JPS6243072A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6243072A
JPS6243072A JP60180932A JP18093285A JPS6243072A JP S6243072 A JPS6243072 A JP S6243072A JP 60180932 A JP60180932 A JP 60180932A JP 18093285 A JP18093285 A JP 18093285A JP S6243072 A JPS6243072 A JP S6243072A
Authority
JP
Japan
Prior art keywords
phosphoric acid
matrix
recesses
ribbed
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60180932A
Other languages
Japanese (ja)
Inventor
Kiyotaro Iyasu
巨太郎 居安
Hideyuki Nara
奈良 英幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60180932A priority Critical patent/JPS6243072A/en
Publication of JPS6243072A publication Critical patent/JPS6243072A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase sealing ability by sealing the end, parallel to grooves, of a ribbed electrode with thermoplastic resin film, forming recesses on the surface, which is in contact with a matrix, of the electrode, and embedding a material having affinity with phosphoric acid in the recesses. CONSTITUTION:A set of ribbed electrodes 3 which have passages 2 perpendicularly intersecting each other are arranged on each side of a matrix impregnated with phosphoric acid serving as electrolyte to form a unit cell. A plurality of unit cells are stacked with separators 5 interposed to form a fuel cell. The end 7, parallel to grooves 2, of the electrode 3 is sealed with a thermoplastic film 8, and two or more recesses 9 are formed on the surface, which is in contact with the matrix 1, of the electrode 3. A matrix 10 having affinity with phosphoric acid comprising phosphoric acid resistant particles such as silicon carbide and graphite is embedded in the recesses 9. Thereby, the matrix is uniformly distributed between ribbed electrodes, and sealing ability of gas is remarkably increased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特にリブ付電極の端部周辺部における気密性
を向上させるよう(=シた燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell in which the airtightness is particularly improved around the end of a ribbed electrode.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、燃料の有しているエネルギーを直接電気的エネル
ギーに変換する装置として燃料電池が知られている。こ
の燃料電池は、通常電解質を含浸したマトリックスを挾
んで流通溝を有する多孔質材製の一対のリブ付電極を配
置して単位セルを作り、この単位セルをセパレーターを
介して複数層を積層し燃料電池スタックを構成したもの
である。
2. Description of the Related Art Fuel cells are conventionally known as devices that directly convert energy contained in fuel into electrical energy. This fuel cell usually consists of a matrix impregnated with an electrolyte and a pair of ribbed electrodes made of a porous material with flow grooves placed between them to form a unit cell, and this unit cell is stacked in multiple layers with a separator in between. This is a configuration of a fuel cell stack.

そしてその一方の電極の流通溝に水素などの流体燃料を
接触させ、また他方の電極の流通溝に酸素などの流体酸
化剤を接触させ、このとき走る電気化学的反応を利用し
、上記一対の電極間から電気エネルギーを取り出すよう
に運転されるものである。
Then, a fluid fuel such as hydrogen is brought into contact with the flow groove of one electrode, and a fluid oxidizer such as oxygen is brought into contact with the flow groove of the other electrode. It is operated to extract electrical energy from between the electrodes.

ここでこれらのリブ付電極の流通溝は、それぞれ流体燃
料および流体酸化剤の流通路を形成し、また、上記各単
位セルを積層する場合には、導電性を有し、かつガス透
過性のないセパレーターを各単位セル間に挾んで積層す
るものである。そしてこの積層状態でリブ付電極の溝の
両端開口部のみを残して各積層断面部を気密にシールす
るよう構成している。
Here, the flow grooves of these ribbed electrodes form flow paths for fluid fuel and fluid oxidant, respectively, and when stacking the above unit cells, they are electrically conductive and gas permeable. In this method, a separator is sandwiched between each unit cell and laminated. In this laminated state, each laminated cross-section is hermetically sealed, leaving only the openings at both ends of the groove of the ribbed electrode.

