JPH07134994A - Fuel cell electrode and manufacture thereof - Google Patents

Fuel cell electrode and manufacture thereof

Info

Publication number
JPH07134994A
JPH07134994A JP6216374A JP21637494A JPH07134994A JP H07134994 A JPH07134994 A JP H07134994A JP 6216374 A JP6216374 A JP 6216374A JP 21637494 A JP21637494 A JP 21637494A JP H07134994 A JPH07134994 A JP H07134994A
Authority
JP
Japan
Prior art keywords
electrode
pore volume
ribbed
end portion
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6216374A
Other languages
Japanese (ja)
Inventor
Kyotaro Iyasu
巨太郎 居安
Susumu Kojima
晋 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6216374A priority Critical patent/JPH07134994A/en
Publication of JPH07134994A publication Critical patent/JPH07134994A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell electrode capable of maintaining stable performance over a long period of time by enhancing gas seal capability at the end of a ribbed electrode, and provide the manufacturing method of the electrode. CONSTITUTION:A unit cell is formed by arranging a pair of porous ribbed electrodes 1 in which a liquid fuel passing groove 2 and a liquid oxidizing agent passing groove 2 are formed, on both sides of an electrolyte-containing matrix. One end 3 or both ends 3 of the ribbed electrode is or are constituted so that the pore volume of pores having a pore radius of 10mum or more becomes 30% or less. The gas seal structure is obtained by filling a filler 4 in the end 3 of the electrode 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料の有する化学エネ
ルギーを電気エネルギーに変換する燃料電池の電極およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell electrode for converting chemical energy of a fuel into electric energy and a method for producing the same.

【0002】[0002]

【従来の技術】従来、燃料の有しているエネルギーを直
接電気的エネルギーに変換する装置として燃料電池が知
られている。この燃料電池システムは通常、燃料から水
素を作る改質装置、水素と空気中の酸素を電気化学的に
反応させ直接電気的エネルギーに変換する電池本体、発
電した直流出力を交流に変換する直交変換装置、システ
ム全体を制御する制御装置、その他補機類からなる。
2. Description of the Related Art Conventionally, a fuel cell has been known as a device for directly converting the energy of fuel into electric energy. This fuel cell system is usually a reformer that produces hydrogen from fuel, a cell body that directly reacts hydrogen with oxygen in the air to directly convert it into electrical energy, and an orthogonal transformation that converts the generated DC output into AC. It consists of equipment, control equipment that controls the entire system, and other auxiliary equipment.

【0003】水素と酸素を反応させ直接電気的エネルギ
ーに変換する電池本体は、アノード電極とカソード電極
からなる単セルをセパレーターを介し、さらに数セル毎
に冷却板を配置してて多数積層して構成される。
In a battery body in which hydrogen and oxygen are reacted to directly convert them into electric energy, a single cell consisting of an anode electrode and a cathode electrode is interposed with a separator, and a cooling plate is arranged every several cells to laminate a large number. Composed.

【0004】単位セルには、一般にリブ付電極と称され
るものとバイポーラ型と称されるものがある。
The unit cells are classified into a rib type electrode and a bipolar type.

