JPS6243491B2 - - Google Patents

Info

Publication number
JPS6243491B2
JPS6243491B2 JP53032389A JP3238978A JPS6243491B2 JP S6243491 B2 JPS6243491 B2 JP S6243491B2 JP 53032389 A JP53032389 A JP 53032389A JP 3238978 A JP3238978 A JP 3238978A JP S6243491 B2 JPS6243491 B2 JP S6243491B2
Authority
JP
Japan
Prior art keywords
freon
solvent
cleaning agent
cleaning
evaporation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53032389A
Other languages
Japanese (ja)
Other versions
JPS54125090A (en
Inventor
Katsuji Kamimura
Masami Ookubo
Kenichi Sato
Juichi Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EISHIN KAGAKU KK
Original Assignee
EISHIN KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EISHIN KAGAKU KK filed Critical EISHIN KAGAKU KK
Priority to JP3238978A priority Critical patent/JPS54125090A/en
Publication of JPS54125090A publication Critical patent/JPS54125090A/en
Publication of JPS6243491B2 publication Critical patent/JPS6243491B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Detergent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は浸透探傷法に用いる洗浄剤に関するも
のであり、浸透探傷検査における洗浄操作が正確
かつ能率的に実施でき、更に吸入毒性や引火性に
よる労働安全衛生上の問題を生ずることが極めて
少ない新規な洗浄剤の提供を目的としたものであ
る。 浸透探傷法は非破壊検査の代表的なもので、被
検査物の表面に開口した欠陥を検出する方法であ
り、その中で特に、大型部品や構造物の溶接部又
はスラブ等の探傷方法として、従来から溶剤除去
性染色浸透探傷法が広く実施されている。 ここでまず、溶剤除去性染色浸透探傷法の探傷
原理について説明すると、浸透液(可視染料を溶
解した浸透力の強い液体)を被探傷面上に塗布
し、表面開口欠陥部に十分浸透させ、次に洗浄剤
(浸透液と優れた相溶性を有し、かつ蒸発速度の
速い有機溶剤)をウエスやペーパータオル等に含
ませ、表面開口欠陥部に浸透した浸透液以外の余
剰浸透液を拭き取つた後に、現像剤(白色無機粉
末を有機溶剤に分散させたもの)を被探傷面に薄
く均一に塗布することにより、表面開口欠陥部に
残存する浸透液が毛管作用により吸い上げられ、
その結果、被探傷面の表面開口欠陥部は現像塗膜
上に拡大された着色指示模様として現出し、目視
による判別を可能とするものである。 溶剤除去性染色浸透探傷法は、以上説明したよ
うに、その操作が簡便であること及び浸透液、洗
浄剤、現像剤をそれぞれエアゾール化することに
より、その携帯又は取扱いが容易となるために、
浸透探傷法の内で現在最も普及された方法であ
る。 しかしながら、かかる溶剤除去性染色浸透探傷
法(以下、「浸透探傷法」と記す)に用いられて
いる洗浄剤には、次のような欠点がある。 まず第1に、該洗浄剤は洗浄操作の作業性を重
視する立場より、一般的にアセント、ベンジン、
ゴム揮発油、トリクロルエタン、トリクロルエチ
レン等の揮発性の低沸点有機溶剤が用いられてい
るので、特に密閉されたタンク内検査等にあつて
は、引火性や吸入毒性による労働安全衛生上の問
題が生じている。 第2に、該洗浄剤は浸透液との相溶性が一般的
に極めて高いので、余剰浸透液を拭き取る際、過
度の拭き取り操作(洗浄操作)により、欠陥部に
残存する浸透液をも拭き取る、いわゆる過洗浄に
なる危険性が高いために、探傷検査の信頼性が作
業員の熟練度によつて左右されやすい。 第3に、溶接ビードの凹凸部に入り込んだ余剰
浸透液を完全に拭き取ることは、上記したように
その近傍に存在する欠陥部を過洗浄としやすいの
で極めて難しく、後の現像処理によりかかる余剰
浸透液もまた指示模様、いわゆる擬似指示を呈す
るので、真正な欠陥指示模様との判別が極めて困
難となる。 以上説明した欠点は、浸透探傷法における洗浄
操作の作業性を重視する立場から、浸透液との相
溶性が高く、かつ蒸発速度の速い有機溶剤(引火
性が高く、吸入毒性の強い有機溶剤)を洗浄剤と
して選択していることに起因するものである。 したがつて、上記作業性を従来のものと同一に
維持しながら、浸透液との相溶性が低く、かつ引
火点が高く吸入毒性の極めて低い洗浄剤の出現が
当業界における課題となつていた。 本発明はかかる課題を解決するための新規な浸
透探傷用洗浄剤の提供を目的としてなされたもの
である。 すなわち本発明は、S―テトラクロルジフルオ
ルエタン(以下、「フロン112」と記す)又は
1,1,2―トリフルオル―1,2,2―トリク
ロルエタン(以下、「フロン113」と記す)又
はその混合溶媒を他の有機溶剤で希釈した混合溶
剤と、これに溶解した少なくとも一種類の防錆剤
よりなることを特徴とする浸透探傷用洗浄剤であ
り、しかも該洗浄剤はその蒸発速度がスポツトテ
ストで1分乃至3分となるに充分な濃度でフロン
112又はフロン113又はその混合溶媒が該洗
浄剤中に存在することを特徴とするものである。 ここでスポツトテストとは、ろ紙上に一定量の
溶剤を滴下し、一定条件下で該溶剤が完全に揮発
するに要する時間を測定するものであり、後述の
データ及び特許請求の範囲に記載したスポツトテ
ストの制限的実験条件としては、東洋ろ紙No.2、
直径12.5cmを500mlのビーカーにのせ、その上か
ら1mlメスピペツトで溶剤を5滴落とし、温度20
±1℃、湿度60±5%及び無風の状態で該溶剤が
完全に揮発するまでの時間を測定したものであ
る。 浸透探傷法における洗浄操作の作業性は、洗浄
剤の蒸発速度と密接な関係を有しているので、本
発明者等は洗浄剤の蒸発速度を簡便な方法で測定
し、その値と洗浄操作の作業性との関係を種々検
討した結果「通常の探傷検査においては、蒸発速
度がスポツトテストで1分乃至3分の洗浄剤を用
いれば、その洗浄操作は必要かつ十分に実施で
き、良好なる作業性を有する」という結論に到達
した。 すなわち、上記洗浄操作にスポツトテストで1
分以内の洗浄剤を用いた場合は、揮発性が強いた
め飛散量が多く不経済であり、また3分以上の洗
浄剤を用いた場合には、被検査物が乾燥するまで
徒らに時間が空費されるだけでなく、欠陥部に残
存する浸透液のしみ作用により、欠陥指示模様が
不明瞭かつ不正確なものとなるからである。 スポツトテストが1分乃至3分である溶剤はヘ
キサン、ヘプタン、イソオクタン、ゴム揮発油、
ベンジン、イソプロピルエーテル、酢酸メチル、
酢酸エチル、酢酸イソプロピル、アセトン、メチ
ルエチルケトン、トリクロルエチレン及びトリク
ロルエタン等多数あるが、これらは皆極めて強い
引火性又は吸入毒性を有し、洗浄剤として、これ
を単独で使用することは好ましくない。 一方、高沸点溶剤は一般的に引火点が高く、蒸
発速度が遅く、低沸点溶剤は引火点が低く、蒸発
速度が速いからこの両者を混合することによつ
て、引火点及び蒸発速度の調整ができることは周
知のことである。 そこで本発明者等は比較的高い沸点を有する溶
剤に低沸点溶剤を混合し、その蒸発速度の変化に
関しスポツトテストを行い第1図乃至第6図に示
すような結果を得た。 尚、図中横軸は混合溶剤の混合組成(重量%)
を、縦軸はスポツトテストの数値を、はフロン
112、はフロン113、はエチルエーテ
ル、はヘキサン、はアセトン、は塩化メチ
レンを示すものである。 この実験結果から炭化水素、塩化炭化水素、ア
ルコール、エーテル、ケトン及びエステル類の各
溶剤で蒸発速度がスポツトテストで3分以上の溶
剤に対しフロン113がエチルエーテル、ヘキサ
ン又はアセトンと同等で、フロン112が最も強
く、フロン112とフロン113の混合溶媒体が
これに対いで蒸発速度の速化作用を有しているこ
とが理解できる。 又、フロン112は第7図に示すように同類の
溶剤に対しては蒸発速度が遅い溶剤(高沸点溶
剤)ほど蒸発速度の速化作用が強く、更に第8図
に示すように、スポツトテストが1分以内の溶剤
に対しては、蒸発速度の遅化作用を呈する。 したがつて、汎用されている全ての有機溶剤の
中で、他の有機溶剤と混合し、その混合溶剤の蒸
発速度をスポツトテストで1分乃至3分となるよ
うに調整する調整作用は、フロン112が最とも
強いことが理解できる。 本発明はフロン112及びフロン113の上記
作用を利用したものである。 次にフロン112及びフロン113は共にエタ
ンの水素が全て塩素とフツ素で置換された分子構
造をもつているので、引火や爆発の危険がなく、
更にこれを可燃性溶剤と混合すると、その混合割
合に応じて、引火点を高めたり、引火点を無くす
効果を有している。 つまり可燃性溶剤にフロン112又はフロン1
13又はその混合溶媒を添加して行くと、引火点
は次第に上昇し、ある混合割合以上になると引火
点は無くなり(可燃性溶剤の沸点が燃焼点とな
る)、また一定の混合割合によりその混合溶剤を
共沸組成とするとフロン112又はフロン113
の難燃効果によつて引火性も燃焼性も無くするこ
とができる。 この関係を表―1及び表―2に示す。
