JPS624310A - Noise filter - Google Patents

Noise filter

Info

Publication number
JPS624310A
JPS624310A JP14378585A JP14378585A JPS624310A JP S624310 A JPS624310 A JP S624310A JP 14378585 A JP14378585 A JP 14378585A JP 14378585 A JP14378585 A JP 14378585A JP S624310 A JPS624310 A JP S624310A
Authority
JP
Japan
Prior art keywords
noise
lambdas
amorphous alloy
magnetic
temperature characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14378585A
Other languages
Japanese (ja)
Inventor
Takao Sawa
孝雄 沢
Michio Hasegawa
長谷川 迪雄
Koichiro Inomata
浩一郎 猪俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14378585A priority Critical patent/JPS624310A/en
Publication of JPS624310A publication Critical patent/JPS624310A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Abstract

PURPOSE:To increase the noise level reduction effect and improve temperature characteristics by employing Fe radical amorphous alloy with a saturated magnetostriction (lambdas) of 7X10<-6=lambdas<=15X10<-6> as a core material. CONSTITUTION:A core obtained by winding or laminating Fe radical amorphous alloy with a saturated magnetostriction (lambdas) of 7X10<-6=lambdas<=15X10<-6> is employed. The Fe radical amorphous alloy is expressed by the attached formula, wherein M represents at least one of Ti, V, Cr, Mn... and Y means at least one of Si, B, P, C and Ge. In order to obtain the range of lambdas of 7X10<-6=lambdas<=15X10<-6>, (a) which shows the rate of substitution of Fe by M is selected to be in the range of 0.04<=a<=0.14. With the constitution, the noise level reduction effect can be increased and temperature characteristics can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はFe基アモルファス合金を用いたノイズフィル
ターに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a noise filter using an Fe-based amorphous alloy.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電源電圧を電源ラインから機器に入力する際、所定の電
源電圧以外に雑音電圧が機器内部に侵入し、入力される
ことがある。また、電源内部、すなわちスイッチング電
源の場合、スイッチング周波数の高調波におけるノイズ
あるいは負荷であるパソコンの論理回路からMHz域で
のノイズが発生する。このような雑音除去(電源外から
の侵入を防ぐ場合と電源内のノイズを外部へ出さない場
合)のための電源ラインフィルタとしてはコイルが主に
用いられている。
When power supply voltage is input to a device from a power line, noise voltage other than the predetermined power supply voltage may enter the device and be input. Furthermore, in the case of a switching power supply, noise in the MHz range is generated from harmonics of the switching frequency or from the logic circuit of the personal computer, which is a load. Coils are mainly used as power line filters for such noise removal (to prevent intrusion from outside the power supply and to prevent noise within the power supply from being emitted to the outside).

第1図はチョークコイルを用いた電源ラインフィルタ回
路の一例である。チョークコイル1は往復電流による磁
束が相殺されるように磁心2に一対の巻線3m 、3b
を設けたもので、巻線JasJb間にコンデンサ4as
4bs4cが接続され、コンデンサ4b*4aの接続点
は接地されている。
FIG. 1 is an example of a power line filter circuit using a choke coil. The choke coil 1 has a pair of windings 3m and 3b around the magnetic core 2 so that the magnetic flux due to the reciprocating current is canceled out.
with a capacitor 4as between the windings JasJb
4bs4c is connected, and the connection point of capacitor 4b*4a is grounded.

この電源ラインフィルタをAClooVの電源ラインに
挿入した場合、雑音入力電圧と雑音出力電圧との関係は
第2図のようになる。ここで、雑音入力電圧が小さい範
囲では、雑音入力電圧に対する雑音出力電圧の大きさは
磁心の透磁率に関係し、透磁率が大きいほど雑音出力電
圧は小さくなる。また、雑音入力電圧が一定値を超える
と、電源ラインフィルタの磁心が飽和するために、雑音
出力電圧は急増して電源ラインフィルタとしての機能は
失なわれる。このため、電源ラインフィルタとして有効
に機能する電圧の範囲は磁心の飽和磁束密度によシはぼ
定まシ、飽和磁束密度が大きいほど、大きな雑音入力電
圧に対しても有効に作用する。更に、電源ラインフィル
タは低周波数領域だけでなく I MHz以上の高周波
領域でも有効に機能する必要があシ、このために透磁率
の周波数特性も良好であることが必要である。
When this power line filter is inserted into the AClooV power line, the relationship between the noise input voltage and the noise output voltage will be as shown in FIG. Here, in a range where the noise input voltage is small, the magnitude of the noise output voltage with respect to the noise input voltage is related to the magnetic permeability of the magnetic core, and the larger the magnetic permeability, the smaller the noise output voltage becomes. Furthermore, when the noise input voltage exceeds a certain value, the magnetic core of the power line filter becomes saturated, so the noise output voltage increases rapidly and the function as a power line filter is lost. For this reason, the voltage range that effectively functions as a power line filter is determined by the saturation magnetic flux density of the magnetic core, and the higher the saturation magnetic flux density, the more effectively the filter acts on a large noise input voltage. Furthermore, the power line filter needs to function effectively not only in the low frequency range but also in the high frequency range of I MHz or higher, and for this reason, it is necessary that the frequency characteristics of magnetic permeability are also good.

