JPS6243736B2 - - Google Patents

Info

Publication number
JPS6243736B2
JPS6243736B2 JP49035246A JP3524674A JPS6243736B2 JP S6243736 B2 JPS6243736 B2 JP S6243736B2 JP 49035246 A JP49035246 A JP 49035246A JP 3524674 A JP3524674 A JP 3524674A JP S6243736 B2 JPS6243736 B2 JP S6243736B2
Authority
JP
Japan
Prior art keywords
catalyst
titanium
nitrogen oxides
vanadium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49035246A
Other languages
Japanese (ja)
Other versions
JPS50128680A (en
Inventor
Yoshihisa Watanabe
Makoto Imanari
Masahito Takeuchi
Shinpei Matsuda
Shigeo Uno
Toshikatsu Mori
Fumito Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Petrochemical Co Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd, Mitsubishi Petrochemical Co Ltd filed Critical Babcock Hitachi KK
Priority to JP49035246A priority Critical patent/JPS6243736B2/ja
Priority to US05/531,304 priority patent/US4085193A/en
Priority to SE7415457A priority patent/SE435813B/en
Priority to GB53667/74A priority patent/GB1495396A/en
Priority to CA215,717A priority patent/CA1033543A/en
Priority to IT7430484A priority patent/IT1027634B/en
Priority to DE2458888A priority patent/DE2458888C3/en
Priority to FR7440992A priority patent/FR2254367B1/fr
Publication of JPS50128680A publication Critical patent/JPS50128680A/ja
Publication of JPS6243736B2 publication Critical patent/JPS6243736B2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、内然機関、各種燃焼炉、硝酸および
硝酸塩を使用する工業等から放出される排ガス中
の窒素酸化物を除去するための触媒に関する。 更に詳細には、本発明は、窒素酸化物を含有す
る排ガスをアンモニアの存在下で150〜650℃の範
囲の温度に加熱して窒素酸化物を還元する触媒で
あつて、該触媒は触媒成分として (A) 酸化チタンおよび (B) バナジウムの酸化物および/又は硫酸塩 を含有するものであり(但し、ルチル型および/
又はアナターゼ型結晶構造の酸化チタン担体に酸
化バナジウムを担持させたものを除く)、且つチ
タンとバナジウムの含有量がそれらの原子百分率
で表わしてチタンが96%を越え99.9%以下であ
り、バナジウムが4%未満で0.1%以上であるこ
とを特徴とする窒素酸化物の還元触媒に関する。 従来、窒素酸化物、たとえばNO、NO2などを
還元し窒素とする触媒としてはいくつかの例が知
られている。たとえば酸化銅−アルミナ、酸化銅
−シリカ、銅−クロマイトなどの銅系、白金−ア
ルミナなどの白金族系、セリウム、ランタンなど
の希土類を含有する触媒など数多く知られている
が、本発明者らの追試結果によれば、これら公知
の触媒系においてはそれぞれ耐久性、活性、触媒
価格等に難点がある。耐久性に関しては特に煙道
中に含まれる微量の亜硫酸ガスなどの硫黄含有物
により被毒されるものがほとんどである。従つて
現状では窒素酸化物を還元除去する触媒として実
用上問題のない良好なものは得られない。 本発明者らは上記の様な認識に基づき窒素酸化
物、特にNO、NO2の還元触媒について高活性、
安価で耐久性をもつ触媒の広範囲な探索研究を行
い、その結果チタン及びバナジウムを含有する触
媒が極めて良好な活性を示し、耐久性の面でもす
ぐれた安価な触媒であることを見出し本発明の完
成にいたつたのである。 本発明の触媒を用いて窒素酸化物の還元除去を
行なうには、アンモニアを還元剤として使用した
場合に本発明の触媒の特徴が最も顕著に示され
る。一般に窒素酸化物除去の対象とする燃焼排ガ
ス中には窒素酸化物の数十倍モル以上の酸素を含
有しており従来からよく知られているところでは
あるが窒素酸化物を還元するにあたり還元剤とし
て水素、一酸化炭素、炭化水素などを使用すると
還元剤はまず酸素により消費される為に還元剤の
必要量は窒素酸化物の還元に必要な量の数十倍モ
ル以上に達する。一方アンモニア、硫化水素を還
元剤として使用すると還元剤の損失は極めて少な
くなることが知られている。 さらに従来から知られている白金、銅を含有す
る触媒ではアンモニアに対し強い酸化活性を有し
反応温度を高めるとアンモニアからの窒素酸化物
の生成を招き窒素酸化物の除去率が急激に低下す
る。この為従来の触媒を使用して窒素酸化物をア
ンモニアにより還元除去する場合には非常に狭い
温度範囲でしか窒素酸化物の除去が有効に行なわ
れないことから工業規模で窒素酸化物の除去を実
施するためには厳密な反応温度の制御が必要とな
り運転が困難なものになると予想される。 本発明の触媒を使用して窒素酸化物をアンモニ
アにより還元除去する場合に反応温度は150〜650
℃の温度範囲でほとんど完全に近い除去率で窒素
酸化物の除去が可能な画期的な性能を有するもの
であり、かつ本発明触媒は極めて良好な耐久性を
有するものであり、本発明触媒の出現によりアン
モニアを還元剤とする煙道排ガス中の窒素酸化物
の除去が工業的にも有利な方法として提供された
ものである。 上記で述べた様に本発明は触媒にその特徴を有
するものであるが、本発明法の触媒は触媒成分と
して (A) 酸化チタンおよび (B) バナジウムの酸化物および/又は硫酸塩 を含有するものであり(但し、ルチル型および/
又はアナターゼ型結晶構造の酸化チタン担体に酸
化バナジウムを担持させたものを除く)、且つチ
タンとバナジウムの含有量がそれらの原子百分率
で表わしてチタンが96%を越え99.9%以下であ
り、バナジウムが4%未満で0.1%以上であるこ
とを特徴とするものである。 本発明法の触媒は上記の様に極めて高い性能を
有しているがその製造法は通常触媒の製造に利用
される沈殿法、共沈法、混練法などの常法により
容易に製造される。また最終的な触媒の成型法と
しても通常の押出成型法、打錠成型法、転動造粒
法などの目的に応じ任意の成型法を採用できる。
またその少量を多孔質のシリカ、アルミナなどの
担体に担持したり、シリカ、アルミナ、ジルコニ
ア、マグネシアなどの担体成分をその水溶性塩か
ら、焼成により本発明の触媒成分を形成しうる化
合物と同時に共沈させたり、あるいは上記担体成
分の水酸化物または酸化物と本発明の上記触媒成
分形成化合物を充分に混練するなどの方法で触媒
に混じて使用することもできることはもちろんで
ある。 本発明の触媒を調製するチタン原料としては加
熱(焼成)することにより酸化チタンを生成する
各種の化合物、例えば水酸化チタンおよびチタン
酸、硫酸チタンなどの各種の化合物を使用しう
る。また触媒調製時に汎用される各種のチタン塩
類たとえばハロゲン化チタン、硫酸チタンなどを
アンモニア水、カ性アルカリ、炭酸アルカリ等で
沈殿し、水酸化物となした後、加熱分解により酸
化物を生成する方法も好ましい方法である。また
バナジウム原料としては酸化バナジウム、メタバ
ナジン酸アンモンなどが好ましい。また硫酸バナ
ジル、塩化バナジル、塩化バナジウムなどももち
ろん使用しうる。ここで調製法の一例をあげ、よ
り具体的にその内容を説明する。 所定量の四塩化チタン水溶液にアンモニア水を
加えて沈殿した水酸化物は充分に蒸留水で洗浄す
る。次にこれに所定量のメタバナジン酸アンモン
の水溶液を加え充分混合してから押出成型するか
またはそのまま乾燥し打錠成型する。また成型に
際し触媒混合物の一部または全部をあらかじめ加
熱分解し酸化物の混合物としてから押出しまたは
打錠成型してもよい。上記の様にして得られた成
型物は最終的に300〜700℃の温度で1〜10時間程
度焼成して反応に供する。以上の触媒調製法はあ
くまでもその一例でありこの他通常汎用される各
種の調製法により得られた触媒においても良好な
性能の触媒が得られることは云うまでもない。 本発明触媒により処理される窒素酸化物には
NO、N2O3、NO2、N2O4およびN2O5が包含され
るが、これら化合物が共存する場合にそれらをす
べて分離分析することは困難であるが、たとえば
アンモニアを還元剤とした場合、次の様な反応が
代表的なものであると考えられる。 3NO2+4NH3→7/2N2+6H2O 4NO+4NH3+O2→4N2+6H2O 窒素酸化物の除去反応を実施するにはアンモニ
アを排ガス中の窒素酸化物と完全に反応するに必
要な化学量論比の1〜10倍程度の濃度範囲、好ま
しくは1〜2倍程度加える。また得られた混合ガ