The present invention relates to a cleaning agent used in penetrant testing, and is a novel cleaning agent that allows cleaning operations in penetrant testing to be carried out accurately and efficiently, and that causes extremely few occupational safety and health problems due to inhalation toxicity and flammability. The purpose of this product is to provide a cleansing agent. Penetrant testing is a typical type of non-destructive testing, and is a method for detecting defects that open on the surface of an object to be inspected. Among these, it is especially used as a method for detecting welds or slabs of large parts and structures. Conventionally, solvent-removable dye penetrant testing has been widely practiced. First, to explain the principle of the solvent-removable dye penetrant testing method, a penetrating liquid (a liquid with strong penetrating power containing a visible dye dissolved therein) is applied to the surface to be tested, and is allowed to sufficiently penetrate into the surface opening defects. Next, soak a cloth or paper towel in a cleaning agent (an organic solvent that has excellent compatibility with the penetrant and has a high evaporation rate) and wipe off any excess penetrant other than the penetrant that has penetrated into the surface opening defects. By applying a thin and uniform developer (white inorganic powder dispersed in an organic solvent) to the surface to be inspected, the penetrating liquid remaining in the surface opening defects is sucked up by capillary action.
As a result, the surface opening defect on the surface to be tested appears as an enlarged colored indicator pattern on the developed coating film, making it possible to visually identify the defect. As explained above, the solvent removable dye penetrant testing method is easy to operate, and the penetrant, cleaning agent, and developer are each made into an aerosol, making it easy to carry and handle.
This is currently the most popular method among penetrant testing methods. However, the cleaning agent used in such solvent-removable dye penetrant testing method (hereinafter referred to as "penetrant testing method") has the following drawbacks. First of all, the cleaning agents are generally Ascent, Benzene,
Since volatile low-boiling organic solvents such as rubber volatile oil, trichloroethane, trichlorethylene, etc. are used, there are occupational safety and health problems due to flammability and inhalation toxicity, especially when inspecting inside sealed tanks. is occurring. Second, since the cleaning agent generally has extremely high compatibility with the penetrating liquid, when wiping off the excess penetrating liquid, an excessive wiping operation (cleaning operation) will also wipe out the penetrating liquid remaining in the defective part. Since there is a high risk of so-called over-cleaning, the reliability of flaw detection tends to depend on the skill level of the operator. Thirdly, it is extremely difficult to completely wipe off the excess penetrating liquid that has entered the irregularities of the weld bead because, as mentioned above, it is easy to over-clean the defective parts that exist in the vicinity. Since the liquid also exhibits an indication pattern, a so-called pseudo-indication, it is extremely difficult to distinguish it from a genuine defect indication pattern. The drawbacks explained above are that organic solvents that are highly compatible with the penetrant and have a high evaporation rate (organic solvents that are highly flammable and highly inhalable) This is due to the fact that it is selected as a cleaning agent. Therefore, it has become a challenge in the industry to develop a cleaning agent that has low compatibility with the penetrant, has a high flash point, and has extremely low inhalation toxicity while maintaining the same workability as conventional cleaning agents. . The present invention has been made with the aim of providing a novel cleaning agent for penetrant flaw detection to solve these problems. That is, the present invention provides S-tetrachlorodifluoroethane (hereinafter referred to as "Freon 112"), 1,1,2-trifluoro-1,2,2-trichloroethane (hereinafter referred to as "Freon 113"), or A cleaning agent for penetrant testing characterized by comprising a mixed solvent obtained by diluting the mixed solvent with another organic solvent and at least one type of rust preventive agent dissolved in the mixed solvent, and furthermore, the cleaning agent has a high evaporation rate. The cleaning agent is characterized in that Freon 112, Freon 113, or a mixed solvent thereof is present in the cleaning agent at a concentration sufficient to give a cleaning time of 1 to 3 minutes in a spot test. Here, the spot test refers to dropping a certain amount of solvent onto a filter paper and measuring the time required for the solvent to completely volatilize under certain conditions. The restrictive experimental conditions for the spot test are Toyo Filter Paper No. 2,