以上のように、電源ラインフィルタの性能は、これに用
いられる磁心の特性、すなわち透磁率、飽和磁束密度、
透磁率の周波数特性に依存し、磁心の透磁率、飽和磁束
密度がともに大きく、透磁率の周波数特性も良好なこと
が望ましい。
As mentioned above, the performance of a power line filter is determined by the characteristics of the magnetic core used in it, such as magnetic permeability, saturation magnetic flux density,
It depends on the frequency characteristics of magnetic permeability, and it is desirable that both the magnetic permeability and the saturation magnetic flux density of the magnetic core are large, and the frequency characteristics of magnetic permeability are also good.

従来、この磁心としてはフェライト磁心、ケイ素鋼磁心
等が用いられてきた。このうち、フェライト磁心は透磁
率が比較的大きく、透磁率の周波数特性も良好であるが
、飽和磁束密度は約4kGと小さく、大きな雑音入力電
圧に対しては有効に作用できない。また、フェライトは
透磁率の温度特性が悪く、温度特性の改善が望まれてい
た。一方、ケイ素鋼磁心は飽和磁束密度は大きいが、高
周波領域での透磁率は小さく、この領域では有効に作用
できない。
Conventionally, ferrite magnetic cores, silicon steel magnetic cores, etc. have been used as this magnetic core. Among these, the ferrite magnetic core has a relatively high magnetic permeability and a good frequency characteristic of magnetic permeability, but the saturation magnetic flux density is as small as about 4 kG, and it cannot work effectively against a large noise input voltage. In addition, ferrite has poor magnetic permeability temperature characteristics, and it has been desired to improve the temperature characteristics. On the other hand, although a silicon steel magnetic core has a high saturation magnetic flux density, its magnetic permeability in a high frequency region is low, and it cannot function effectively in this region.

更に、最近ではアモルファス合金からなル磁心が検討さ
れている。しかし、飽和磁束密度の大きいFs基アモル
ファス合金の場合、透磁率が大きくとれず、ノイズの低
減に対しては必ずしも十分でなかった。
Furthermore, recently, magnetic cores made of amorphous alloys have been studied. However, in the case of an Fs-based amorphous alloy with a high saturation magnetic flux density, it is not possible to obtain a large magnetic permeability, and this is not necessarily sufficient for noise reduction.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するため罠なされたものであシ
、ノイズレベルの低減に対して有効で、温度特性にも優
れたノイズフィルターを提供することを目的とするもの
である。
The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to provide a noise filter that is effective in reducing the noise level and has excellent temperature characteristics.

〔発明の概要〕[Summary of the invention]

本発明のノイズフィルターは・飽和磁歪(λ、)が7X
10””−6≦λS≦15X10−’のFe基アモルフ
ァス合金を磁心として用いたことを特徴とするものであ
る。
The noise filter of the present invention has a saturation magnetostriction (λ, ) of 7X
The present invention is characterized in that an Fe-based amorphous alloy of 10""-6≦λS≦15X10-' is used as the magnetic core.

本発明において、Fe基アモルファス合金の飽和磁歪を
上記範囲に限定したのは以下のような理由による。すな
わち、λ8が7X10”’未満では、飽和磁束密度、キ
ュリ一温度ともに低くなシ、ノイズフィルタとしての温
度特性が劣化しゃすく・また高電圧パルスノイズに対し
ても磁束が飽和しやすく有効でないためである。一方、
λ3が15X10  を超えると、飽和磁歪に起因する
磁気異方性のため高い透磁率が得られず、透磁率の周波
数特性も良好でないため、スイッチング周波数の高周波
ノイズの低減には有効でないためである。更に好ましい
飽和磁歪λ8の範囲は9×10 −6≦λS≦13X1
0  である。なお、λ8=7X10 .15X10 
 のFe基アモルファス合金の飽和磁束密度は、それぞ
れ約9 kG 、 12 kGである。
In the present invention, the saturation magnetostriction of the Fe-based amorphous alloy is limited to the above range for the following reasons. In other words, if λ8 is less than 7X10'', both the saturation magnetic flux density and Curie temperature will be low, and the temperature characteristics as a noise filter will deteriorate.Furthermore, the magnetic flux will easily become saturated against high voltage pulse noise, making it ineffective. On the other hand,
This is because when λ3 exceeds 15X10, high magnetic permeability cannot be obtained due to magnetic anisotropy caused by saturation magnetostriction, and the frequency characteristics of magnetic permeability are also not good, so it is not effective in reducing high frequency noise at the switching frequency. . A more preferable range of saturation magnetostriction λ8 is 9×10 −6≦λS≦13X1
It is 0. Note that λ8=7X10. 15X10
The saturation magnetic flux densities of the Fe-based amorphous alloys are approximately 9 kG and 12 kG, respectively.