ところで、リブ付電極は細孔を有する多孔質体が使用さ
れ、その流通溝と平行する両端部からのガスリークを防
止するため、ガスシールが施こされている。このガスシ
ールの一つの例としてリブ付電極の端部(=溝と平行方
向のコの字型の熱可塑性フィルムを加熱圧入して形成す
ることが行なわれている。(特願昭59−267166
号明細書参照)しかしながら、一対のリブ付電極を順に
積層する場合、マトリックスを完全に積層体端部まで塗
布できず熱可塑性樹脂フィルムの上部からガスがリーク
する恐れがあった。つまり、熱可塑性樹脂フィルムは撥
水性、非粘着性を有するため、フィルム上でマトリック
スが凝集してしまい、そこに隙間を作ってしまうためで
ある。
Incidentally, the ribbed electrode is made of a porous body having pores, and is gas-sealed to prevent gas leakage from both ends parallel to the flow grooves. One example of this gas seal is to form a U-shaped thermoplastic film parallel to the groove at the end of the ribbed electrode (Japanese Patent Application No. 59-267166).
However, when a pair of ribbed electrodes are laminated one after another, the matrix cannot be completely applied to the ends of the laminate, which may cause gas to leak from the top of the thermoplastic resin film. In other words, since the thermoplastic resin film is water repellent and non-adhesive, the matrix aggregates on the film, creating gaps there.

このように、従来のシール方式を用いた構成では、積層
体製造時にも完全なシール機能を維持することに問題が
あり、より信頼性の高いシール構造が望まれていた。
As described above, in the configuration using the conventional sealing method, there is a problem in maintaining a perfect sealing function even during the production of the laminate, and a more reliable sealing structure has been desired.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、リブ付電極の端部のガスシールを改良
し、信頼性に富む燃料電池を提供することにある。
An object of the present invention is to provide a highly reliable fuel cell by improving the gas seal at the end of a ribbed electrode.

〔発明の概要〕[Summary of the invention]

本発明による燃料電池は、リブ付電橋の流通溝に並行す
る端部は、熱可塑性樹脂フィルムにより、ガスシールさ
れており、さらに、少なくともそのマトリックスと接触
する熱可塑性樹脂フィルムの表面に、凹部な設け、凹部
に親リン酸性物質を埋め込み、熱可塑性樹脂フィルムの
撥水性を低下させ、リブ付電極間にマトリックスを均一
に分散させることを特徴とする。
In the fuel cell according to the present invention, the ends of the ribbed electrical bridge parallel to the flow grooves are gas-sealed with a thermoplastic resin film, and furthermore, at least the surface of the thermoplastic resin film in contact with the matrix is provided with recesses. The present invention is characterized in that a phosphoric acid-philic substance is embedded in the recesses to reduce the water repellency of the thermoplastic resin film and to uniformly disperse the matrix between the ribbed electrodes.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を第1図、第2図に示す実施例について説
明する。まず、第1図において、電解質としてリン酸を
含浸したマトリックス1を挾んで互いに直交する方向に
流通溝2を有する一対のリブ付11m3.3を配置して
単位セル4を作り、この単位セル4をセパレーター5を
介して複数積層して燃料電池スタック6を構成している
The present invention will be described below with reference to an embodiment shown in FIGS. 1 and 2. First, in FIG. 1, a unit cell 4 is made by arranging a pair of ribbed 11m3.3 having flow grooves 2 in mutually orthogonal directions sandwiching a matrix 1 impregnated with phosphoric acid as an electrolyte. A fuel cell stack 6 is constructed by stacking a plurality of these with separators 5 in between.

本発明による燃料電池においては、第2図のリブ付電極
3の流通溝2に平行する端部7は、熱可塑性樹脂フィル
ム8によりシールされており、さらに少なくともそのマ
トリックス1と接触する面の表面に、凹部9を設け、凹
部9(二親リン酸性物質10が埋め込まれていることを
特徴とするものである。
In the fuel cell according to the present invention, the end 7 of the ribbed electrode 3 in FIG. A recess 9 is provided in the recess 9 (in which a diphilic phosphoric acid substance 10 is embedded).

ここで凹部9の形状としては、球状9円柱状等いかなる
形状でも良く、好ましくは開孔部は狭く、底部に向って
広くなった親リン酸性物質10が出にくい形状である。
Here, the shape of the recess 9 may be any shape such as spherical or cylindrical, and preferably the opening is narrow and widened toward the bottom so that the phosphoric acid-philic substance 10 is difficult to come out.