スは触媒上を空間速度(空塔基準)で2000〜
100000/時、好ましくは5000〜60000/時の範囲
で通じられる。 反応温度は150〜650℃好ましくは200〜550℃の
範囲である。圧力は特に限定はないが大気圧から
約10Kg/cm2Gあるいはそれ以上の範囲で可能であ
る。 本発明を実施する反応器の形式としては流量が
大であるため各種の工夫を必要とするが基本的に
は通常の固定床、移動床、流動床等の反応器が使
用しうる。 次に実施例をあげて本発明を具体的に説明す
る。 <参考例 1> 四塩化チタン〔TiCl4〕189.7gをとり1000ml氷
水中に注ぐ。これに3規定アンモニア水を加え中
和する。生じた沈殿を別し充分に蒸留水で洗浄
する。かくして得られたケーキ189g(TiO2とし
て26.6g、1/3モル相当)をとりメタバナジン酸
アンモン2.05gを蒸留水200mlに溶かしたものを
加え充分に混練しつつ、水分を蒸発させる。えら
れたケーキを乾燥後、約25mlの蒸留水を加えライ
カイ機にて30分湿式磨砕後、直径6mmの大きさに
押出し成型する。得られた成型品を乾燥後マツフ
ル炉にて500℃で5時間焼成する。かくして得ら
れた触媒原子比でTi:V=9.5:0.5の組成を有す
る。これを10〜20メツシユの大きさに粉砕し以下
の反応に使用した。 反応管は内径16.5mmの石英製反応管で内部に外
径5mmの石英製の熱電対挿入管を有し、外部を電
気炉で加熱する。供給ガスは下記の組成を有す
る。 NH3 700〜800ppm NO 600〜700ppm SO2 482ppm O2 4% H2O 7.14% N2 残部 この組成のガスを空間速度(NTP換算空塔基
準、以下SVと表示)50000Hr-1で通ずる。反応温
度を順次変えて得られたNOの転化率(=
反応したNO/供給したNO×100)は表−1に示す。 尚、NOの測定はNO/NOx分析計(東芝ベツク
マン社製Model951)にて行なつた。 <実施例1〜3、参考例2〜5> チタンとバナジウムの組成比を変えた以外は参
考例−1と同様にして調製した触媒を用い参考例
−1と同様な条件下で反応して得られた結果を表
−1に列挙する。 <比較例 1> 本例はチタンのみからなる触媒の例である。バ
ナジウムを用いぬ以外は参考例−1と同様にして
調製した酸化チタン触媒を用いて反応した結果を
表−1に示す。 <比較例 2> 本例はバナジウムのみからなる触媒の例であ
る。メタバナジン酸アンモン58.5gをマツフル炉
にて330℃で1時間加熱分解して得られた粉に、
1重量%のポリエチレンオキサイド(商品名アル
コツクスE−30明成化学工業株式会社製)を加
え、少量の蒸留水を加えて湿式磨砕し直径6mmに
押出成型する。得られた成型品をマツフル炉にて
焼成温度500℃で5時間焼成した。得られた触媒
を10〜20メツシユに粉砕し参考例−1と同様にし
て反応させた結果を表−1に示す。
The present invention relates to a catalyst for removing nitrogen oxides from exhaust gas emitted from natural engines, various combustion furnaces, industries using nitric acid and nitrates, and the like. More specifically, the present invention provides a catalyst for reducing nitrogen oxides by heating exhaust gas containing nitrogen oxides to a temperature in the range of 150 to 650°C in the presence of ammonia, the catalyst comprising a catalyst component. (A) titanium oxide and (B) vanadium oxide and/or sulfate (however, rutile type and/or
(excluding those in which vanadium oxide is supported on a titanium oxide support with an anatase type crystal structure), and the content of titanium and vanadium is more than 96% and less than 99.9% in terms of their atomic percentages, and the content of titanium and vanadium is more than 96% and less than 99.9%, and The present invention relates to a nitrogen oxide reduction catalyst characterized in that the nitrogen oxide reduction catalyst is less than 4% and 0.1% or more. Conventionally, several examples are known as catalysts that reduce nitrogen oxides, such as NO and NO 2 , to nitrogen. For example, many catalysts are known, including copper-based catalysts such as copper oxide-alumina, copper oxide-silica, and copper-chromite, platinum group-based catalysts such as platinum-alumina, and rare earth catalysts such as cerium and lanthanum. According to the results of additional tests, these known catalyst systems each have drawbacks in terms of durability, activity, catalyst cost, etc. Regarding durability, most of them are poisoned by trace amounts of sulfur-containing substances such as sulfur dioxide gas contained in the flue. Therefore, at present, it is not possible to obtain a good catalyst for reducing and removing nitrogen oxides that is free from practical problems. Based on the above recognition, the present inventors have developed highly active reduction catalysts for nitrogen oxides, especially NO and NO 2 .
We conducted extensive research to find inexpensive and durable catalysts, and as a result, we discovered that a catalyst containing titanium and vanadium exhibits extremely good activity and is an inexpensive catalyst with excellent durability. It was completed. In the reduction and removal of nitrogen oxides using the catalyst of the present invention, the characteristics of the catalyst of the present invention are most clearly exhibited when ammonia is used as a reducing agent. In general, combustion exhaust gas from which nitrogen oxides are removed contains oxygen in an amount several tens of times the mole of nitrogen oxides, and it is well known that hydrogen is used as a reducing agent to reduce nitrogen oxides. When carbon monoxide, hydrocarbons, etc. are used, the reducing agent is first consumed by oxygen, so the amount of reducing agent required reaches several tens of moles or more than the amount required to reduce nitrogen oxides. On the other hand, it is known that when ammonia or hydrogen sulfide is used as a reducing agent, the loss of