Place a 12.5 cm diameter beaker on a 500 ml beaker, drop 5 drops of solvent onto it using a 1 ml volumetric pipette, and raise the temperature to 20.
The time taken for the solvent to completely volatilize was measured under conditions of ±1°C, humidity of 60±5%, and no wind. The workability of the cleaning operation in penetrant testing is closely related to the evaporation rate of the cleaning agent, so the inventors measured the evaporation rate of the cleaning agent using a simple method and calculated the value and the cleaning operation. As a result of various studies on the relationship between flaw detection and workability, it was found that, in normal flaw detection, if a cleaning agent with an evaporation rate of 1 minute to 3 minutes is used in a spot test, the cleaning operation can be carried out necessary and sufficiently, and a good result can be achieved. They reached the conclusion that the method has good workability. In other words, 1 spot test was performed during the above cleaning operation.
If a cleaning agent that lasts for less than 3 minutes is used, it is highly volatile and causes a large amount of scattering, which is uneconomical.If a cleaning agent that lasts for more than 3 minutes is used, it wastes time until the object to be inspected dries. Not only is this wasted time, but also the defect indication pattern becomes unclear and inaccurate due to the staining effect of the penetrating liquid remaining in the defect area. Solvents that can be spot tested for 1 to 3 minutes include hexane, heptane, isooctane, rubber volatile oil,
benzine, isopropyl ether, methyl acetate,
There are many such substances, such as ethyl acetate, isopropyl acetate, acetone, methyl ethyl ketone, trichloroethylene, and trichloroethane, but they all have extremely strong flammability or inhalation toxicity, and it is not preferable to use them alone as a cleaning agent. On the other hand, high boiling point solvents generally have a high flash point and slow evaporation rate, and low boiling point solvents have a low flash point and high evaporation rate, so by mixing the two, the flash point and evaporation rate can be adjusted. It is well known that this is possible. Therefore, the inventors of the present invention mixed a low boiling point solvent with a relatively high boiling point solvent and conducted a spot test to determine the change in the evaporation rate, and obtained the results shown in FIGS. 1 to 6. In addition, the horizontal axis in the figure is the mixed composition of the mixed solvent (weight%)
, the vertical axis indicates the spot test value, CFC 112, CFC 113, ethyl ether, hexane, acetone, and methylene chloride. The experimental results show that Freon 113 is equivalent to ethyl ether, hexane, or acetone for solvents whose evaporation rate is 3 minutes or more in a spot test for hydrocarbons, chlorinated hydrocarbons, alcohols, ethers, ketones, and esters. 112 is the strongest, and it can be seen that the mixed solvent of Freon 112 and Freon 113 has the effect of accelerating the evaporation rate. Furthermore, as shown in Figure 7, Freon 112 has a stronger effect on accelerating the evaporation rate of solvents (high boiling point solvents) that have a slower evaporation rate when compared to similar solvents, and as shown in Figure 8, the effect of accelerating the evaporation rate is stronger. For solvents whose evaporation rate is less than 1 minute, the evaporation rate slows down. Therefore, among all the organic solvents in general use, Freon has the ability to mix with other organic solvents and adjust the evaporation rate of the mixed solvent to 1 to 3 minutes in a spot test. It can be seen that 112 is the strongest. The present invention utilizes the above-mentioned effects of Freon 112 and Freon 113. Next, both Freon 112 and Freon 113 have a molecular structure in which all the hydrogen in ethane is replaced with chlorine and fluorine, so there is no danger of ignition or explosion.
Furthermore, when this is mixed with a flammable solvent, it has the effect of raising the flash point or eliminating the flash point, depending on the mixing ratio. In other words, Freon 112 or Freon 1 is used as a flammable solvent.
As 13 or a mixed solvent thereof is added, the flash point gradually rises, and when the mixing ratio exceeds a certain level, the flash point disappears (the boiling point of the flammable solvent becomes the combustion point), and at a certain mixing ratio, the flash point increases. If the solvent has an azeotropic composition, Freon 112 or Freon 113
Due to its flame retardant effect, flammability and combustibility can be eliminated. This relationship is shown in Table-1 and Table-2.

