovery apparatus and carbon dioxide recovery method
WO2013161100A1 (en) 2012-04-24 2013-10-31 株式会社Ihi Carbon dioxide recovery method and recovery device
US9545601B2 (en) 2012-04-24 2017-01-17 Ihi Corporation Method of recovering carbon dioxide and recovery apparatus
US10173166B2 (en) 2012-06-25 2019-01-08 Kabushiki Kaisha Toshiba Carbon dioxide recovering apparatus and method for operating the same
JP2014004525A (en) * 2012-06-25 2014-01-16 Toshiba Corp Carbon dioxide recovery apparatus and method for operating the same
KR101951047B1 (en) * 2012-09-20 2019-02-21 한국전력공사 Apparatus for capturing CO2 using chemical solvent
KR20140038263A (en) * 2012-09-20 2014-03-28 한국전력공사 Apparatus for capturing co2 using chemical solvent
US9101912B2 (en) 2012-11-05 2015-08-11 Alstom Technology Ltd Method for regeneration of solid amine CO2 capture beds
WO2014175338A1 (en) 2013-04-26 2014-10-30 株式会社Ihi Device for recovering and method for recovering carbon dioxide
JP2015024374A (en) * 2013-07-26 2015-02-05 株式会社Ihi Carbon dioxide recovery method and recovery device
US10456734B2 (en) 2016-11-01 2019-10-29 Mitsubishi Heavy Industries Engineering, Ltd. CO2 recovery system and method of recovering CO2
CN106731600A (en) * 2016-12-20 2017-05-31 新疆敦华石油技术股份有限公司 A kind of collecting carbonic anhydride liquefying plant
CN107149865A (en) * 2017-05-24 2017-09-12 华中农业大学 CO based on vapor mass transfer enhancement waste heat recovery2Chemical absorbing System and method for
CN111715032A (en) * 2019-03-22 2020-09-29 国家能源投资集团有限责任公司 CO (carbon monoxide)2Trapping device and method
WO2021084830A1 (en) 2019-10-30 2021-05-06 三菱重工エンジニアリング株式会社 Carbon dioxide recovering system and carbon dioxide recovering method
CN114632402A (en) * 2020-12-16 2022-06-17 中冶京诚工程技术有限公司 Flue gas carbon dioxide capture system and capture method
CN114632402B (en) * 2020-12-16 2022-11-11 中冶京诚工程技术有限公司 Trapping method of flue gas carbon dioxide trapping system
CN116531918A (en) * 2022-01-26 2023-08-04 中国石油天然气集团有限公司 Energy-saving low-partial pressure carbon dioxide capturing system and method
CN114405218A (en) * 2022-02-14 2022-04-29 中国矿业大学 Low partial pressure waste gas CO2Trapping and purifying refining process
CN116371152A (en) * 2023-03-23 2023-07-04 中国能源建设集团广东省电力设计研究院有限公司 Carbon trapping system and method
CN116492816A (en) * 2023-03-23 2023-07-28 中国能源建设集团广东省电力设计研究院有限公司 High CO 2 Loaded absorbent carbon capture desorption system and method
CN116371152B (en) * 2023-03-23 2024-03-12 中国能源建设集团广东省电力设计研究院有限公司 Carbon trapping system and method
CN116492816B (en) * 2023-03-23 2024-03-12 中国能源建设集团广东省电力设计研究院有限公司 High CO 2 Loaded absorbent carbon capture desorption system and method

Similar Documents

Publication Publication Date Title
JP2009214089A (en) Carbon dioxide recovery apparatus and method therefor
JP5697411B2 (en) Carbon dioxide recovery device and carbon dioxide recovery method
JP5767609B2 (en) Carbon dioxide recovery device and operation method thereof
US10005032B2 (en) Carbon dioxide recovery apparatus and carbon dioxide recovery method
JP2003225537A (en) Method for utilizing waste heat for carbon dioxide recovery process
JP6180793B2 (en) Carbon dioxide recovery device and carbon dioxide recovery method
NO340465B1 (en) CO2 recovery system and method
JP5741690B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2011000529A (en) System for recovering carbon dioxide
JP6507089B2 (en) Carbon dioxide recovery system
JP6356589B2 (en) Carbon dioxide recovery system and operation method thereof
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
EP2998011B1 (en) Carbon dioxide separation and capture apparatus and method of controlling operation of carbon dioxide separation and capture apparatus
JP6225572B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2014113546A (en) Carbon dioxide recovery device and carbon dioxide recovery method
JP2005195283A (en) Method of absorbing co2 in by-product gas using waste heat of circulating refrigerant of stave cooler
JP4155916B2 (en) Waste heat recovery system
JP5724600B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2013022514A (en) Method and apparatus of recovering carbon dioxide
JP2012196603A (en) Method and device for recovering carbon dioxide
JP6618840B2 (en) Carbon dioxide recovery system and carbon dioxide recovery method