JPS6243087Y2 - - Google Patents

Info

Publication number
JPS6243087Y2
JPS6243087Y2 JP10423382U JP10423382U JPS6243087Y2 JP S6243087 Y2 JPS6243087 Y2 JP S6243087Y2 JP 10423382 U JP10423382 U JP 10423382U JP 10423382 U JP10423382 U JP 10423382U JP S6243087 Y2 JPS6243087 Y2 JP S6243087Y2
Authority
JP
Japan
Prior art keywords
cooling water
concrete
temperature
cooling
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10423382U
Other languages
Japanese (ja)
Other versions
JPS599056U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10423382U priority Critical patent/JPS599056U/en
Publication of JPS599056U publication Critical patent/JPS599056U/en
Application granted granted Critical
Publication of JPS6243087Y2 publication Critical patent/JPS6243087Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Description

【考案の詳細な説明】 本考案は高強度マスコンクリートをパイプクー
リングしながら施工する場合のクーリング制御装
置に関する。
[Detailed Description of the Invention] The present invention relates to a cooling control device for constructing high-strength mass concrete while cooling the pipe.

近時、マスコンクリートの施工に当つて、マス
コンクリートをパイプクーリングすることによつ
て、水和反応によるコンクリートの温度上昇を抑
制し、クラツク等の欠陥の発生を防止する施工法
(例えば特開昭59−10671)が開発されている。こ
のような施工法では、コンクリート打設後3〜5
日の短期材令におけるコンクリート温度の温度上
昇の監視、冷却量の調整が極めて重要である。高
強度コンクリートでは発熱量も多く、特に、高強
度プレストレスト・コンクリートでは、多数の
PCシースを配列するためにクーリングパイプの
配設が制約され、従つて精度の高い冷却効果を要
求する施工条件で施工されるので、コンクリート
の温度管理は一層重要である。
Recently, when constructing mass concrete, a construction method (for example, JP-A-Sho 59-10671) has been developed. With this construction method, 3 to 5
It is extremely important to monitor the rise in concrete temperature and adjust the amount of cooling during the short term. High-strength concrete also has a large calorific value, and in particular, high-strength prestressed concrete has a large number of
Temperature control of the concrete is even more important because the arrangement of the cooling pipes is restricted due to the arrangement of the PC sheaths, and therefore construction is performed under construction conditions that require highly accurate cooling effects.

従来、高強度マスコンクリートのパイプクーリ
ング施工に当つては、コンクリート内に配設され
た多数の温度測定点の温度を昼夜交替勤務で人が
監視し、冷却水量等の調節を行なつており、莫大
な人力と手間と費用とを要していた。
Conventionally, when performing pipe cooling work on high-strength mass concrete, people work day and night shifts to monitor the temperature at numerous temperature measurement points placed inside the concrete and adjust the amount of cooling water, etc. This required a huge amount of manpower, effort, and expense.

本考案は以上の実状に鑑み、コンクリートのパ
イプクーリングを自動的に制御する装置によつ
て、コンクリートの温度管理を省力化し、高精度
で確実に、低コストで行なうことを目的とする。
In view of the above-mentioned circumstances, the purpose of the present invention is to use a device that automatically controls concrete pipe cooling to save labor in controlling the temperature of concrete, and to perform it with high precision, reliably, and at low cost.

第1図、第2図は、パイプクーリングを模式的
に示すもので第2図は第1図のA−A矢視、第1
図は第2図のB−B矢視である。1はマスコンク
リート、2はクーリングパイプ、3は冷却水入
口、4は冷却水出口である。5,6は冷却水出入
口温度計、7はコンクリート内温度計で、コンク
リート内の最高温度を示すと予測される点に設け
られ、場合により、多数の点に設置される。8は
制御器、9は冷却水量調整弁、10は冷却水閉止
装置、11は冷却水閉止弁である。
Figures 1 and 2 schematically show pipe cooling.
The figure is taken along the line BB in FIG. 1 is mass concrete, 2 is a cooling pipe, 3 is a cooling water inlet, and 4 is a cooling water outlet. 5 and 6 are cooling water inlet/outlet thermometers, and 7 is an in-concrete thermometer, which are installed at the point predicted to show the highest temperature in the concrete, and depending on the case, installed at a large number of points. 8 is a controller, 9 is a cooling water amount adjustment valve, 10 is a cooling water shutoff device, and 11 is a cooling water shutoff valve.