大きさは内径数μ以上、深さも数μ以上でマトリックス
と接触する面の全体に、均一に分散していることが望ま
しい。また、凹部のしめる面積は、全体に対し、少なく
とも1チ以上で、凹部の面積が多いほど親リン酸性を増
加することができるためマトリックスとのなじみが良く
なる。
It is desirable that the size is several microns or more in inner diameter and several microns or more in depth, and that they are uniformly dispersed over the entire surface that contacts the matrix. Further, the area covered by the recesses is at least 1 inch or more with respect to the whole, and the larger the area of the recesses, the more phosphoric acid affinity can be increased, and the better the compatibility with the matrix.

凹部9を設ける方法としては、2種類の方法がある。一
つは熱可塑性樹脂フィルム8でシールする前に、端部7
のマトリックスとの接触する面にあらかじめ凹部9を設
けた後、シールする方法、もう一方は、シール後、熱可
塑性樹脂フィルムの表面に凹部9を設ける方法であるっ シール前に凹部9を設ける方法とし゛〔は、カーボン繊
維からなるリブ付竜鳳3の端部7の気孔率を大きくする
ことζ二より、カーボン繊維間のすき間が大きくなり結
果として端部全体に、凹部9を均一(二設けたことにな
る。この気孔率としては、40 %程度以上が望ましく
、気孔率を大きくするほど、大きく、深い凹部9ができ
る。また、気孔率の小さい例えば40チ程度以下のもの
に対しては、表面を機械的に切削、あるいは紙ヤスリま
たは炭化ケイ素、アルミナ等、比較的粒子の粗い硬質粉
体による研磨で凹部9を設ける。
There are two methods for providing the recess 9. One is to seal the end 7 before sealing with a thermoplastic film 8.
The other method is to provide recesses 9 in advance on the surface of the thermoplastic resin film that will be in contact with the matrix and then seal the film.The other method is to provide recesses 9 on the surface of the thermoplastic resin film after sealing. This is because the porosity of the end 7 of the ribbed dragonfly 3 made of carbon fiber is increased. As a result, the gaps between the carbon fibers become larger, and as a result, the recesses 9 are uniformly formed over the entire end. This porosity is desirably about 40% or more, and the larger the porosity is, the larger and deeper the recesses 9 will be. The recesses 9 are provided by mechanically cutting the surface, or by polishing with sandpaper or a relatively coarse hard powder such as silicon carbide or alumina.

次に、シール後、熱可塑性樹脂フィルム8の表面に凹部
9を設ける方法は、マトリックスと接触する面を上向き
にして端部7をフィルムの融点以上に加熱して、フィル
ムを再浴融させると、フィルムの粘性低下と自重により
、徐々にリブ付電橋3の表面から内部に向って層状態で
下降させる。
Next, after sealing, a method for forming recesses 9 on the surface of the thermoplastic resin film 8 is to heat the end portion 7 to a temperature higher than the melting point of the film with the surface in contact with the matrix facing upward, and re-fuse the film. Due to the decrease in viscosity of the film and its own weight, the film is gradually lowered in layers from the surface of the ribbed electric bridge 3 toward the inside.

フィルムの下降により表面は、カーボン繊維が突き出た
状態となりカーボン繊維間のすき間が凹部となる。また
、表面な冶械的に切削、あるいは比較的粒子の細かい硬
質粉体による研磨でも凹部9を設けることができる。
As the film descends, the carbon fibers protrude from the surface, and the gaps between the carbon fibers become recesses. Further, the recesses 9 can be formed by mechanically cutting the surface or polishing with hard powder having relatively fine particles.

これらの方法により設けた凹部9(二人れる親リン酸性
物質10にはits、耐リン酸性でしかもリン酸と湿潤
しやすい材料が良< 、611えは、炭化ケイ素、黒鉛
、活性炭等である、また、リン酸と反応しても溶解せず
にリン酸塩などを生成するケイ素。
It is preferable to use a material that is resistant to phosphoric acid and easily wetted by phosphoric acid, such as silicon carbide, graphite, activated carbon, etc. , and silicon, which does not dissolve when reacted with phosphoric acid and produces phosphates.