【表】【table】

【表】 このように可燃性溶剤であつても、フロン11
2又はフロン113又はその混合溶媒を適当量添
加することにより、その混合溶剤を不燃性とする
かまたは可燃性溶剤の引火点を引き上げることが
できる。 尚、ここにいう不燃性とは引火点が無いことで
あり、可燃性溶剤の沸点が燃焼点となる場合を含
むものと定義する。 したがつて、浸透探傷用洗浄剤に上記混合溶剤
を用いれば、該洗浄剤は不燃性となるか又は引火
点を高く維持できるので引火による労働安全上の
問題を生ずることは極めて少なく、更にフロン1
12又はフロン113又はその混合溶媒に混合す
る可燃性溶剤の物理的又は化学的性質に応じた
種々の特徴ある該洗浄剤の製造を可能にするとい
う効果を有する。 以上説明したようにフロン112又はフロン1
13又はその混合溶媒は、これと可燃性溶剤との
混合溶剤を不燃性とする効果を有するが、塩化炭
化水素溶剤もまた同一の効果を呈する。 しかしながら、塩化炭化水素溶剤は吸入毒性が
極めて強く、これを洗浄剤の主成分とすることは
前記した如く好ましくない。 因みに、フロン112、フロン113、塩化炭
化水素溶剤及びアルコール溶剤の最大許容濃度を
表―3に示す。
[Table] Even if it is a flammable solvent, Freon 11
By adding an appropriate amount of fluorocarbon 2 or Freon 113 or a mixed solvent thereof, the mixed solvent can be made nonflammable or the flash point of a flammable solvent can be raised. Incidentally, the term "non-flammable" here refers to the absence of a flash point, and is defined as including cases where the boiling point of the flammable solvent is the combustion point. Therefore, if the above-mentioned mixed solvent is used as a cleaning agent for penetrant flaw detection, the cleaning agent becomes non-flammable or maintains a high flash point, so it is extremely unlikely to cause labor safety problems due to ignition. 1
This has the effect of making it possible to produce cleaning agents with various characteristics depending on the physical or chemical properties of the flammable solvent mixed with Freon 12 or Freon 113 or a mixed solvent thereof. As explained above, Freon 112 or Freon 1
13 or a mixed solvent thereof has the effect of making a mixed solvent of this and a flammable solvent nonflammable, but a chlorinated hydrocarbon solvent also exhibits the same effect. However, chlorinated hydrocarbon solvents have extremely strong inhalation toxicity, and as mentioned above, it is not preferable to use them as the main component of cleaning agents. Incidentally, Table 3 shows the maximum allowable concentrations of Freon 112, Freon 113, chlorinated hydrocarbon solvents, and alcohol solvents.