the reducing agent is extremely small. Furthermore, conventionally known catalysts containing platinum and copper have strong oxidizing activity against ammonia, and increasing the reaction temperature leads to the formation of nitrogen oxides from ammonia, resulting in a sharp decrease in the removal rate of nitrogen oxides. . For this reason, when nitrogen oxides are reduced and removed using ammonia using conventional catalysts, nitrogen oxides can only be effectively removed within a very narrow temperature range, so it is difficult to remove nitrogen oxides on an industrial scale. In order to implement this method, strict control of the reaction temperature is required, which is expected to make operation difficult. When nitrogen oxides are reduced and removed by ammonia using the catalyst of the present invention, the reaction temperature is 150 to 650.
The catalyst of the present invention has an epoch-making performance capable of removing nitrogen oxides with an almost complete removal rate in the temperature range of °C, and has extremely good durability. With the advent of the present invention, the removal of nitrogen oxides from flue gas using ammonia as a reducing agent has been provided as an industrially advantageous method. As stated above, the present invention is characterized by its catalyst, and the catalyst of the present invention contains (A) titanium oxide and (B) vanadium oxide and/or sulfate as catalyst components. (However, rutile type and/or
(excluding those in which vanadium oxide is supported on a titanium oxide support with an anatase type crystal structure), and the content of titanium and vanadium is more than 96% and less than 99.9% in terms of their atomic percentages, and the content of titanium and vanadium is more than 96% and less than 99.9%, and It is characterized by being less than 4% and 0.1% or more. The catalyst of the present invention has extremely high performance as described above, but it can be easily manufactured by conventional methods such as precipitation, coprecipitation, and kneading methods that are normally used in the manufacture of catalysts. . Further, as the final catalyst molding method, any molding method can be adopted depending on the purpose, such as a usual extrusion molding method, tablet molding method, or rolling granulation method.
Alternatively, a small amount of the catalyst may be supported on a porous carrier such as silica or alumina, or a carrier component such as silica, alumina, zirconia, or magnesia may be simultaneously mixed with a compound that can form the catalyst component of the present invention by calcining its water-soluble salt. Of course, it can also be mixed with the catalyst and used by co-precipitation, or by sufficiently kneading the hydroxide or oxide of the carrier component and the catalyst component-forming compound of the present invention. As the titanium raw material for preparing the catalyst of the present invention, various compounds that produce titanium oxide when heated (calcined), such as titanium hydroxide, titanic acid, and titanium sulfate, can be used. In addition, various titanium salts commonly used in catalyst preparation, such as titanium halides and titanium sulfate, are precipitated with aqueous ammonia, caustic alkali, alkali carbonate, etc. to form hydroxides, and then thermally decomposed to generate oxides. The method is also a preferred method. Preferable vanadium raw materials include vanadium oxide and ammonium metavanadate. Of course, vanadyl sulfate, vanadyl chloride, vanadium chloride, etc. can also be used. Here, an example of the preparation method will be given and its contents will be explained in more detail. Hydroxide precipitated by adding aqueous ammonia to a predetermined amount of titanium tetrachloride aqueous solution is thoroughly washed with distilled water. Next, a predetermined amount of an aqueous solution of ammonium metavanadate is added thereto, thoroughly mixed, and then extrusion molded, or directly dried and molded into tablets. Further, during molding, part or all of the catalyst mixture may be thermally decomposed in advance to form an oxide mixture, which is then extruded or tableted. The molded product obtained as described above is finally fired at a temperature of 300 to 700°C for about 1 to 10 hours and subjected to reaction. The above catalyst preparation method is just one example, and it goes without saying that catalysts with good performance can also be obtained using various other commonly used preparation methods. Nitrogen oxides treated with the catalyst of the present invention include:
NO, N 2 O 3 , NO 2 , N 2 O 4 and N 2 O 5 are included, but it is difficult to separate and analyze all of these compounds when they coexist, but for example, ammonia can be used as a reducing agent. In this case, the following reactions are considered to be typical. 3NO 2 +4NH 3 →7/2N 2 +6H 2 O 4NO+4NH 3 +O 2 →4N 2 +6H 2 O To carry out the nitrogen oxide removal reaction, the chemistry required to completely react ammonia with nitrogen oxides in the exhaust gas is required. The concentration range is about 1 to 10 times the stoichiometric ratio, preferably about 1 to 2 times the stoichiometric ratio. In addition, the obtained mixed gas passes over the catalyst at a space velocity (based on the sky column) of 2000 ~
100,000/hour, preferably in the range of 5,000 to 60,000/hour. The reaction temperature is in the range of 150-650°C, preferably 200-550°C. The pressure is not particularly limited, but can range from atmospheric pressure to about 10 kg/cm 2 G or more. As for the type of reactor in which the present invention is carried out, since the flow rate is large, various measures are required, but in principle, ordinary fixed bed, moving bed, fluidized bed, etc. reactors can be used. Next, the present invention will be specifically explained with reference to Examples. <Reference Example 1> Take 189.7 g of titanium tetrachloride [TiCl 4 ] and pour it into 1000 ml of ice water. Add 3N ammonia water to this to neutralize it. Separate the formed precipitate and wash thoroughly with distilled water. Take 189 g of the cake thus obtained (26.6 g as TiO 2 , equivalent to 1/3 mole), add 2.05 g of ammonium metavanadate dissolved in 200 ml of distilled water, and thoroughly knead the mixture to evaporate water. After drying the resulting cake, add about 25 ml of distilled water, wet-mill it for 30 minutes using a Laikai machine, and extrude it into a size of 6 mm in diameter. The obtained molded product is dried and then fired in a Matsufuru furnace at 500°C for 5 hours. The thus obtained catalyst has an atomic ratio of Ti:V=9.5:0.5. This was crushed to a size of 10 to 20 meshes and used in the following reaction. The reaction tube is a quartz reaction tube with an inner diameter of 16.5 mm, and has a quartz thermocouple insertion tube with an outer diameter of 5 mm inside, and the outside is heated with an electric furnace. The feed gas has the following composition: NH 3 700-800ppm NO 600-700ppm SO 2 482ppm O 2 4% H 2 O 7.14% N 2 balance Gas with this composition is passed at a space velocity (NTP equivalent sky column standard, hereinafter referred to as SV) of 50000 Hr -1 . The conversion rate of NO obtained by sequentially changing the reaction temperature (=
Reacted NO/supplied NO x 100) is shown in Table 1. Note that NO was measured using a NO/NO x analyzer (Model 951 manufactured by Toshiba Beckman). <Examples 1 to 3, Reference Examples 2 to 5> A reaction was carried out under the same conditions as in Reference Example 1 using a catalyst prepared in the same manner as in Reference Example 1 except that the composition ratio of titanium and vanadium was changed. The results obtained are listed in Table-1. <Comparative Example 1> This example is an example of a catalyst made only of titanium. Table 1 shows the results of a reaction using a titanium oxide catalyst prepared in the same manner as in Reference Example 1 except that vanadium was not used. <Comparative Example 2> This example is an example of a catalyst consisting only of vanadium. The powder obtained by heating and decomposing 58.5g of ammonium metavanadate at 330℃ for 1 hour in a Matsufuru furnace,
Add 1% by weight of polyethylene oxide (trade name: Alcotx E-30, manufactured by Meisei Chemical Industry Co., Ltd.), add a small amount of distilled water, wet mill, and extrude to a diameter of 6 mm. The obtained molded product was fired in a Matsufuru furnace at a firing temperature of 500°C for 5 hours. The obtained catalyst was pulverized into 10 to 20 meshes and reacted in the same manner as in Reference Example 1. The results are shown in Table 1.