【0005】図5は、一般にリブ付電極と称される燃料
電池の単位セルを模式的に示す斜視図である。一対の多
孔質性のリブ付電極であるアノード11とカソード12
が、リン酸などの電解質を含浸したマトリックス層13
を挟んで配置されている。この場合、アノード11とカ
ソード12の背面には、燃料流路14と酸化剤流路15
がそれぞれ形成されている。一対の多孔質性のリブ付電
極の流体が通過する流路より外側に位置する端部3は、
充填剤を含浸して密度を高くし、さらに電解質の含浸に
よりウエットシールされる。また、アノード11とカソ
ード12は、その燃料流路14および酸化剤流路15が
互いに直交するようにして配置されている。一方、アノ
ード11とカソード12のマトリックス層13と対向す
る面には、白金などによる触媒層16が形成され、前述
したような電気化学反応が促進されるようになってい
る。
FIG. 5 is a perspective view schematically showing a unit cell of a fuel cell, which is generally called a ribbed electrode. A pair of porous ribbed electrodes, anode 11 and cathode 12
Is a matrix layer 13 impregnated with an electrolyte such as phosphoric acid
It is placed across. In this case, the fuel flow path 14 and the oxidant flow path 15 are provided on the back surfaces of the anode 11 and the cathode 12.
Are formed respectively. The end portions 3 located outside the flow path through which the fluid of the pair of porous ribbed electrodes passes are
It is wet-sealed by impregnating it with a filler to increase its density and further impregnating it with an electrolyte. Further, the anode 11 and the cathode 12 are arranged such that the fuel flow passage 14 and the oxidant flow passage 15 thereof are orthogonal to each other. On the other hand, a catalyst layer 16 made of platinum or the like is formed on the surface of the anode 11 and the cathode 12 facing the matrix layer 13, so that the electrochemical reaction as described above is promoted.

【0006】次に、バイポーラ型と称される燃料電池の
単位セルを模式的に図6に示す。一対の多孔質性の平板
状電極であるアノード11とカソード12が、リン酸な
どの電解質を含浸したマトリックス層13を挟んで配置
されている。さらに、一対の平板状電極の外部に、燃料
流路14と酸化剤流路15が形成された電解質を蓄積す
る多孔質性の電解質リザーバープレート17を配置して
単位セルが形成されている。一対の多孔質性の平板状電
極の端部3と電解質リザーバープレート17の流体が通
過する流路より外側に位置する端部3は、充填剤を含浸
して密度を高くし、さらに電解質の含浸によりウエット
シールされる。また、アノード11とカソード12は、
その燃料流路14および酸化剤流路15が互いに直交す
るようにして配置されている。一方、アノード11とカ
ソード12のマトリックス層13と対向する面には、白
金などによる触媒層16が形成され、電気化学反応が促
進されるようになっている。
Next, FIG. 6 schematically shows a unit cell of a fuel cell called a bipolar type. An anode 11 and a cathode 12, which are a pair of porous flat plate electrodes, are arranged with a matrix layer 13 impregnated with an electrolyte such as phosphoric acid interposed therebetween. Further, a unit cell is formed by arranging a porous electrolyte reservoir plate 17 for accumulating the electrolyte in which the fuel flow path 14 and the oxidant flow path 15 are formed, outside the pair of flat plate-shaped electrodes. The ends 3 of the pair of porous flat plate electrodes and the ends 3 of the electrolyte reservoir plate 17 located outside the flow path through which the fluid passes are impregnated with a filler to increase the density, and further impregnated with the electrolyte. It is wet-sealed by. Further, the anode 11 and the cathode 12 are
The fuel flow path 14 and the oxidant flow path 15 are arranged so as to be orthogonal to each other. On the other hand, a catalyst layer 16 made of platinum or the like is formed on the surfaces of the anode 11 and the cathode 12 facing the matrix layer 13, so that the electrochemical reaction is promoted.

