JPS6243160B2 - - Google Patents

Info

Publication number
JPS6243160B2
JPS6243160B2 JP56042135A JP4213581A JPS6243160B2 JP S6243160 B2 JPS6243160 B2 JP S6243160B2 JP 56042135 A JP56042135 A JP 56042135A JP 4213581 A JP4213581 A JP 4213581A JP S6243160 B2 JPS6243160 B2 JP S6243160B2
Authority
JP
Japan
Prior art keywords
ray
crystal
monochromator
incident
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56042135A
Other languages
Japanese (ja)
Other versions
JPS57156600A (en
Inventor
Tetsuo Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Original Assignee
Rigaku Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd filed Critical Rigaku Denki Co Ltd
Priority to JP56042135A priority Critical patent/JPS57156600A/en
Publication of JPS57156600A publication Critical patent/JPS57156600A/en
Publication of JPS6243160B2 publication Critical patent/JPS6243160B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明はチヤンネルカツトモノクロメータの改
良さらに詳しく言えばモノクロメータの回転によ
り分光X線の位置が動しない改良されたX線モノ
クロメータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved channel cut monochromator, and more particularly to an improved X-ray monochromator in which the position of the spectral X-ray does not change due to rotation of the monochromator.

入射X線のなかから所要の任意の波長成分の単
色X線を取り出す目的でX線モノクロメータが用
いられている。X線モノクロメータとして通常単
結晶の平板が用いられ、第1図に示すように使用
する結晶の格子面間格をd、格子面に対する入射
X線のなす角をθとすると、単結晶板により分光
されるX線の波長λは λ=2dsinθ(ブラツグの式) (1) で与えられる。
An X-ray monochromator is used for the purpose of extracting monochromatic X-rays of any desired wavelength component from incident X-rays. A single crystal flat plate is normally used as an X-ray monochromator, and as shown in Figure 1, if the lattice spacing of the crystal used is d, and the angle formed by the incident X-ray with respect to the lattice plane is θ, then the single crystal plate The wavelength λ of the X-rays to be separated is given by λ=2dsinθ (Bragg's equation) (1).

従つて所要の波長のX線を得るためには、結晶
板の距回転により入射角θを調整してやればよ
い。しかし分光されたX線は入射X線の方向に対
し2θの角度の方向に放射され所要のX線の波長
を得るため入射角θを変化させるに従い分光X線
の放射角2θも変化し分光X線を利用する上で不
都合であつた。
Therefore, in order to obtain X-rays of the desired wavelength, the incident angle θ may be adjusted by angular rotation of the crystal plate. However, the spectroscopic X-rays are emitted in a direction at an angle of 2θ with respect to the direction of the incident It was inconvenient to use the line.

例えば、第2図に示すようにEXAFS
(Extended X−ray Absorption Fine
Stracture,X線吸収微細構造)の測定に利用す
る場合、X線源4からスリツト5を介してθ回転
板2上の結晶板1に入射角θで入射されるX線は
2θの角度で分光して、2θ回転板3上の適当な
厚さの試料7に照射し、透過X線強度をX線検出
器6で検出するとともに入射X線強度(試料を取
り去つて測定)を測定するもので、両者の強度よ
りX線吸収係数を求める、吸収端より波長を短か
い方へ連続的に変えていくと吸収曲線に微細構造
が現われEXAFSとよばれる。
For example, as shown in Figure 2, EXAFS
(Extended X-ray Absorption Fine
When used to measure X-ray absorption fine structure (X-ray absorption fine structure), X-rays incident from the X-ray source 4 through the slit 5 onto the crystal plate 1 on the θ rotating plate 2 at an incident angle θ are dispersed at an angle of 2θ. A sample 7 of an appropriate thickness on a 2θ rotary plate 3 is irradiated with the X-ray beam, and the transmitted X-ray intensity is detected by an X-ray detector 6, and the incident X-ray intensity (measured after removing the sample) is measured. Then, by calculating the X-ray absorption coefficient from the intensities of both, and continuously changing the wavelength to shorter than the absorption edge, a fine structure appears in the absorption curve, which is called EXAFS.