【表】 <実施例 4〜8> 実施例−1と同様に調製し、焼成温度のみを変
化させ表−2の結果を得た。この際の反応条件は
下記の通りである。 NH3 600ppm SV=50000Tr-1 NO 520ppm SO2 500ppm SO3 550ppm O2 4% H2O 10% 尚SO3はSO2を空気酸化して導入した。 SO2酸化条件、日揮化学製N801(V2O5−ケア
ソウ土)触媒10〜20メツシユ、16.6ml、SV=
2300Hr-1、反応温度300℃
[Table] <Examples 4 to 8> The samples were prepared in the same manner as in Example 1, only the firing temperature was changed, and the results shown in Table 2 were obtained. The reaction conditions at this time are as follows. NH 3 600ppm SV=50000Tr -1 NO 520ppm SO 2 500ppm SO 3 550ppm O 2 4% H 2 O 10% Note that SO 3 was introduced by air oxidation of SO 2 . SO 2 oxidation conditions, JGC Chemical N801 (V 2 O 5 - care soil) catalyst 10-20 meshes, 16.6 ml, SV=
2300Hr -1 , reaction temperature 300℃

【表】 <実施例 9> 本実施例では処理ガスとして重油ボイラーから
の排ガスを用いて長時間の寿命試験を行なつた結
果について述べる。この場合、反応器の直径は
150mm触媒充填量は約5である。触媒は実施例
−1で示したのと同様の方法で調製し直径6mm、
長さ6mmに成型したものをそのまま使用した。重
油ボイラーからの排ガスにアンモニアを添加して
反応を行なつたがその組成は下記のとおりであ
る。 NH3 160〜220ppm NOx 150〜210ppm SO2 1000〜1300ppm SO3 30〜70ppm H2O 8〜11% O2 3〜6% CO2 11〜14% ばいじん量 60〜90mg/NM3 N2 残部 このガスをSV=10000h-1、反応温度300℃で
2000時間連続して流通させ得られた結果を表−3
に示す。
[Table] <Example 9> In this example, the results of a long-term life test using exhaust gas from a heavy oil boiler as the processing gas will be described. In this case, the diameter of the reactor is
The 150mm catalyst loading is approx. The catalyst was prepared in the same manner as shown in Example-1 and had a diameter of 6 mm.
A piece molded to a length of 6 mm was used as is. The reaction was carried out by adding ammonia to the exhaust gas from a heavy oil boiler, and its composition is as follows. NH 3 160-220ppm NO x 150-210ppm SO 2 1000-1300ppm SO 3 30-70ppm H 2 O 8-11% O 2 3-6% CO 2 11-14% Soot and dust 60-90mg/NM 3 N 2 balance This gas was mixed at SV=10000h -1 and reaction temperature 300℃.
Table 3 shows the results obtained after continuous circulation for 2000 hours.
Shown below.