【0007】そして、燃料電池は、このような構成を有
する単位セルを、セパレータを介して複数個積層するこ
とにより構成されている。また、このような燃料電池
は、通常、200℃前後の高圧力の下で運転されてお
り、長時間にわたって安定した性能を維持することが望
まれている。
The fuel cell is constructed by stacking a plurality of unit cells having such a structure with a separator interposed therebetween. Further, such a fuel cell is usually operated under a high pressure of about 200 ° C., and it is desired to maintain stable performance for a long time.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
燃料電池は、その電極構造から、特に、そのリブ付電極
の端部、あるいはバイポーラ型においては平板状電極の
端部と電解質リザーバープレートの端部は、十分なガス
シール性が得られないという問題がある。すなわち、こ
れらガス流体が通過する流路より外側に位置する端部
は、いずれも数百分の1〜数十μmの気孔分布を有する
多孔質性の部材で構成されており、端部からのガスリー
クを防止するため、端部の隙間に充填剤を充填し、大気
孔径を微小気孔に変化させ、その微小気孔径の部分にリ
ン酸などの電解質を含浸して、このリン酸の表面張力に
よりガスをシールしている。しかしながら燃料電池を長
時間運転した場合には、そのリブ付電極の端部、あるい
はバイポーラ型においては平板状電極の端部と電解質リ
ザーバプレートの端部から徐々にガスがリークし、液体
燃料と液体酸化剤が混合することにより発熱あるいは燃
焼し、ついには運転できなくなってしまうと言う可能性
がある。
However, in the conventional fuel cell, because of its electrode structure, in particular, the end of the ribbed electrode, or in the bipolar type, the end of the flat plate-shaped electrode and the end of the electrolyte reservoir plate are used. Has a problem that a sufficient gas sealing property cannot be obtained. That is, the end portions located outside the flow path through which these gas fluids are formed are each made of a porous member having a pore distribution of several hundredths to several tens of μm, and In order to prevent gas leakage, the gap between the ends is filled with a filler, the atmospheric pore size is changed to micropores, and the micropores are impregnated with an electrolyte such as phosphoric acid, and the surface tension of this phosphoric acid causes The gas is sealed. However, when the fuel cell is operated for a long time, gas gradually leaks from the end of the ribbed electrode, or in the bipolar type, the end of the flat plate-shaped electrode and the end of the electrolyte reservoir plate. There is a possibility that the oxidizer may generate heat or burn due to the mixing, and eventually it becomes impossible to operate.

【0009】図7は従来のリブ付電極の電極端部の気孔
分布と全気孔容積に対する累積気孔容積を示す特性図で
ある。この図7に示すように、従来の電極端部の気孔分
布は、気孔半径の大きい10μm以上のピークが大きく
なっている。すなわち、ガスリークは、気孔半径10μ
m以上の大きな気孔が多数残留し、その部分からシール
が破れてリークすることが分かった。
FIG. 7 is a characteristic diagram showing the pore distribution at the electrode end of the conventional ribbed electrode and the cumulative pore volume with respect to the total pore volume. As shown in FIG. 7, the conventional pore distribution at the electrode end has a large peak at a pore radius of 10 μm or more. That is, the gas leak has a pore radius of 10 μm.
It was found that a large number of large pores of m or more remained, and the seal broke from that portion and leaked.

【0010】本発明は、以上のような従来技術の問題点
を解決するために提案されたものであり、その目的は、
リブ付電極端部あるいはバイポーラ型においては平板状
電極の端部と電解質リザーバープレートの端部のガスシ
ール性を向上させることにより、長時間にわたって安定
した性能を維持できる信頼性の高い燃料電池の電極及び
その製造方法を提供することである。
The present invention has been proposed in order to solve the above problems of the prior art, and its purpose is to:
A highly reliable fuel cell electrode that can maintain stable performance for a long time by improving the gas sealability between the end of the ribbed electrode or the end of the plate electrode and the end of the electrolyte reservoir plate in the bipolar type. And a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、液体
燃料と液体酸化剤の流通溝が形成された一対の多孔質性
のリブ付電極に触媒層を形成し、電解質を含んだマトリ
ックスを挟んで配置して単位セルを形成する燃料電池の
電極において、リブ付電極の流体が通過する溝より外側
に位置する端部は、電解質によりウエットシールされ、
かつその部分での10μm以上の気孔を全気孔容積の3
0%以下としたことを特徴とする。
According to a first aspect of the present invention, a matrix containing an electrolyte is formed by forming a catalyst layer on a pair of porous ribbed electrodes in which liquid fuel and liquid oxidizer flow channels are formed. In the electrodes of the fuel cell in which the unit cells are formed by sandwiching the electrodes, the ends of the ribbed electrodes located outside the groove through which the fluid passes are wet-sealed by the electrolyte,
And, the pores of 10 μm or more in that part should be 3 of the total pore volume.
It is characterized by being 0% or less.