チタン、スズ、アルミニウム、亜鉛などの単体金属ある
いは酸化物類も用いることができる。これらの形状は、
できるだけ細かい粒子状のものが好゛ましく、例えば平
均粒子径0.45μ程度のものである。前かい粒子の力
が、凹部内に埋め込みやすく、均一になりやすい、−ま
だ、平滑面が711られやすく、マトリックスの厚みを
均一にすることができる。
Elemental metals or oxides such as titanium, tin, aluminum, and zinc can also be used. These shapes are
Preferably, the particles are as fine as possible, for example, the average particle diameter is about 0.45 μm. The force of the front particles is easily embedded in the recesses and is easy to be uniform - yet a smooth surface is easily formed, and the thickness of the matrix can be made uniform.

次に、凹部9に、これらの親リン酸性物質10を入れる
方法としては、細かい粒子状の親リン酸性物110を凹
部9に入れ、上からヘラあるいはローラー等により圧力
を加えて押し込んだ後、余った親リン酸性物質を取り除
く。
Next, as a method of putting these phosphoric acid-loving substances 10 into the recesses 9, after putting the fine particulate phosphoric acid-loving substances 110 into the recesses 9 and pushing them in by applying pressure from above with a spatula, roller, etc. Remove excess phosphoric acid substances.

この方法で熱可塑性樹脂フィルムとマトリックスとのな
じみは良くなるが、乾燥した粒子を用いた場合、マトリ
ックス中のリン酸が吸収され、マトリックスの粘性等の
状態が変化する恐れがあるつこのため、マトリックスを
塗る前に、あらかじめ凹部の親リン酸性物質にリン酸を
吸収させておく必要があるう 親リン酸性物質10に、少量のリン酸を加えて混練し、
混練物の状態で凹部9に入れ、上から圧力を加えて押し
込むことも可能である。この場合、親リン酸性物質に対
するリン酸鼠は、重量比でほぼ1:1以下でリン酸量は
できるだけ少ない方が望ましい、重量比が1:1以上に
なると、混練物の粘性低下ととも;ニリン酸が凹部表面
をおおい撥水性となり親リン酸性物質がはじき出されて
しまい、親リン酸性効果が得られない場合がある。
This method improves the compatibility between the thermoplastic resin film and the matrix, but if dry particles are used, the phosphoric acid in the matrix may be absorbed and the viscosity of the matrix may change. Before applying the matrix, add a small amount of phosphoric acid to the phosphoric acid material 10, which needs to be absorbed by the phosphoric acid material in the recesses in advance, and knead it.
It is also possible to put the kneaded product into the recess 9 and push it in by applying pressure from above. In this case, the weight ratio of phosphoric acid to the phosphoric acid substance is approximately 1:1 or less, and it is desirable that the amount of phosphoric acid is as small as possible.If the weight ratio becomes 1:1 or more, the viscosity of the kneaded product decreases; The diphosphoric acid covers the surface of the recessed portion and becomes water-repellent, and the phosphoric acid-philic substance is repelled, so that the phosphoric acid-philic acid effect may not be obtained.

この様に、マ)Jックスとの接触する面の表面に凹部を
設け、親リン酸性物質を埋め込むことにより、表面を親
リン酸性に改良することができる。
In this manner, the surface can be improved to be phosphoric acid philic by providing a recess on the surface of the surface that will come into contact with the MAX and embedding a phosphoric acid philic substance therein.

このため、マトリックスlは凝集することなく、児今に
積層体端部まで塗布でき、熱可塑性樹脂フィルム8の上
部からのがスリーンを防止することができる。
Therefore, the matrix 1 can be applied to the child's body up to the end of the laminate without agglomerating, and it is possible to prevent the thermoplastic resin film 8 from leaking from the top.