これはX線を吸収する原子をとりまく隣接原子
の影響によるもので、隣接原子の空間的配列に関
する情報を得ることができる。この場合結晶板を
θ回転させるに伴い2θの回転をする機構が必要
となり装置が複雑になる欠点があつた。さらに試
料を低温に保つ場合、高圧下に置く場合等々分析
条件により種々の付加装置を回転板の上に配置し
なければならない困難もあつた。
This is due to the influence of neighboring atoms surrounding the atom that absorbs X-rays, and information regarding the spatial arrangement of neighboring atoms can be obtained. In this case, as the crystal plate is rotated by θ, a mechanism for rotating the crystal plate by 2θ is required, resulting in a complicated apparatus. Furthermore, there was the difficulty of having to place various additional devices on the rotating plate depending on the analysis conditions, such as when keeping the sample at a low temperature or under high pressure.

これらの問題を解決するために第3図に示すよ
うなチヤンネルカツトモノクロメータが提案され
ている。これは1個の単結晶ブロツクから切り出
した平行な結晶板の間をくり返し反射させること
により入射X線の方向と選ばれるX線の方向が変
らないようにしたものである。このとき第3図、
第4図に示すよう厳密な平行性が要求されるため
に同一結晶ブロツクより作られる第1の結晶8a
と第2の結晶8bのチヤンネル(溝)の幅をD、
OP間の距離をr、入射角をθとすると、入射X
線は第1の結晶8aの格子面に対しθの角度で入
射すると、前記(1)式による波長成分λだけが入射
X線の方向に対し2θの方向で反射され第2の結
晶8bに入射し、第1および第2の結晶の格子面
は平行であるから、第2の結晶8bに対してもθ
の角度で入射し2θの方向に反射されるので2回
反射のX線は入射X線と平行に出射される。
In order to solve these problems, a channel cut monochromator as shown in FIG. 3 has been proposed. This is done by repeatedly reflecting between parallel crystal plates cut out from one single crystal block so that the direction of the incident X-ray and the direction of the selected X-ray do not change. At this time, Figure 3,
As shown in FIG. 4, the first crystal 8a is made from the same crystal block because strict parallelism is required.
and the width of the channel (groove) of the second crystal 8b is D,
If the distance between the OPs is r and the angle of incidence is θ, then the incident
When the ray is incident on the lattice plane of the first crystal 8a at an angle of θ, only the wavelength component λ according to equation (1) above is reflected in a direction 2θ with respect to the direction of the incident X-ray and is incident on the second crystal 8b. However, since the lattice planes of the first and second crystals are parallel, θ
Since the X-rays are incident at an angle of 2θ and reflected in the 2θ direction, the twice-reflected X-rays are emitted parallel to the incident X-rays.

ここで入射X線と分光X線の距離をHとすると
第4図で H=r sin2θ =D/sinθsin2θ=2Dcosθ (2) となりX線の波長を変えるためにモノクロメータ
をθ回転するとHが変わるすなわち分光されたX
線は平行移動するので前述のX線吸収分析に利用
するときなどに試料の位置を変えなければなら
ず、試料台の位置補正機構が必要となつてくる。
Here, if the distance between the incident X-ray and the spectral X-ray is H, then in Figure 4, H = r sin2θ = D/sinθsin2θ = 2D cosθ (2), and when the monochromator is rotated by θ to change the wavelength of the X-ray, H changes. In other words, the spectroscopic X
Since the line moves in parallel, the position of the sample must be changed when used for the above-mentioned X-ray absorption analysis, and a position correction mechanism for the sample stage is required.

本発明の目的はモノクロメータを回転しても分
光X線の位置が移動しない形状のX線モノクロメ
ータを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an X-ray monochromator in which the position of spectral X-rays does not move even when the monochromator is rotated.

前記目的を達成するために本発明によるX線モ
ノクロメータは互いに平行な結晶格子面を有する
第1および第2の結晶からなるモノクロメータに
おいて、前記第1の結晶格子面の1点を原点とし
該格子面に平行にx軸、垂直にy軸をとつたと
き、対向する前記第2の結晶表面が1/X2
1/y2=4/H2(ただし、Hは入射X線と分光
X線との距離)の式で与えられるようにしてあ
る。
In order to achieve the above object, an X-ray monochromator according to the present invention is a monochromator comprising first and second crystals having crystal lattice planes parallel to each other, in which a point on the first crystal lattice plane is set as the origin, and a point on the first crystal lattice plane is set as the origin. When the x-axis is parallel to the lattice plane and the y-axis is perpendicular to the lattice plane, the opposing second crystal surface is 1/X 2 +
It is given by the formula 1/y 2 =4/H 2 (where H is the distance between the incident X-ray and the spectral X-ray).