【表】 <実施例 10> 本実施例においては、酸化チタンの原料として
メタチタン酸を用いた場合について述べる。含水
量約60%のメタチタン酸のスラリー100gとメタ
バナジン酸アンモン1.76gをとり、これに水100
c.c.を加えてよく混合する。このスラリー状のもの
を150℃で乾燥後、約1gのグラフアイトを添加
した後、直径6mm、高さ6mmの円柱状に打錠成型
する。この成型品を500℃で2時間焼成した後、
10〜20メツシユに粉砕して活性試験に供した。こ
の触媒は、チタンとバナジウムを原子比で9.7:
0.3の割合で含有する。この触媒を4c.c.用い、下
記組成の反応ガスをSV=59000h-1で流して、試
験した結果を表−4に示す。 NH3 300ppm NO 250ppm SO2 500ppm CO2 12% O2 3% H2O 15% N2 残部
[Table] <Example 10> In this example, a case will be described in which metatitanic acid is used as a raw material for titanium oxide. Take 100 g of metatitanic acid slurry with a water content of about 60% and 1.76 g of ammonium metavanadate, and add 100 g of water to this.
Add cc and mix well. After drying this slurry at 150° C., about 1 g of graphite is added thereto, and then it is compressed into a cylindrical tablet with a diameter of 6 mm and a height of 6 mm. After baking this molded product at 500℃ for 2 hours,
The mixture was ground into 10 to 20 mesh pieces and subjected to an activity test. This catalyst has an atomic ratio of titanium and vanadium of 9.7:
Contains at a ratio of 0.3. Table 4 shows the results of a test using 4 c.c. of this catalyst and flowing a reaction gas having the following composition at SV=59000 h -1 . NH 3 300ppm NO 250ppm SO 2 500ppm CO 2 12% O 2 3% H 2 O 15% N 2 balance

【表】 <実施例 11> 本実施例においては、バナジウムの原料として
硫酸バナジル〔VOSO4・6H2O〕を用いた場合に
ついて述べる。 四塩化チタン189.7gを氷水1000mlに溶解した
ものに3規定アンモニア水を加え中和する。生じ
た沈殿を別し充分に蒸留水で洗浄する。かくし
て得られたケーキ183g(TiO2として26.6g1/3
モル相当)をとり硫酸バナジル1.68gを100mlの
水に溶解したものを加え充分に混練しつつ水分を
蒸発させる。えられたケーキを乾燥後約25mlの蒸
留水を加え擂潰機にて30分湿式磨砕後直径6mmに
押出成型する。得られた成型品を乾燥後マツフル
炉にて400℃で5時間焼成する。かくして得られ
た触媒は金属原子比でTi:V=9.7:0.3の組成を
有し、しかも硫酸バナジルの空気中での熱分解温
度は400℃以上であるため触媒は硫酸根を有す
る。この触媒を10〜20メツシユの大きさに粉砕し
実施例−1と同様にして反応させ下記表−5の結
果を得た。
[Table] <Example 11> In this example, a case will be described in which vanadyl sulfate [VOSO 4 .6H 2 O] is used as a raw material for vanadium. Dissolve 189.7 g of titanium tetrachloride in 1000 ml of ice water and neutralize by adding 3N ammonia water. Separate the formed precipitate and wash thoroughly with distilled water. 183g of cake thus obtained (26.6g1/3 as TiO2 )
Add 1.68 g of vanadyl sulfate dissolved in 100 ml of water and thoroughly knead to evaporate water. After drying the resulting cake, add about 25 ml of distilled water, wet-mill it for 30 minutes in a mill, and then extrude it into a diameter of 6 mm. After drying, the obtained molded product is fired in a Matsufuru furnace at 400°C for 5 hours. The catalyst thus obtained has a metal atomic ratio of Ti:V=9.7:0.3, and since the thermal decomposition temperature of vanadyl sulfate in air is 400° C. or higher, the catalyst has sulfate groups. This catalyst was pulverized to a size of 10 to 20 meshes and reacted in the same manner as in Example 1 to obtain the results shown in Table 5 below.

【表】 <実施例 12> 実施例−1と同様にして下記表−6に示した組
成の触媒を調製し、これを10〜20メツシユの大き
さに粉砕したものを10mlとり、内部に外径5mmの
石英製熱電対挿入管を有する内径20mmの石英製反
応管に充填し、電気炉で加熱した。これに次の組
成のガスをSV=10000Hr-1で通じた。 SO2:540〜570ppm O2 :4% N2 :残部 反応生成物の分析は、「加熱食塩を用いる二酸
化イオウと硫酸ミスト(SO3)の分別定量法
〔Japan Analyst,23,356(1974)〕に従い定量
した。SO2の酸化反応率は次式により定義する。 SO2の酸化反応率(%) =(1−SO/SO+SO)×100 結果を次表−6に示す。
[Table] <Example 12> A catalyst having the composition shown in Table 6 below was prepared in the same manner as in Example 1, and 10 ml of this was ground into 10 to 20 meshes and poured into the interior. A quartz reaction tube with an inner diameter of 20 mm and a quartz thermocouple insertion tube with a diameter of 5 mm was filled with the mixture and heated in an electric furnace. A gas having the following composition was passed through this at SV = 10000 Hr -1 . SO 2 : 540-570 ppm O 2 : 4% N 2 : Residual The analysis of the reaction products is carried out using the method of "separate determination of sulfur dioxide and sulfuric acid mist (SO 3 ) using heated common salt" [Japan Analyst, 23 , 356 (1974)] ] The oxidation reaction rate of SO 2 is defined by the following formula: Oxidation reaction rate of SO 2 (%) = (1-SO 3 /SO 2 +SO 3 )×100 The results are shown in Table 6 below.