ご(に、リブ付電極3の端部7の気孔率の大きいものを
用い、熱可塑性樹脂フィルム8としてPF’入)1ルム
を、親リン酸性物質10として炭化ケイ素を用いた製造
方法の一例では、リブ付電極3の端部7は、気孔率70
頭、平均気孔径 65μのものを用いた。
An example of a manufacturing method using silicon carbide as the phosphoric acid material 10 and 1 lum of PF' as the thermoplastic resin film 8, using a material with a high porosity at the end 7 of the ribbed electrode 3. In this case, the end portion 7 of the ribbed electrode 3 has a porosity of 70
A head with an average pore diameter of 65 μm was used.

端部7に熱可塑性樹脂フィルム8としてコの字型のPP
人フィルムに填さo、2sh層)を配置し、340Cに
加熱してフィルムを溶融させた後、圧力10φ層で5分
間加圧して一体(ヒさぜた。一体後の端部7の72+ツ
クスと接触する面の表面には。
U-shaped PP as thermoplastic resin film 8 on end 7
After placing the film (O, 2SH layer) on the film and heating it to 340C to melt the film, pressurize it with a pressure of 10φ layer for 5 minutes to make it integral. On the surface of the surface that comes into contact with Tsukusu.

細かい半球体状の凹部9が得られた、平均径は(資)μ
程度で数は約2500偏置であった。その凹部9(二親
リン酸性物質8として超微粉の炭化ケイ素(平均粒子径
0.45μ)を用いた1この炭化ケイ素に105 % 
!Jリン酸重量比で1 : 0.8になるように加えて
混練し、凹部9に入れ、さらに、上から面圧約2ψ億に
なる様にローラーで押し込んだ。この電画にマトリック
ス1を塗布し凝集性を調べたところ、はとんど凝集は見
られずマトリックス1との親和性は大幅に向上している
。また、積、1後、熱可塑性樹脂フィルム上からのリー
クは、全つく認められなかった。
A fine hemispherical recess 9 was obtained, the average diameter is μ
The number was approximately 2,500 eccentric. The recess 9 (using ultrafine silicon carbide (average particle size 0.45μ) as the diphilic phosphoric acid substance 8) 105% to this silicon carbide
! J phosphoric acid was added at a weight ratio of 1:0.8, kneaded, placed in the recess 9, and further pushed in with a roller so that a surface pressure of about 2 ψ billion was applied from above. When Matrix 1 was applied to this electrographic image and the aggregation property was examined, almost no aggregation was observed, and the affinity with Matrix 1 was significantly improved. Further, after one test, no leakage from the top of the thermoplastic resin film was observed.