【表】 フロン113はエチルアルコールと同等の最大
許容濃度値で示されているから、ほとんど吸入毒
性の無い溶剤と考えることができる。 フロン112は塩化メチレンと同等の最大許容
濃度値を示しているが、他の塩化炭化水素溶剤に
比較すれば、その吸入毒性は極めて低いものであ
り、また本発明に係る洗浄剤はフロン112を単
独で使用せず、他の有機溶剤と混合して使用する
ものであるから、フロン112を吸入毒性の低い
溶剤と混合すれば該洗浄剤は極めて毒性の低いも
のと評価されうる。 更にフロン112は第1図乃至第6図に示した
ように、他の有機溶剤と混合した場合の混合溶剤
の蒸発速度をスポツトテストで1分乃至3分とす
る調整作用が塩化メチレンと比較し全ての有機溶
剤に対し極めて強いという利点を有している。 次にフロン112及びフロン113の溶解性す
なわち浸透液との相溶性について説明する。 一般に溶剤の溶解性については、その溶解能力
を示す絶対的な単一尺度がないので、実際に除去
しようとするものに対し洗浄試験をその都度実施
するのが望ましい。 しかしながら、相対的な溶解能力を計る目安と
してカウリーブタノール値(K.B値)がよく用い
られている。この値は溶剤の溶解性を推定するた
めの経験的な方法であり、K.B値が大なる程溶解
力が大きいと考えられている。 そこで現在使用されている不燃性の浸透探傷用
洗浄剤の主成分をなす、塩化炭化水素溶剤とフロ
ン112及びフロン113のK.B値を表―4に示
す。
[Table] Since Freon 113 has been shown to have a maximum allowable concentration value equivalent to that of ethyl alcohol, it can be considered a solvent with almost no inhalation toxicity. Although Freon 112 has a maximum permissible concentration value equivalent to that of methylene chloride, its inhalation toxicity is extremely low compared to other chlorinated hydrocarbon solvents, and the cleaning agent according to the present invention has a maximum allowable concentration value equivalent to that of methylene chloride. Since Freon 112 is not used alone but is used in combination with other organic solvents, if Freon 112 is mixed with a solvent with low inhalation toxicity, the cleaning agent can be evaluated as having extremely low toxicity. Furthermore, as shown in Figures 1 to 6, Freon 112 has an adjustment effect that adjusts the evaporation rate of the mixed solvent to 1 to 3 minutes in spot tests when mixed with other organic solvents, compared to methylene chloride. It has the advantage of being extremely resistant to all organic solvents. Next, the solubility of Freon 112 and Freon 113, that is, their compatibility with the penetrating liquid will be explained. Generally speaking, there is no single absolute measure of the solubility of a solvent, so it is desirable to conduct a cleaning test each time the substance is to be removed. However, the cowributanol value (KB value) is often used as a measure of relative dissolution ability. This value is an empirical method for estimating the solubility of a solvent, and it is believed that the larger the KB value, the greater the dissolving power. Therefore, Table 4 shows the KB values of chlorinated hydrocarbon solvents, Freon 112, and Freon 113, which are the main components of nonflammable penetrant cleaning agents currently used.

【表】 表―4に示されているように、フロン112及
びフロン113のK.B値は塩化炭化水素溶剤に比
較しいずれも低く、その溶解性が低いことが理解
できる。 しかしながら、このK.B値はあくまでも溶解性
の目安を知るだけであり、浸透液との相溶性の高
低は個々の浸透液について実際に洗浄操作を実施
してみなければその正確なる結果を論ずることは
できない。 そこで、現在市販されている溶剤除去性染色浸
透液2種(A・B)と溶剤除去性蛍光浸透液Cの
各々を45度に傾斜させたサンドブラスト板(ステ
ンレス板に100メツシユサンドブラストしたも
の)上に2mlずつ滴下し、15分間放置した後、こ
れをゴム揮発油X、トリクロルエチレンY又は本
発明に係る洗浄剤Z中に浸漬し、自然光又はブラ
ツクライト下で上記浸透液の痕跡(残光)が消失
するまでの時間を測定した。その結果を表―5に
示す。
[Table] As shown in Table 4, the KB values of Freon 112 and Freon 113 are both lower than those of chlorinated hydrocarbon solvents, indicating that their solubility is low. However, this KB value is only a guide to solubility, and it is difficult to discuss the exact results of compatibility with the penetrant unless you actually perform the cleaning operation for each penetrant. Can not. Therefore, we decided to use a sandblasted board (100 mesh sandblasted on a stainless steel plate) with two currently commercially available solvent-removable dye penetrants (A and B) and solvent-removable fluorescent penetrant C at an angle of 45 degrees. After dropping 2 ml onto the surface and leaving it for 15 minutes, immerse it in rubber volatile oil ) was measured. The results are shown in Table-5.