Fe基アモルファス合金では、Feの一部を例えば、C
r+Nl+Nb等の遷移金属で置換すると、飽和磁歪が
低下することが知られている。こうしたFe基アモルフ
ァス合金は、一般に次式%式% (ただし、M : Ti 、V、Cr、Mn、Ni 、
Co、Cu、Zr、Nb。
In Fe-based amorphous alloys, a part of Fe is replaced with, for example, C
It is known that substitution with a transition metal such as r+Nl+Nb lowers the saturation magnetostriction. Such Fe-based amorphous alloys generally have the following formula % (where M: Ti, V, Cr, Mn, Ni,
Co, Cu, Zr, Nb.

Mo、Hf 、Ta、Rh、Pd、Ru、W、希土類元
素から選ばれる少なくとも1種、 Y : St、B、P、C,G・から選ばれる少なくと
も1種、) にて表わされる。特に、Mの元素としてはCr。
At least one member selected from Mo, Hf, Ta, Rh, Pd, Ru, W, and rare earth elements; Y: at least one member selected from St, B, P, C, and G. In particular, the element M is Cr.

Ni、Nb、Meが好ましい。Ni, Nb, and Me are preferred.

上記式において、Mは一般に非晶質形成能を高めるとと
もにアモルファス合金の飽和磁歪を下げる作用を有する
。特に、Nb、Mo、Ta、Wはアモルファス合金の結
晶化温度を高める作用をも有する。また、 Cr、Pd
、Rh、Niはアモルファス合金の耐食性を改善させる
作用を有する。そして、アモルファス合金の飽和磁歪と
して7 X 10−’≦λ1≦15 X 10−6の範
囲の値を得るためには、F・OMによる置換量を示す&
 tl−0,04≦a≦0.14とすることによ〕実現
できる。
In the above formula, M generally has the effect of increasing the ability to form an amorphous state and lowering the saturation magnetostriction of the amorphous alloy. In particular, Nb, Mo, Ta, and W also have the effect of increasing the crystallization temperature of the amorphous alloy. Also, Cr, Pd
, Rh, and Ni have the effect of improving the corrosion resistance of the amorphous alloy. In order to obtain a value in the range of 7 x 10-'≦λ1≦15 x 10-6 as the saturation magnetostriction of the amorphous alloy, the amount of substitution by F・OM is
This can be realized by setting tl-0,04≦a≦0.14.

一方、Yは合金を非晶質化させるために添加される元素
である。Yは熱安定性と脆化に強い点からSi、Bの組
合せが好ましい。Yの添加量を示すbは、合金を非晶質
化し得る範囲で限定され、12≦b≦30である。
On the other hand, Y is an element added to make the alloy amorphous. Y is preferably a combination of Si and B from the viewpoint of thermal stability and resistance to embrittlement. b, which indicates the amount of Y added, is limited within the range that can make the alloy amorphous, and is 12≦b≦30.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、単ロール法によシ、下記表に示す組成を有する実
施例1〜12及び比較例1〜4のアモルファス合金薄帯
を作製した。これらの薄帯の飽和磁歪をそれぞれ下記表
に示す。次に、これらの薄帯を用いてそれぞれ外径18
21111%内径12闘のトロイダルコアに成形した。
First, amorphous alloy ribbons of Examples 1 to 12 and Comparative Examples 1 to 4 having the compositions shown in the table below were produced by a single roll method. The saturation magnetostriction of these ribbons is shown in the table below. Next, using these thin strips, each has an outer diameter of 18
Molded into a toroidal core with a 21111% inner diameter of 12 mm.

得られたコアにそれぞれ最適熱処理を行なった後、ケー
スに入れ巻腺を施した。
After each core obtained was subjected to optimal heat treatment, it was placed in a case and rolled.

これらのコアをスイッチング周波数40 kHzのスイ
ッチング電源のラインフィルタのインダクタンス素子と
して用い、インダクタンス素子を用いない場合と比較し
てノイズレベルの低減効果を調べた。また、室温のノイ
ズレベルと120℃におけるノイズレベルとを相対比較
して温度特性を調べた。これらの結果を下記表に併記す
る。
These cores were used as an inductance element in a line filter of a switching power supply with a switching frequency of 40 kHz, and the noise level reduction effect was investigated compared to a case where no inductance element was used. Furthermore, the temperature characteristics were investigated by comparing the noise level at room temperature and the noise level at 120°C. These results are also listed in the table below.