【表】 <実施例13,比較例3> チタンとバナジウムの組成比を下記表−7の通
りに変えた以外は実施例−1と同様にして下記表
−7に示す触媒(A)(実施例13)を調製した。 特公昭54−2912号公報の実施例5に従い、モノ
エタノールアミン2mlを水18mlに溶解し、これに
メタバナジン酸アンモニウム1.93gを加え撹拌し
て溶解させた。この液に600℃で焙焼したアナタ
ーゼ型酸化チタン粉末58.5gを加え撹拌しながら
約90℃で水分を蒸発し、更に水がなくなるまで
200℃で乾燥した。これを粉砕したあと約25mlの
蒸留水を加えライカイ機にて30分湿式磨砕後、直
径6mmの大きさに押出し成型する。得られた成型
品を乾燥後マツフル炉にて500℃で5時間焼成す
る。かくして得られた触媒は金属原子比でTi:
V=97.8:2.2〔TiO2:V2O2=97.5:2.5(重量
比)〕であつた。これを10〜20メツシユの大きさ
に粉砕し下記表−7に示す触媒(B)(比較例3)を
得た。 脱硝反応は、実施例1と同様に行つた。結果を
下記表−7に示す。
[Table] <Example 13, Comparative Example 3> Catalyst (A) shown in Table 7 below (implemented) was prepared in the same manner as Example 1 except that the composition ratio of titanium and vanadium was changed as shown in Table 7 below. Example 13) was prepared. According to Example 5 of Japanese Patent Publication No. 54-2912, 2 ml of monoethanolamine was dissolved in 18 ml of water, and 1.93 g of ammonium metavanadate was added thereto and dissolved by stirring. Add 58.5g of anatase-type titanium oxide powder roasted at 600℃ to this liquid and evaporate the water at about 90℃ while stirring, until the water disappears.
Dry at 200°C. After pulverizing this, add about 25 ml of distilled water, wet grinding in a Raikai machine for 30 minutes, and extrude into a size of 6 mm in diameter. The obtained molded product is dried and then fired in a Matsufuru furnace at 500°C for 5 hours. The catalyst thus obtained has a metal atomic ratio of Ti:
V=97.8:2.2 [ TiO2 : V2O2 =97.5:2.5 (weight ratio )]. This was pulverized to a size of 10 to 20 meshes to obtain catalyst (B) (Comparative Example 3) shown in Table 7 below. The denitrification reaction was carried out in the same manner as in Example 1. The results are shown in Table 7 below.

【表】 脱硝反応の速度は下記式(1)で表わされる。 k=1/tln1/1−x ……(1) 式中、 k:反応速度定数(sec-1) t:接触時間(反応温度基準)(sec) t=触媒容積()/反応ガス供給量(/sec) =3600/SV×273/273+T(T:反応
温度℃) x=NOx転化率/100 SV=空間速度(NTP換算空塔基準)(hr-1)で
ある。 上記表−7に示した触媒AおよびBを用いた場
合の反応速度定数をそれぞれkAおよびkBで示
し、また触媒AおよびBを用いて反応速度常数k
AおよびkBを得るのに要する触媒容積をそれぞれ
AおよびVBとする。 上記式(1)に従つてkAおよびkBを計算すると下
記表−7′に示すとおりとなり、VAおよびVBはそ
れぞれkAおよびkBの逆数となるから、これから
求められる触媒容積比(VB/VA)を表−7′に示
す。
[Table] The rate of denitrification reaction is expressed by the following formula (1). k=1/tln1/1-x...(1) In the formula, k: reaction rate constant (sec -1 ) t: contact time (based on reaction temperature) (sec) t=catalyst volume ()/reaction gas supply amount (/sec) = 3600/SV x 273/273 + T (T: reaction temperature °C) x = NOx conversion rate/100 SV = space velocity (NTP equivalent superficial column standard) (hr -1 ). The reaction rate constants when using catalysts A and B shown in Table 7 above are shown as k A and k B respectively, and the reaction rate constant k when using catalysts A and B
Let V A and V B be the catalyst volumes required to obtain A and k B , respectively. If k A and k B are calculated according to the above formula (1), they will be as shown in Table 7' below, and since V A and V B are the reciprocals of k A and k B , respectively, the catalyst volume ratio calculated from this (V B /V A ) is shown in Table 7'.

【表】 上記表−7′に示されているとおり、実施例13に
示す本発明の触媒Aは比較例3の触媒Bと比較す
ると反応速度が極めて大であり、この結果同一反
応速度を得るのに要する触媒量は触媒Bの場合に
は本発明の触媒Aの場合の約1.3倍となることが
明らかである。
[Table] As shown in Table 7' above, catalyst A of the present invention shown in Example 13 has an extremely high reaction rate compared to catalyst B of Comparative Example 3, and as a result, the same reaction rate can be obtained. It is clear that the amount of catalyst required for catalyst B is about 1.3 times that for catalyst A of the present invention.