【0012】請求項2の発明は、一対の多孔質性の平板
状電極上に触媒層を形成し、この一対の多孔質性の平板
状電極をマトリックスを挟んで形成し、この一対の多孔
質性の平板状電極の外部に、液体燃料と液体酸化剤の流
通溝が形成された電解質を蓄積する多孔質性の電解質リ
ザーバープレートを配置して単位セルを形成する燃料電
池の電極において、平板状電極基板の端部と電解質リザ
ーバープレートの流体が通過する溝より外側に位置する
端部は、電解質によりウエットシールされ、かつその部
分で10μm以上の気孔を全気孔容積の30%以下とし
たことを特徴とする。
According to a second aspect of the present invention, a catalyst layer is formed on a pair of porous flat plate electrodes, the pair of porous flat plate electrodes are formed with a matrix interposed therebetween, and the pair of porous flat plate electrodes are formed. In the electrode of a fuel cell in which a unit cell is formed by arranging a porous electrolyte reservoir plate for accumulating an electrolyte in which liquid fuel and liquid oxidant flow channels are formed outside a flexible flat electrode The end portion of the electrode substrate and the end portion of the electrolyte reservoir plate located outside the groove through which the fluid passes are wet-sealed by the electrolyte, and the pores of 10 μm or more in that portion are set to 30% or less of the total pore volume. Characterize.

【0013】請求項3の発明は、リブ付電極の流体が通
過する溝より外側に位置する端部は、溶媒に所定濃度の
充填剤を分散させた溶液を、リブ付電極の端部での10
μm以上の気孔を全気孔容積の30%以下であるように
含浸させ、含浸後溶液中の溶媒のみを除去することを特
徴とする。
According to a third aspect of the present invention, the end portion of the ribbed electrode located outside the groove through which the fluid passes, is a solution in which a filler having a predetermined concentration is dispersed in a solvent. 10
The method is characterized in that pores having a size of μm or more are impregnated so as to be 30% or less of the total pore volume, and only the solvent in the solution is removed after impregnation.

【0014】請求項4の発明は、平板状電極基板の端部
と電解質リザーバープレートの流体が通過する溝より外
側に位置する端部は、溶媒に所定濃度の充填剤を分散さ
せた溶液を、電解質リザーバープレートの端部での10
μm以上の気孔の全気孔容積の30%以下であるように
含浸させ、含浸後溶液中の溶媒のみを除去することを特
徴とする。
According to a fourth aspect of the present invention, the end portion of the flat electrode substrate and the end portion of the electrolyte reservoir plate located outside the groove through which the fluid passes, are a solution in which a filler having a predetermined concentration is dispersed in a solvent, 10 at the edge of the electrolyte reservoir plate
It is characterized in that the impregnation is carried out so as to be 30% or less of the total pore volume of the pores of μm or more, and only the solvent in the solution is removed after the impregnation.

【0015】請求項5の発明は、リブ付電極の端部なら
びに平板状電極基板の端部、電解質リザーバープレート
の端部に充填する充填剤は、カーボン、黒鉛、フッ素樹
脂、金属酸化物、金属炭化物の粒子であることを特徴と
する。
According to a fifth aspect of the present invention, the filler for filling the end of the ribbed electrode, the end of the plate electrode substrate, and the end of the electrolyte reservoir plate is carbon, graphite, fluororesin, metal oxide, or metal. It is characterized by being carbide particles.