〔発明の効果〕〔Effect of the invention〕

以上のよう(二本発明によれば、リブ付it極の流通溝
と平行な端部な熱可塑性樹脂フィルムでシールし、しか
もそのフィルムの少なくともマトリックスと接触する面
の表面に、凹部な設け、凹部に親リン酸性物質を埋め込
んだことにより、リブ付電極端部のガスシール性が良く
なり、燃料電池の信頼性を向上させることができる、
As described above (according to the second aspect of the present invention), the edges of the ribbed IT electrode parallel to the flow grooves are sealed with a thermoplastic resin film, and at least the surface of the film that contacts the matrix is provided with a recess. By filling the recess with a phosphoric acid substance, the gas sealing properties of the ribbed electrode end are improved, improving the reliability of the fuel cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による燃料電池の燃料電池スタックの
一実施例を示す断面図、第2図は本発明のリブ付電極の
端部を拡大して示す断面図である。 1・゛°マトリックス  2・・・流通溝3・・・リブ
付電極   4・・・単位セル5・・・セパレーター 
 6・・・燃料電池スタック7・・・電橋端部    
8・・・熱可塑性樹脂フィルム9・・・凹部     
 10・・・親リン酸性物質代理人 弁理士  則 近
 憲 佑 同  三俣弘文 第1図 第2図
FIG. 1 is a cross-sectional view showing an embodiment of a fuel cell stack of a fuel cell according to the present invention, and FIG. 2 is a cross-sectional view showing an enlarged end portion of a ribbed electrode according to the present invention. 1.゛°matrix 2...Flow groove 3...Ribbed electrode 4...Unit cell 5...Separator
6... Fuel cell stack 7... Electric bridge end
8... Thermoplastic resin film 9... Concave portion
10...Pro-phosphoric acid substance agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)電解質を含浸したマトリックスを挾んで流体燃料
または、流体酸化剤の流通溝が形成された一対のリブ付
電極を配置して単位セルを構成し、この単位セルをセパ
レーターを介して複数積層して構成した燃料電池スタッ
クにおいて、前記のリブ付電極の流通溝に平行な端部は
、熱可塑性樹脂フィルムによりガスシールされており、
さらに、少なくともそのマトリックスと接触する熱可塑
性樹脂フィルムの表面に、凹部を設け、凹部に親リン酸
性物質が埋め込まれていることを特徴とする燃料電池。
(1) A unit cell is constructed by arranging a pair of ribbed electrodes in which fluid fuel or fluid oxidant flow grooves are formed between a matrix impregnated with an electrolyte, and multiple unit cells are stacked with a separator in between. In the fuel cell stack configured as above, the ends of the ribbed electrodes parallel to the flow grooves are gas-sealed with a thermoplastic resin film;
Furthermore, a fuel cell characterized in that a recess is provided at least on the surface of the thermoplastic resin film in contact with the matrix, and a phosphoric acid-philic substance is embedded in the recess.
(2)親リン酸性物質として、炭化ケイ素、黒鉛などの
耐リン酸性粒子を使用したことを特徴とする特許請求の
範囲第1項記載の燃料電池。
(2) The fuel cell according to claim 1, wherein phosphoric acid-resistant particles such as silicon carbide and graphite are used as the phosphoric acid-philic substance.
JP60180932A 1985-08-20 1985-08-20 Fuel cell Pending JPS6243072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60180932A JPS6243072A (en) 1985-08-20 1985-08-20 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60180932A JPS6243072A (en) 1985-08-20 1985-08-20 Fuel cell

Publications (1)

Publication Number Publication Date
JPS6243072A true JPS6243072A (en) 1987-02-25

Family

ID=16091794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60180932A Pending JPS6243072A (en) 1985-08-20 1985-08-20 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6243072A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223500A (en) * 2006-02-24 2007-09-06 Komatsu Ltd Multi-axle vehicle and its steering control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223500A (en) * 2006-02-24 2007-09-06 Komatsu Ltd Multi-axle vehicle and its steering control device

Similar Documents

Publication Publication Date Title
JP3555999B2 (en) Method for producing polymer solid electrolyte / electrode assembly for polymer electrolyte fuel cell
EP0273427B1 (en) Seal structure for an electrochemical cell
US6413663B1 (en) Fluid permeable flexible graphite fuel cell electrode
JPS58152B2 (en) Nenryo Denchi Denkiyoku Oyobi Sonokumitatetai
CA2345219A1 (en) Gas diffusion structures and gas diffusion electrodes for polymer electrolyte fuel cells
JPH03105866A (en) United edge seal of phosphoric acid fuel cell
WO2002027842A1 (en) Fuel cell separator, method for manufacturing the separator, and solid polymer fuel cell using the separator
JPH0644989A (en) Laminated fuel-cell member
KR100567487B1 (en) Electrolyte membrane/ electrode union for fuel cell and process for producing the same
KR20020064305A (en) Fuel Cell Unit and Its Manufacturing Method
JP2829184B2 (en) Fuel cell
JPS6243072A (en) Fuel cell
JPH06295733A (en) Separator plate formed by layering fluorine resin
US3953237A (en) Electric energy sources such as fuel cells and batteries
JPH06101341B2 (en) Manufacturing method of ribbed separator for fuel cell
US5328542A (en) Method of manufacturing a laminated fuel cell component with an internal fluid impermeable barrier
JPS62208561A (en) Manufacture of ribbed electrode plate for fuel cell
EP1273064B1 (en) Graphite article useful as an electrode for an electrochemical fuel cell
JPH02226663A (en) Gas seal method for base material end for fuel cell
JPS59132572A (en) Fuel cell
JPS62241263A (en) Fuel cell
JP2633522B2 (en) Fuel cell
JPS61292859A (en) Manufacture of fuel cell
JPS61267270A (en) Manufacture of fuel cell
JPH07134994A (en) Fuel cell electrode and manufacture thereof