以下図面等を用いて本発明をさらに詳しく説明
する。
The present invention will be explained in more detail below using the drawings and the like.

第4図は本発明のX線モノクロメータの実施例
を示す斜視図、第5図は同平面図である。2つの
結晶は入射の順に従い第1の結晶9a、第2の結
晶9bと呼ぶことにする。第1および第2の結晶
の格子面は厳密な平行性が要求されるため第4図
に示すように同一ブロツクで作つてある。
FIG. 4 is a perspective view showing an embodiment of the X-ray monochromator of the present invention, and FIG. 5 is a plan view thereof. The two crystals will be called a first crystal 9a and a second crystal 9b according to the order of incidence. Since the lattice planes of the first and second crystals are required to be strictly parallel, they are made of the same block as shown in FIG.

第5図に示すように第1の結晶9aの表面に原
点Oを置き格子面と平行にx軸、格子面に垂直に
y軸をとる。
As shown in FIG. 5, the origin O is placed on the surface of the first crystal 9a, the x-axis is parallel to the lattice plane, and the y-axis is perpendicular to the lattice plane.

いまO点を中心に紙面に垂直な軸のまわりに結
晶全体をθ回転させたとき入射X線と分光X線と
の距離Hがθに関係なく一定値になる第2の結晶
9bの表面の形状をもとめる。
Now, when the entire crystal is rotated by θ around the axis perpendicular to the plane of the paper with point O as the center, the distance H between the incident X-ray and the spectral X-ray becomes a constant value regardless of θ. Search for shape.

点Oと点P(x,y)の距離をr,Hは一定と
すると r=H/sin2θ (3) P点の座標xおよびyは、 x=r cosθ =H/2sinθ・cosθ・cosθ=H/2sin
θ(4a) y=r sinθ =H/2sinθ・cosθ・sinθ=H/2cos
θ(4b) で与えられる。(4a)および(4b)式より求める
曲線の方程式はsin2θ+cos2θ=1であるから、 1/x+1/y=(2/H)(sin2θ+cos2θ
)=4/H(5) となり、第2の結晶9bの表面形状を(5)式に沿つ
た形にすることによりθ回転を行なつてもHの値
は変わらない。
Assuming that the distance r and H between point O and point P (x, y) are constant, r=H/sin2θ (3) The coordinates x and y of point P are: x=r cosθ = H/2sinθ・cosθ・cosθ= H/2sin
θ (4a) y=r sinθ =H/2sinθ・cosθ・sinθ=H/2cos
It is given by θ(4b). The equation of the curve obtained from equations (4a) and (4b) is sin 2 θ + cos 2 θ = 1, so 1/x 2 + 1/y 2 = (2/H) 2 (sin 2 θ + cos 2 θ
)=4/H 2 (5), and by making the surface shape of the second crystal 9b conform to equation (5), the value of H does not change even if the θ rotation is performed.

以上詳しく説明したように本発明によれば第2
の結晶表面の形状を適当な曲線にすることで入射
X線の波長を変えるために入射角θを変化させて
も分光X線の位置が移動しないので広い範囲の波
長にわたつて分析するX線吸収分析等に用いる装
置を簡素化することができる。
As explained in detail above, according to the present invention, the second
By making the shape of the crystal surface into an appropriate curve, the wavelength of the incident X-rays can be changed. Even if the incident angle θ is changed, the position of the spectroscopic X-rays does not change, so X-rays can be analyzed over a wide range of wavelengths. The apparatus used for absorption analysis etc. can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平板モノクロメータの原理図、第2図
は平板モノクロメータを用いたX線吸収分析装置
の略図、第3図はチヤンネルカツトモノクロメー
タの従来例を示した斜視図、第4図は同平面図、
第5図は本発明のX線モノクロメータの実施例を
示した斜視図、第6図は同平面図である。 1……モノクロメータ、2……θ回転板、3…
…2θ回転板、4……X線源、5……スリツト、
6……X線検出器、7……試料、8……チヤンネ
ルカツトモノクロメータ、9a……第1の結晶、
9b……第2の結晶。
Figure 1 is a diagram of the principle of a flat plate monochromator, Figure 2 is a schematic diagram of an X-ray absorption analyzer using a flat plate monochromator, Figure 3 is a perspective view of a conventional example of a channel cut monochromator, and Figure 4 is a diagram of the principle of a flat plate monochromator. The same plan view,
FIG. 5 is a perspective view showing an embodiment of the X-ray monochromator of the present invention, and FIG. 6 is a plan view thereof. 1... Monochromator, 2... θ rotary plate, 3...
...2θ rotating plate, 4...X-ray source, 5...slit,
6... X-ray detector, 7... Sample, 8... Channel cut monochromator, 9a... First crystal,
9b...Second crystal.