【0016】[0016]

【作用】以上のような構成を有する請求項1または2記
載の本発明は、リブ付電極の端部、あるいはバイポーラ
型においては平板状電極の端部と電解質リザーバープレ
ートの端部を、その全気孔容積に対する気孔半径10μ
m以上の気孔の気孔容積の割合が30%以下になるよう
に構成したことにより、ガスリークに大きく影響する大
きな気孔の割合を低減できるため、端部におけるガスシ
ール性を向上することができる。
According to the present invention having the above-mentioned structure, the end portion of the ribbed electrode, or in the bipolar type, the end portion of the flat plate-shaped electrode and the end portion of the electrolyte reservoir plate are entirely formed. Pore radius to pore volume 10μ
By configuring the pore volume ratio of the pores of m or more to be 30% or less, it is possible to reduce the proportion of the large pores that greatly affects the gas leak, and thus it is possible to improve the gas sealing property at the end portion.

【0017】シール性を表す毛細管圧は、リン酸による
濡れ性が十分であれば、ほぼ気孔半径に反比例する。し
たがって、気孔半径10μmに満たない微小気孔は、毛
細管圧が高く、かつ毛細管現象によりリン酸も十分存在
しているため、十分なシール性が得られる。これに対し
て、気孔半径10μm以上の大きな気孔は、気孔半径1
0μmに満たない微小気孔に比べ、毛細管圧が低くリン
酸の存在も不十分であるため、シール性は不十分であ
る。
If the wettability with phosphoric acid is sufficient, the capillary pressure representing the sealing property is substantially inversely proportional to the pore radius. Therefore, the micropores having a pore radius of less than 10 μm have a high capillary pressure and sufficient phosphoric acid is present due to the capillary phenomenon, so that a sufficient sealing property can be obtained. On the other hand, a large pore with a pore radius of 10 μm or more has a pore radius of 1
Compared with the micropores of less than 0 μm, the capillary pressure is low and the presence of phosphoric acid is insufficient, so the sealing property is insufficient.

【0018】そして、このようにシール性の不十分な気
孔半径10μm以上の大きな気孔の気孔容積が全気孔容
積に対してしめる割合が30%以下である場合には、こ
の大きな気孔が比較的分散して存在しているため、仮に
これらの大きな気孔の一部においてリン酸によるウエッ
トシールが破れても、ウエットシールの破れはその部分
だけで止まり、大きなガスリークに至らず、シール性へ
の影響が少ないものと考えられる。これに対して、気孔
半径10μm以上の大きな気孔の気孔容積が全気孔容積
に対して占める割合が30%程度を越える場合には、大
きい気孔が比較的密集して存在しているため、大きな気
孔同士の連結が生じやすくなり、ウエットシールの破れ
が拡大し、ガスリークが急激に増加するものと考えられ
る。
When the pore volume of the large pores having a pore radius of 10 μm or more with insufficient sealing property is 30% or less of the total pore volume, the large pores are relatively dispersed. Therefore, even if the wet seal due to phosphoric acid breaks in some of these large pores, the breaking of the wet seal stops only in that part, and it does not lead to a large gas leak, and the sealability is affected. Considered to be few. On the other hand, when the ratio of the pore volume of large pores having a pore radius of 10 μm or more to the total pore volume exceeds about 30%, the large pores are relatively densely present, and thus the large pores are large. It is considered that the mutual connection is likely to occur, the breakage of the wet seal is expanded, and the gas leak is rapidly increased.

【0019】[0019]

【実施例】本発明の実施例の説明に先立ち、本発明の概
念について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to the description of the embodiments of the present invention, the concept of the present invention will be described.