本考案は高強度マスコンクリート躯体内に、こ
のマスコンクリートを打設した後の躯体内の水和
反応熱を持去るための冷却水管を配し、この冷却
水管の一端に冷却水入口を設け、他端に冷却水出
口を設けたパイプクーリングシステムに適用され
るものであつて、冷却水の出入口温度およびコン
クリート躯体内温度をそれぞれ検知するセンサー
5,6,7と、冷却水量調整弁9および冷却水閉
止弁11と、前記冷却水出入口温度差が一定とな
るように冷却水量調整弁9を調節する制御器8
と、前記コンクリート躯体内温度が最高温度より
一定値降下したとき冷却水閉止弁11を閉止する
閉止装置10とによつて構成される。
In this invention, a cooling water pipe is arranged inside a high-strength mass concrete structure to remove the heat of hydration reaction inside the structure after the mass concrete is cast, and a cooling water inlet is provided at one end of this cooling water pipe. It is applied to a pipe cooling system with a cooling water outlet provided at the other end, and includes sensors 5, 6, and 7 that respectively detect the temperature at the entrance and exit of the cooling water and the temperature inside the concrete structure, the cooling water amount adjustment valve 9, and the cooling water. A controller 8 that adjusts the water shutoff valve 11 and the cooling water amount adjustment valve 9 so that the temperature difference between the cooling water inlet and outlet is constant.
and a closing device 10 that closes the cooling water shutoff valve 11 when the temperature inside the concrete frame drops by a certain value from the maximum temperature.

第3図は、コンクリートの温度上昇曲線を例示
したものである。横軸にコンクリートの材令
(日)をとり、縦軸は温度上昇を示す。aは断熱
温度上昇曲線、bはパイプクーリングによつて冷
却したときのコンクリートの温度上昇曲線でb曲
線の最高温度Tmaxは、マスコンクリートにクラ
ツク等の欠陥を発生させない限度以下に予め計算
によつて定められている。
FIG. 3 shows an example of the temperature rise curve of concrete. The horizontal axis shows the age of concrete (in days), and the vertical axis shows the temperature rise. a is the adiabatic temperature rise curve, b is the temperature rise curve of concrete when cooled by pipe cooling, and the maximum temperature Tmax of curve b is calculated in advance to be below the limit that does not cause defects such as cracks in the mass concrete. It is determined.

この場合に、マスコンクリート躯体内に配設す
る冷却水管の大きさ、配置間隔、冷却水量等は、
マスコンクリートの打設大きさ、セメントの種
類、コンクリートの配合、冷却水の温度、外気温
度などに応じて設計によつて定められる(例えば
前記特開昭59−10671)。
In this case, the size, arrangement interval, amount of cooling water, etc. of the cooling water pipes installed inside the mass concrete structure are as follows:
It is determined by design depending on the size of mass concrete to be cast, the type of cement, the concrete composition, the temperature of cooling water, the outside air temperature, etc. (for example, Japanese Patent Laid-Open No. 10671/1989).

第4図は、コンクリートの発熱量、冷却水持去
熱量、残留熱量を例示し、縦軸は、コンクリート
単位熱容量当りの熱量を示す。第3図のa曲線を
b曲線に抑えるために冷却水が持去るべき熱量
は、第4図において、コンクリートの発熱量cに
対して、持去熱量e(ハツチング部)で示され
る。
FIG. 4 illustrates the calorific value of concrete, the amount of heat removed by cooling water, and the amount of residual heat, and the vertical axis shows the amount of heat per unit heat capacity of concrete. The amount of heat that the cooling water should remove in order to keep the curve a in FIG. 3 to the curve b is shown in FIG. 4 as the amount of heat e removed (hatched portion) with respect to the calorific value c of the concrete.

第4図から明らかなように、パイプクーリング
開始直後に冷却水は大量の熱を持ち去る必要があ
り、冷却水温度とコンクリート温度との温度差が
小さいので、大量の冷却水を要する。その水量
は、冷却水出入口温度差によつて調整するのがこ
の場合最も合理的である。
As is clear from FIG. 4, immediately after pipe cooling starts, the cooling water needs to carry away a large amount of heat, and since the temperature difference between the cooling water temperature and the concrete temperature is small, a large amount of cooling water is required. In this case, it is most rational to adjust the amount of water based on the temperature difference between the cooling water inlet and outlet.