【表】 この実験結果より、本発明に係る洗浄剤はA・
B・Cのどの浸透液に対しても、その相溶性はゴ
ム揮発油及びトリクロルエチレンより低いことが
理解できる。 フロン112及びフロン113は上記したよう
に浸透探傷用洗浄剤に関し種々の有益な効果を呈
するが、アルコール溶剤と混合した場合又は水分
が混入した場合には、長時間放置すると鉄、マグ
ネシウム及び亜鉛等の金属と反応し、保管容器を
腐食させるという欠点を有している。 そこで本発明者等はこの欠点を除去し、かつ洗
浄剤の蒸発速度をスポツトテストで1分乃至3分
に維持できるような防錆剤について種々検討を重
ねた結果、次の防錆剤が上記要請を満足するもの
であることを見出した。 その防錆剤は、ニトロメタン、ニトロエタン、
ニトロプロパン、ニトロベンゼン、エチレンジア
ミン、エチレンジアミンテトラ酢酸塩、トリエタ
ノールアミン、トリエチレンジアミン等である。 以下本発明を実施例にもとづき説明する。 <実施例> (実施例 1) フロン112 38%、フロン113 48%、エ
チルアルコール 13%、ニトロメタン 1%(ス
ポツトテスト 1分45秒) (実施例 2) フロン112 62%、塩化メチレン 37%、ニ
トロエタン 1%、(スポツトテスト 1分30
秒) (実施例 3) フロン112 34%、フロン113 35%、酢
酸Secブチル30%、ニトロメタン1%(スポツト
テスト 2分30秒) (実施例 4) フロン112 33%、フロン113 33%、ト
ルエン 33%、エチレンジアミン 1%(スポツ
トテスト 2分15秒) (実施例 5) フロン112 26%、フロン113 53%、メ
チルエチルケトン 20%、ニトロメタン 1%
(スポツトテスト 1分15秒) 上記混合割合(重量%)で本発明に係る洗浄剤
を製造し、これとトリクロルエチレンより成る従
来の洗浄剤(従来品)とを用いて欠陥の検出感度
の比較を行つた。 すなわち、突き合せ肉盛溶接部に市販の溶剤除
去性染色浸透液3種(芳香族炭化水素・植物油を
主成分とするもの〔A〕、塩化炭化水素を主成分
とするもの〔B〕、飽和脂肪酸・エステル・アル
コールを主成分とするもの〔C〕)を用い、各々
浸透処理を行つた後、本発明に係る洗浄剤又は従
来品をウエスに含ませ、余剰浸透液を完全に拭き
取り、自然乾燥後、現像処理を行い欠陥指示模様
の比較を行つた。 この実験を繰り返し行い次の結果を得た。 すなわち、欠陥指示模様は上記3種の浸透液の
種類には関係なく、洗浄処理に関係している。つ
まり該洗浄処理を各々熟練者が行つた場合には、
過洗浄による欠陥指示模様の消失及び擬似指示の
現出は、本発明に係る洗浄剤を用いた場合も、従
来品を用いた場合も比較的少なく、良好かつ同等
の検出感度を呈する。しかしながら該洗浄処理を
従来品を用い、初心者が行つた場合には、殆ど検
出不能な程多くの擬似指示及び過洗浄による欠陥
指示模様の消失があつた。一方、該洗浄処理を本
発明に係る洗浄剤を用い初心者が行つた場合に
は、擬似指示は比較的多く現出したが、過洗浄に
よる欠陥指示模様の消失は殆どなかつた。 以上の結果から、本発明に係る洗浄剤を用いて
洗浄処理を行えば、その探傷検査の信頼性は作業
員の熟練度によつて左右されることは極めて少な
いことが理解できる。 また同時に本発明に係る洗浄剤の浸透液との相
溶性は、A,B,Cの3種の浸透液に対しては同
等であり、かつその相溶性はトリクロルエチレン
に比較し各々低いことが理解できる。 以上説明したように本発明に係る洗浄剤は、当
業界の課題「作業性を従来のものと同一に維持し
ながら、浸透液との相溶性が低く、かつ引火点が
高く、吸入毒性が低い洗浄剤」を全て満足させる
ものであり、その実用上の効果は極めて大きいも
のである。
[Table] From this experimental result, the cleaning agent according to the present invention is A.
It can be seen that its compatibility with any of the penetrating liquids B and C is lower than that of rubber volatile oil and trichlorethylene. As mentioned above, Freon 112 and Freon 113 have various beneficial effects on cleaning agents for penetrant testing, but when mixed with an alcohol solvent or mixed with water, if left for a long time, iron, magnesium, zinc, etc. It has the disadvantage of reacting with other metals and corroding storage containers. Therefore, the inventors of the present invention have repeatedly studied various rust preventive agents that can eliminate this drawback and maintain the evaporation rate of the cleaning agent within 1 to 3 minutes in a spot test. It has been found that this meets the requirements. The rust inhibitors are nitromethane, nitroethane,
These include nitropropane, nitrobenzene, ethylenediamine, ethylenediaminetetraacetate, triethanolamine, and triethylenediamine. The present invention will be explained below based on examples. <Example> (Example 1) Freon 112 38%, Freon 113 48%, ethyl alcohol 13%, nitromethane 1% (spot test 1 minute 45 seconds) (Example 2) Freon 112 62%, methylene chloride 37%, Nitroethane 1%, (spot test 1 minute 30
(Example 3) Freon 112 34%, Freon 113 35%, Sec butyl acetate 30%, nitromethane 1% (Spot test 2 minutes 30 seconds) (Example 4) Freon 112 33%, Freon 113 33%, toluene 33%, ethylenediamine 1% (spot test 2 minutes 15 seconds) (Example 5) Freon 112 26%, Freon 113 53%, methyl ethyl ketone 20%, nitromethane 1%