上記表から明らかなように比較例1,2のコアは飽和磁
歪が15X10  を超えているため、ノイズレベルの
低減効果が小さい。また、比較例3.4のコアは飽和磁
歪が7 X 10”−6未満であるため、温度特性が悪
い。これに対して実施例1〜12のコアのように飽和磁
歪が適当な範囲でちるFs基アモルファス合金を用いた
場合には、ノイズレベルの低減効果及び温度特性のいず
れについても優れた値が得られている。
As is clear from the above table, the cores of Comparative Examples 1 and 2 have a saturation magnetostriction of more than 15×10 2 , so the noise level reduction effect is small. In addition, the core of Comparative Example 3.4 has a saturation magnetostriction of less than 7 x 10"-6, so the temperature characteristics are poor. On the other hand, the core of Comparative Example 3.4 has a saturation magnetostriction of less than 7 x 10"-6, so the temperature characteristics are poor. When the Fs-based amorphous alloy was used, excellent values were obtained for both the noise level reduction effect and the temperature characteristics.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、ノイズレベルの低減
効果が大きく、しかも温度特性にも優れたノイズフィル
ターを提供でき、その工業的価値は極めて大な°るもの
であ“る。
As described in detail above, according to the present invention, it is possible to provide a noise filter that has a large noise level reduction effect and also has excellent temperature characteristics, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチョークコイルを用いた電源ラインフィルタ回
路の構成図、第2図は同電源ラインフィルタ回路の雑音
入力電圧と雑音出力電圧との関係を示す特性図である。 第1図 第2図
FIG. 1 is a configuration diagram of a power line filter circuit using a choke coil, and FIG. 2 is a characteristic diagram showing the relationship between noise input voltage and noise output voltage of the power line filter circuit. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】  飽和磁歪(λ_S)が 7×10^−^6≦λ_S≦15×10^−^6のFe
基アモルファス合金を巻回あるいは積層して得られる磁
心を用いたことを特徴とするノイズフィルター。
[Claims] Fe with saturation magnetostriction (λ_S) of 7×10^-^6≦λ_S≦15×10^-^6
A noise filter characterized by using a magnetic core obtained by winding or laminating a base amorphous alloy.
JP14378585A 1985-06-29 1985-06-29 Noise filter Pending JPS624310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14378585A JPS624310A (en) 1985-06-29 1985-06-29 Noise filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14378585A JPS624310A (en) 1985-06-29 1985-06-29 Noise filter

Publications (1)

Publication Number Publication Date
JPS624310A true JPS624310A (en) 1987-01-10

Family

ID=15346941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14378585A Pending JPS624310A (en) 1985-06-29 1985-06-29 Noise filter

Country Status (1)

Country Link
JP (1) JPS624310A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181508A (en) * 1983-03-31 1984-10-16 Toshiba Corp Manufacture of noise filter core

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181508A (en) * 1983-03-31 1984-10-16 Toshiba Corp Manufacture of noise filter core

Similar Documents

Publication Publication Date Title
JPS5933183B2 (en) Low loss amorphous alloy
JPH07278764A (en) Nano-crystal alloy and its production and magnetic core using the same
US5635828A (en) Active filter circuit and power supply apparatus including same
JPH01290744A (en) Fe-base soft-magnetic alloy
JPS624310A (en) Noise filter
JPS62167851A (en) Low loss fe-base amorphous alloy
JPS6276607A (en) Magnetic core
JP2633813B2 (en) Manufacturing method of reactor for switching circuit
JP2790277B2 (en) Manufacturing method of ultra-thin amorphous alloy
JPS61295601A (en) Amorphous core for common mode choke
JPS5844704A (en) Inductor for power supply line filter
JPH0257683B2 (en)
JPS6010606A (en) Magnetic core for power source line filter
JPS62224003A (en) Noise filter
JPS60165705A (en) Wound magnetic core
RU2009248C1 (en) Magnetic core for use in weak magnetic fields and method for production thereof
JPS6276604A (en) Noise filter
JPS62133812A (en) Noise filter
JP2664113B2 (en) Method of manufacturing magnetic element for high frequency power supply
JPS6032313A (en) Magnetic core
JPH061733B2 (en) Reactor for switching circuit
JP2003249410A (en) Dust core and reactor using the same
JPH05291020A (en) Composite toroidal core for noise filter
JPS5985846A (en) Amorphous alloy with small loss and high frequency transformer, choke coil, noise filter, step-up transformer and saturable reactor using said alloy
JP2698577B2 (en) Manufacturing method of high permeability core