Claims (1)

【特許請求の範囲】 1 窒素酸化物を含有する排ガスをアンモニアの
存在下で150〜650℃の範囲の温度に加熱して窒素
酸化物を還元する触媒であつて、該触媒は触媒成
分として (A) 酸化チタンおよび (B) バナジウムの酸化物および/又は硫酸塩 を含有するものであり(但し、ルチル型および/
又はアナターゼ型結晶構造の酸化チタン担体に酸
化バナジウムを担持させたものを除く)、且つチ
タンとバナジウムの含有量がそれらの原子百分率
で表わしてチタンが96%を越え99.9%以下であ
り、バナジウムが4%未満で0.1%以上であるこ
とを特徴とする窒素酸化物の還元用触媒。
[Claims] 1. A catalyst for reducing nitrogen oxides by heating exhaust gas containing nitrogen oxides to a temperature in the range of 150 to 650°C in the presence of ammonia, the catalyst comprising ( Contains A) titanium oxide and (B) vanadium oxide and/or sulfate (However, rutile type and/or
(excluding those in which vanadium oxide is supported on a titanium oxide support with an anatase type crystal structure), and the content of titanium and vanadium is more than 96% and less than 99.9% in terms of their atomic percentages, and the content of titanium and vanadium is more than 96% and less than 99.9%, and A catalyst for reducing nitrogen oxides, characterized in that the content is less than 4% and 0.1% or more.
JP49035246A 1973-12-12 1974-03-29 Expired JPS6243736B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP49035246A JPS6243736B2 (en) 1974-03-29 1974-03-29
US05/531,304 US4085193A (en) 1973-12-12 1974-12-10 Catalytic process for reducing nitrogen oxides to nitrogen
SE7415457A SE435813B (en) 1973-12-12 1974-12-10 PROCEDURE FOR REDUCING NITROGEN OXIDES TO NITROGEN USING CATALYST
GB53667/74A GB1495396A (en) 1973-12-12 1974-12-11 Process for reducing nitrogen oxides
CA215,717A CA1033543A (en) 1973-12-12 1974-12-11 Process for reducing nitrogen oxides to nitrogen and novel catalyst compositions useful therefor
IT7430484A IT1027634B (en) 1973-12-12 1974-12-12 PROCEDURE FOR REDUCING NITROGEN OXIDES AND CATALYTIC COMPOSITIONS TO NITROGEN FOR THIS PROCEDURE
DE2458888A DE2458888C3 (en) 1973-12-12 1974-12-12 Process for the reductive destruction of nitrogen oxides in exhaust gases
FR7440992A FR2254367B1 (en) 1973-12-12 1974-12-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49035246A JPS6243736B2 (en) 1974-03-29 1974-03-29

Publications (2)

Publication Number Publication Date
JPS50128680A JPS50128680A (en) 1975-10-09
JPS6243736B2 true JPS6243736B2 (en) 1987-09-16

Family

ID=12436465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49035246A Expired JPS6243736B2 (en) 1973-12-12 1974-03-29

Country Status (1)

Country Link
JP (1) JPS6243736B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2999957B1 (en) 2012-12-21 2015-02-27 Lab Sa PROCESS FOR MANUFACTURING A DENITRIFICATION CATALYST, AND CORRESPONDING DENITRIFICATION CATALYST, AND DENITRIFICATION METHOD USING SUCH A CATALYST
EP2942102A1 (en) 2014-05-05 2015-11-11 Lab Sa Method for manufacturing a denitrification catalyst, as well as a corresponding denitrification catalyst and a denitrification method using such a catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122473A (en) * 1973-03-26 1974-11-22
JPS5051966A (en) * 1973-09-10 1975-05-09

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49122473A (en) * 1973-03-26 1974-11-22
JPS5051966A (en) * 1973-09-10 1975-05-09

Also Published As

Publication number Publication date
JPS50128680A (en) 1975-10-09

Similar Documents

Publication Publication Date Title
EP0255121B1 (en) Process for removing nitrogen oxides from exhaust gases and catalyst
US4003978A (en) Method for treating ammonia-containing gases
CA2318734C (en) Catalysts for the selective oxidation of hydrogen sulfide to sulfur
US4081510A (en) Process for catalytically treating an exhaust gas containing ammonia gas and oxygen gas to reduce said ammonia gas to nitrogen
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
US4138469A (en) Process for catalytically treating exhaust gas containing NOx in the presence of ammonia gas
EP0208434B1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
CZ343796A3 (en) Catalyst for reducing amount of nitrogen oxides in flowing media and process for preparing thereof
US20090022642A1 (en) Treatment method for decomposing perfluorocompound, decomposing catalyst and treatment apparatus
JPS6211892B2 (en)
EP0292310B1 (en) Process for removing nitrogen oxides
US4350670A (en) Process for treating flue gas
JPS5820303B2 (en) Chitsusosankabutsunokangenyoushiyokubaisosebutsu
TW494012B (en) Catalyst for decomposition of organic harmful substance and method for decomposing organic halogen compound by using the same
US3976745A (en) Process for reducing nitrogen oxides to nitrogen
JPS6243736B2 (en)
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JPS6335298B2 (en)
JPS5824172B2 (en) Ammonia Osankabunkaisuruhouhou
JPS63147546A (en) Method for removing nitrogen oxide in exhaust gas
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JP5812788B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst, and method for treating nitrous oxide-containing gas
JPH0417091B2 (en)
JP2619470B2 (en) Catalyst for simultaneous removal of nitrogen oxides and carbon monoxide
JPS5824171B2 (en) Ammonia Sankabunkaihouhou