(Spot test 1 minute 15 seconds) A cleaning agent according to the present invention was manufactured with the above mixing ratio (wt%), and the defect detection sensitivity was compared using this and a conventional cleaning agent (conventional product) made of trichlorethylene. I went there. That is, three types of commercially available solvent-removable dye penetrants were applied to the butt overlay welds (one containing aromatic hydrocarbons/vegetable oil as the main component [A], one containing chlorinated hydrocarbon as the main component [B], and saturated). After performing a penetration treatment using a detergent (C) whose main components are fatty acids, esters, and alcohol, soak a rag in the cleaning agent of the present invention or a conventional product, completely wipe off the excess penetrant, and clean it naturally. After drying, development was performed and defects indicating patterns were compared. This experiment was repeated and the following results were obtained. That is, the defect indicating pattern is not related to the types of the three types of penetrant liquids mentioned above, but is related to the cleaning process. In other words, if the cleaning process is carried out by a skilled person,
The disappearance of defective indication patterns and the appearance of false indications due to over-cleaning are relatively rare both when using the cleaning agent according to the present invention and when using the conventional product, and they exhibit good and equivalent detection sensitivity. However, when the cleaning process was carried out by a beginner using a conventional product, there were so many false indications and defective indication patterns disappeared due to over-cleaning that they were almost undetectable. On the other hand, when the cleaning process was performed by a beginner using the cleaning agent according to the present invention, a relatively large number of false indications appeared, but almost no defect indication pattern disappeared due to overcleaning. From the above results, it can be understood that if cleaning treatment is performed using the cleaning agent according to the present invention, the reliability of the flaw detection test is extremely unlikely to be influenced by the skill level of the operator. At the same time, the compatibility of the cleaning agent according to the present invention with the penetrating liquid is equivalent to the three types of penetrating liquids A, B, and C, and the compatibility is lower than that of trichlorethylene. It can be understood. As explained above, the cleaning agent according to the present invention solves the problems faced in the industry: ``While maintaining the same workability as conventional cleaning agents, it has low compatibility with penetrants, has a high flash point, and has low inhalation toxicity.'' It satisfies all the requirements of "cleaning agents," and its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は夫々蒸発速度の遅い溶剤
に、蒸発速度の速い溶剤を混合した混合溶剤の蒸
発速度曲線図、第7図は混合溶剤の蒸発速度の速
化作用を、第8図は逆に遅化作用を示す蒸発速度
曲線図である。 図中、はフロン112、はフロン113、
はエチルエーテル、はヘキサン、はアセト
ン、は塩化メチレンを示すものである。
Figures 1 to 6 are evaporation rate curves of mixed solvents in which a solvent with a slow evaporation rate is mixed with a solvent with a high evaporation rate, Figure 7 shows the effect of accelerating the evaporation rate of the mixed solvent, and Figure 8 is an evaporation rate curve diagram showing a conversely slowing effect. In the figure, indicates Freon 112, indicates Freon 113,
indicates ethyl ether, indicates hexane, indicates acetone, and indicates methylene chloride.