材令の経過と共にコンクリート温度が上昇し、
コンクリート温度と冷却水温度との温度差が大き
くなつてくるが、一方発熱量も持去熱量も減少
し、ついに第3図のb曲線が最大値Tmaxに達
し、事後コンクリート温度は降下する。第3図の
b曲線のTmaxよりΔΤだけ温度降下すれば冷却
水を停止してよい。第2図の冷却水閉止装置10
は、コンクリート躯体内の温度センサー7の最高
温度Tmaxを記憶し、ΔΤの温度降下があつたと
き冷却水閉止弁11を閉止する。
As the age of the concrete progresses, the concrete temperature increases,
The temperature difference between the concrete temperature and the cooling water temperature becomes larger, but on the other hand, the amount of heat generated and the amount of removed heat decrease, and finally the b curve in Fig. 3 reaches the maximum value Tmax, and the subsequent concrete temperature decreases. The cooling water may be stopped if the temperature drops by ΔT from Tmax of curve b in FIG. 3. Cooling water shutoff device 10 in Fig. 2
stores the maximum temperature Tmax of the temperature sensor 7 inside the concrete frame, and closes the cooling water shutoff valve 11 when the temperature drops by ΔT.

制御器8、閉止装置10、冷却水量調整弁9、
閉止弁11は、公知の装置を組み合わせて用いる
ことができ、例えば、電子式、電気式、油圧式制
御装置や電動、電磁動、油圧動、圧気動の弁類の
何れを用いてもよい。また、制御器8と閉止装置
10を一体化し、さらに指示計や記録計を組み込
むことも任意であり、冷却水量調整弁9と閉止弁
11とを1個で兼用することももちろん可能であ
る。また、冷却水を冷却塔などを用いて冷却する
場合、それらの冷却設備と本考案の制御装置とを
組み合わせることもできる。
controller 8, closing device 10, cooling water amount adjustment valve 9,
The shutoff valve 11 may be a combination of known devices, and may be, for example, an electronic, electric, or hydraulic control device, or an electric, electromagnetic, hydraulic, or pneumatic valve. Further, it is optional to integrate the controller 8 and the closing device 10 and further incorporate an indicator and a recorder, and it is of course also possible to use one unit as the cooling water amount adjustment valve 9 and the closing valve 11. Furthermore, when cooling water is cooled using a cooling tower or the like, such cooling equipment can be combined with the control device of the present invention.

冷却水出入口温度差およびコンクリート内温度
降下ΔΤは、それぞれコンクリート構造物に応じ
設計によつて定められる。
The cooling water inlet/outlet temperature difference and the concrete temperature drop ΔT are each determined by design depending on the concrete structure.

本考案により、高強度マスコンクリートのパイ
プクーリングの管理を自動的に行なうことがで
き、人件費が低減し精度および確実性が向上し、
安価容易に所望マスコンクリートの施工ができる
ようになつた。
With this invention, pipe cooling of high-strength mass concrete can be automatically managed, reducing labor costs and improving precision and reliability.
It has become possible to construct desired mass concrete at low cost and easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパイプクーリングを行なう高強度マス
コンクリートの部分断面図、第2図は本考案の実
施例の系統図で、第1図のA−A矢視を併記した
もの、第3図はコンクリートの温度上昇曲線を例
示する図表、第4図はコンクリートの発熱量と冷
却量を例示する図表である。 1……マスコンクリート、2……クーリングパ
イプ、3……冷却水入口、4……冷却水出口、
5,6,7……温度センサー、8……制御器、9
……冷却水量調整弁、10……閉止装置、11…
…閉止弁、a……断熱温度上昇曲線、b……パイ
プクーリングしたコンクリートの温度上昇曲線、
c……発熱量、d……残留熱量、e……冷却水持
去熱量。
Figure 1 is a partial sectional view of high-strength mass concrete that performs pipe cooling, Figure 2 is a system diagram of an embodiment of the present invention, along with arrows A-A in Figure 1, and Figure 3 is a concrete Figure 4 is a diagram illustrating the temperature rise curve of concrete. 1...Mass concrete, 2...Cooling pipe, 3...Cooling water inlet, 4...Cooling water outlet,
5, 6, 7...Temperature sensor, 8...Controller, 9
...Cooling water amount adjustment valve, 10...Closing device, 11...
...Shutoff valve, a...Adiabatic temperature rise curve, b...Temperature rise curve of pipe-cooled concrete,
c...Calorific value, d...Residual heat amount, e...Cooling water removal heat amount.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 高強度マスコンクリート躯体内に、該コンクリ
ート打設後の水和反応熱を持去る冷却水管を配設
し、該冷却水管の一端に冷却水入口を設け他端に
冷却水出口を設けたパイプクーリングシステムに
おいて、冷却水の出入口温度およびコンクリート
躯体内温度をそれぞれ検知するセンサーと、冷却
水量調整弁および冷却水閉止弁と、前記冷却水出
入口温度差が一定となるように前記冷却水量調整
弁を調節する制御器と、前記コンクリート躯体内
温度が最高温度より一定値降下したとき前記冷却
水閉止弁を閉止する閉止装置とを備えたことを特
徴とする高強度マスコンクリートのパイプクーリ
ング制御装置。
A pipe cooling system in which a cooling water pipe is installed inside a high-strength mass concrete structure to remove the heat of hydration reaction after the concrete is placed, and a cooling water inlet is provided at one end of the cooling water pipe and a cooling water outlet is provided at the other end. The system includes a sensor that detects the temperature at the entrance and exit of the cooling water and the temperature inside the concrete structure, a cooling water volume adjustment valve, a cooling water shutoff valve, and a cooling water volume adjustment valve that adjusts the cooling water volume adjustment valve so that the temperature difference between the cooling water entrance and exit is constant. A pipe cooling control device for high-strength mass concrete, comprising: a controller for controlling the cooling water; and a closing device for closing the cooling water shutoff valve when the temperature inside the concrete frame drops by a certain value from the maximum temperature.
JP10423382U 1982-07-09 1982-07-09 Pipe cooling control device for high-strength mass concrete Granted JPS599056U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10423382U JPS599056U (en) 1982-07-09 1982-07-09 Pipe cooling control device for high-strength mass concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10423382U JPS599056U (en) 1982-07-09 1982-07-09 Pipe cooling control device for high-strength mass concrete