Claims (1)

【特許請求の範囲】 1 互いに平行な結晶格子面を有する第1および
第2の結晶からなるモノクロメータにおいて、前
記第1の結晶格子面の1点を原点とし該格子面に
平行にx軸、垂直にy軸をとつたとき、対向する
前記第2の結晶表面が下記の式で与えられること
を特徴とするX線モノクロメータ。 1/x+1/y=4/H (ただし、Hは入射X線と分光X線との距離)
[Scope of Claims] 1. In a monochromator consisting of first and second crystals having mutually parallel crystal lattice planes, an x-axis with one point on the first crystal lattice plane as the origin, and an x-axis parallel to the lattice plane; An X-ray monochromator characterized in that, when the y-axis is taken perpendicularly, the opposing second crystal surfaces are given by the following formula. 1/x 2 + 1/y 2 = 4/H 2 (H is the distance between the incident X-ray and the spectral X-ray)
JP56042135A 1981-03-20 1981-03-20 X-ray monochromater Granted JPS57156600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56042135A JPS57156600A (en) 1981-03-20 1981-03-20 X-ray monochromater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56042135A JPS57156600A (en) 1981-03-20 1981-03-20 X-ray monochromater

Publications (2)

Publication Number Publication Date
JPS57156600A JPS57156600A (en) 1982-09-27
JPS6243160B2 true JPS6243160B2 (en) 1987-09-11

Family

ID=12627492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56042135A Granted JPS57156600A (en) 1981-03-20 1981-03-20 X-ray monochromater

Country Status (1)

Country Link
JP (1) JPS57156600A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8204584A (en) * 1982-11-25 1984-06-18 Philips Nv ROENTGEN ANALYSIS DEVICE WITH A FOUR-CRYSTAL MONOCHROMATOR.

Also Published As

Publication number Publication date
JPS57156600A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
JP3706641B2 (en) X-ray analyzer
JPH11304728A (en) X-ray measuring device
EP0095207B1 (en) Double crystal x-ray spectrometer
US5790628A (en) X-ray spectroscope
JP2008008785A (en) X-ray spectrometric method and x-ray spectroscope
JP3483136B2 (en) X-ray diffractometer
JPS6243160B2 (en)
JP2005528594A (en) X-ray diffraction apparatus and method
JPH0763897A (en) X-ray spectroscope
JP2921597B2 (en) Total reflection spectrum measurement device
JP2952284B2 (en) X-ray optical system evaluation method
JPH11295245A (en) X-ray spectroscopic element and x-ray analysis apparatus using the same
JPH06109662A (en) X-ray analyzer
JPH04175644A (en) Lattice constant measuring device
JPH0395446A (en) Apparatus and method for measuring lattice constant
SU1141321A1 (en) X-ray spectrometer
JPH04194611A (en) Measuring method for film thickness by x-ray diffraction method
JP2616452B2 (en) X-ray diffractometer
JPH03289547A (en) Method and apparatus for measuring grating constant
JPH09318565A (en) X-ray analyzing method and apparatus therefor
JPH07113614B2 (en) Thin film sample X-ray diffractometer
JPH0239738B2 (en) MENHOISOKUTEIHOHO
JPH0795044B2 (en) X-ray diffractometer
JPS63225159A (en) Electromagnetic beam diffraction apparatus
JPS6259257B2 (en)