Claims (1)

【特許請求の範囲】 1 S―テトラクロルジフルオルエタン又は1,
1,2―トリフルオル―1,2,2―トリクロル
エタン又はその混合溶媒を他の有機溶剤で希釈し
た混合溶剤と、これに溶解した少なくとも一種類
の防錆剤よりなることを特徴とする浸透探傷用洗
浄剤。 2 前記洗浄剤中には、該洗浄剤の蒸発速度がス
ポツトテストで1分乃至3分となるに充分な濃度
で、S―テトラクロルジフルオルエタン又は1,
1,2―トリフルオル―1,2,2―トリクロル
エタン又はその混合溶媒が存在することを特徴と
する特許請求の範囲第1項記載の浸透探傷用洗浄
剤。
[Claims] 1 S-tetrachlorodifluoroethane or 1,
Penetrant flaw detection characterized by comprising a mixed solvent obtained by diluting 1,2-trifluoro-1,2,2-trichloroethane or a mixed solvent thereof with another organic solvent, and at least one type of rust inhibitor dissolved in this. cleaning agent. 2 The cleaning agent contains S-tetrachlorodifluoroethane or 1.
The cleaning agent for penetrant flaw detection according to claim 1, characterized in that 1,2-trifluoro-1,2,2-trichloroethane or a mixed solvent thereof is present.
JP3238978A 1978-03-23 1978-03-23 Detergent for penetrant test Granted JPS54125090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3238978A JPS54125090A (en) 1978-03-23 1978-03-23 Detergent for penetrant test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238978A JPS54125090A (en) 1978-03-23 1978-03-23 Detergent for penetrant test

Publications (2)

Publication Number Publication Date
JPS54125090A JPS54125090A (en) 1979-09-28
JPS6243491B2 true JPS6243491B2 (en) 1987-09-14

Family

ID=12357589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238978A Granted JPS54125090A (en) 1978-03-23 1978-03-23 Detergent for penetrant test

Country Status (1)

Country Link
JP (1) JPS54125090A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152188A (en) * 1988-12-02 1990-06-12 Ushio Inc Heating cooker
JPH0321031Y2 (en) * 1986-03-25 1991-05-08

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5958099A (en) * 1982-09-27 1984-04-03 ダイキン工業株式会社 Detergent composition
JPS59217800A (en) * 1983-03-23 1984-12-07 株式会社日立製作所 Detergent
JP2529606B2 (en) * 1989-12-01 1996-08-28 マークテック株式会社 Penetrant liquid, cleaning agent and developer used in the penetrant testing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046188A (en) * 1973-08-28 1975-04-24
JPS5168296A (en) * 1974-12-11 1976-06-12 Nippon Oils & Fats Co Ltd Shintotanshozaiyohomatsusenjoeki
JPS51128587A (en) * 1975-04-30 1976-11-09 Chobe Taguchi Dyeing permeance flaw detector with anti corrosion
JPS52146291A (en) * 1976-05-31 1977-12-05 Tokushu Toryo Kk Liquid penetrant testing
JPS539755A (en) * 1976-07-14 1978-01-28 Taisho Pharmaceut Co Ltd Preparation of pregnane type steroid-17 alpha-esters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046188A (en) * 1973-08-28 1975-04-24
JPS5168296A (en) * 1974-12-11 1976-06-12 Nippon Oils & Fats Co Ltd Shintotanshozaiyohomatsusenjoeki
JPS51128587A (en) * 1975-04-30 1976-11-09 Chobe Taguchi Dyeing permeance flaw detector with anti corrosion
JPS52146291A (en) * 1976-05-31 1977-12-05 Tokushu Toryo Kk Liquid penetrant testing
JPS539755A (en) * 1976-07-14 1978-01-28 Taisho Pharmaceut Co Ltd Preparation of pregnane type steroid-17 alpha-esters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0321031Y2 (en) * 1986-03-25 1991-05-08
JPH02152188A (en) * 1988-12-02 1990-06-12 Ushio Inc Heating cooker

Also Published As

Publication number Publication date
JPS54125090A (en) 1979-09-28

Similar Documents

Publication Publication Date Title
US6770614B2 (en) Cleaner for electronic parts and method for using the same
US5246503A (en) Aqueous based composition containing organic solvents for removing coatings
NO301406B1 (en) Extinguishing Mixture Concentrate
JPS6243491B2 (en)
US2871697A (en) Metal flaw detection liquid
US3715227A (en) Inspection penetrant development process employing fusible waxes
US4035641A (en) Liquid oxygen compatible biodegradable dye penetrant compositions and method of dye
JP5093574B2 (en) Penetration testing method
US3992319A (en) Inspection penetrant process using solvency-inhibited remover composition
US3415112A (en) Water-free penetrant inspection process and materials
US3912653A (en) Water-soluble inspection penetrant composition employing dimethyl naphthalene
US3425950A (en) Dye penetrant
US4186304A (en) Extender for dye penetrant composition
US3989949A (en) Liquid oxygen compatible biodegradable dye penetrant and method of dye
JPH01217248A (en) Solvent removing color contrast penetrant test and cleaning agent used therefor
Carruette et al. New additive for low viscosity of AFFF/AR concentrates—study of the potential fire performance
JP2529606B2 (en) Penetrant liquid, cleaning agent and developer used in the penetrant testing method
JPH04140651A (en) Method for penetration test and penetrant used for the method
CN111704967A (en) Nonflammable degreasing cleaning agent and application thereof
JP2607962B2 (en) Aerosol penetrant, aerosol cleaner and aerosol developer used in solvent removal test
US2839918A (en) Flaw detection
JPH0335618B2 (en)
JPS6239899B2 (en)
JPS59204746A (en) Osmotic solution and method for penetration test
US3931733A (en) Method and means of accelerating removal of background entrapments in the inspection penetrant process