Publications (2)

Publication Number Publication Date
JPS599056U JPS599056U (en) 1984-01-20
JPS6243087Y2 true JPS6243087Y2 (en) 1987-11-07

Family

ID=30244831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10423382U Granted JPS599056U (en) 1982-07-09 1982-07-09 Pipe cooling control device for high-strength mass concrete

Country Status (1)

Country Link
JP (1) JPS599056U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005716A (en) * 2012-05-28 2014-01-16 Hazama Ando Corp Pipe cooling system, and pipe cooling method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141128A (en) * 1997-11-06 1999-05-25 Shimizu Corp Cracking prevention device of concrete structure
JP4601877B2 (en) * 2001-08-21 2010-12-22 株式会社熊谷組 Analysis method of concrete cooling effect by pipe cooling
JP6022826B2 (en) * 2012-06-30 2016-11-09 株式会社安藤・間 Pipe cooling system and pipe cooling method
JP6473721B2 (en) * 2016-08-24 2019-02-20 みらい建設工業株式会社 Concrete crack control method
JP6911260B2 (en) * 2017-04-03 2021-07-28 株式会社安藤・間 Concrete partial cooling method and circulation cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005716A (en) * 2012-05-28 2014-01-16 Hazama Ando Corp Pipe cooling system, and pipe cooling method

Also Published As

Publication number Publication date
JPS599056U (en) 1984-01-20

Similar Documents

Publication Publication Date Title
CN105424494B (en) Concrete water flowing cools down overall process experimental rig and method
JP6043510B2 (en) Concrete curing management method based on thermal stress analysis
CN105352876A (en) Real environment-based concrete cracking whole process test apparatus and method
CN110056189B (en) Method for monitoring and controlling large-volume concrete construction by using Internet of things
EP0091930A1 (en) Method and device for controlling the curing rate of concrete.
CN102720364B (en) Automatic temperature control process for large-size concrete construction
JPS6243087Y2 (en)
CN205580953U (en) Concrete cracking overall process emulation testing machine
CN108951723B (en) Indoor realization method for real restraint degree of large-volume concrete structure
CN109782825B (en) Concrete member crack control method
CN113885619B (en) Temperature stress control method and system for ultra-large-volume concrete
CN110907488A (en) Concrete freezing degree detection device and detection method thereof
CN113146819A (en) Intelligent concrete cracking control system
CN112727127A (en) Large-volume fiber concrete crack prevention and control system and method
JP2937793B2 (en) Insulation temperature rise test equipment for concrete
CN111058646A (en) Full-period intelligent maintenance system and method for concrete corbels
JPS5610638A (en) Operating method for refrigerator
WO2019221759A1 (en) Method and apparatus for determining a cure state of concrete
JPS6349187B2 (en)
Aboumoussa et al. Thermal movements in concrete: Case study of multistory underground car park
JPS63205536A (en) Movable oil and water controller for automobile engine experiment
JP3232492B2 (en) Pre-cooling method automatic temperature control system
Hohlfelder Salt Block II: description and results
CN207468505U (en) Concrete surface attemperator
CN220583471U (en) Complete set of large-volume concrete construction monitoring equipment based on distributed Internet of things