【0020】端部のウエットシールは、前述したよう
に、電極基板となる多孔質炭素板に充填剤を充填するこ
とにより大気孔径を微小気孔径に変化させ、その微小気
孔径の部分にリン酸などの電解質を含浸してこのリン酸
の表面張力によりガスをシールするものである。ところ
が、従来の端部は、大きな気孔が多数残留しているた
め、その部分からシールが破れてリークすることが分か
った。このことから端部の全気孔容積に対する気孔半径
の大きい気孔容積の影響をより具体的に示すために、端
部の全気孔容積に対する気孔半径10μm以上の気孔容
積の割合とガスリーク量の関係を調べた結果、全気孔容
積に対する気孔半径10μm以上の気孔の気孔容積の割
合が30%以下であれば十分なシール性が得られ、電池
性能も向上することが分かった。
As described above, the wet seal at the end portion changes the atmospheric pore diameter to a fine pore diameter by filling the porous carbon plate serving as the electrode substrate with the filler, and the phosphoric acid is added to the portion having the fine pore diameter. The gas is sealed by the surface tension of the phosphoric acid after being impregnated with an electrolyte such as. However, it was found that the conventional end portion had a large number of large pores remaining, and the seal broke and leaked from that portion. From this, in order to more specifically show the effect of the pore volume with a large pore radius on the total pore volume at the end, the relationship between the ratio of the pore volume with a pore radius of 10 μm or more to the total pore volume at the end and the gas leak amount was investigated. As a result, it was found that when the ratio of the pore volume of pores having a pore radius of 10 μm or more to the total pore volume was 30% or less, sufficient sealing property was obtained and the battery performance was also improved.

【0021】以下には、本発明による燃料電池の一実施
例について図1〜図4を参照して具体的に説明する。
An embodiment of the fuel cell according to the present invention will be specifically described below with reference to FIGS.

【0022】(1)実施例の構成 (1−a)リブ付電極の構成 まず、図1は、リブ付電極の一部を模式的に示す斜視図
である。この図1に示すように、リブ付電極1は、数百
分の1〜数十μmの気孔分布を有する多孔質性の部材で
構成されており、リブ電極1の流体が通過する流路2よ
り外側に位置する端部3には、端部からのガスリークを
防止するため、充填剤4が充填され大きい気孔を微小気
孔に変化させ、微小気孔の部分にリン酸(図示せず)な
どの電解質を含浸させて、このリン酸の表面張力により
ガスがウエットシールされるように構成されている。こ
の場合、充填剤4としては、例えばカーボン、黒鉛、S
iC、PTFEなどのフッ素樹脂、金属酸化物、金属炭
化物などの耐熱、耐リン酸性の微粉体が使用されてい
る。そして、このような充填材4の充填により、端部3
は、大気孔径を微小気孔径に変化させ、その全気孔容積
に対する気孔半径10μm以上の気孔の気孔容積の割合
が30%以下になるように構成されている。
(1) Structure of the Embodiment (1-a) Structure of Rib Electrode First, FIG. 1 is a perspective view schematically showing a part of the rib electrode. As shown in FIG. 1, the ribbed electrode 1 is composed of a porous member having a pore distribution of several hundredths to several tens of μm, and a flow path 2 through which a fluid of the rib electrode 1 passes. In order to prevent gas leakage from the end portion, the end portion 3 located on the outer side is filled with the filler 4 to change the large pores into minute pores, and phosphoric acid (not shown) or the like is added to the portion of the minute pores. The electrolyte is impregnated, and the gas is wet-sealed by the surface tension of the phosphoric acid. In this case, as the filler 4, for example, carbon, graphite, S
Fluorine resins such as iC and PTFE, heat-resistant and phosphoric acid-resistant fine powders such as metal oxides and metal carbides are used. The end portion 3 is filled with the filling material 4 as described above.
Is configured so that the atmospheric pore diameter is changed to a minute pore diameter, and the ratio of the pore volume of pores having a pore radius of 10 μm or more to the total pore volume is 30% or less.

【0023】そして、このような構成を有する一対のリ
ブ付電極1を使用して、図5に示したような単位セルが
構成され、さらに、燃料電池が構成される。
Then, using the pair of ribbed electrodes 1 having such a structure, a unit cell as shown in FIG. 5 is constituted, and further a fuel cell is constituted.

【0024】同様に、バイポーラ型においては平板状電
極の端部と電解質リザーバプレートの端部も数百分の1
〜数十μmの気孔分布を有する多孔質性の部材で構成さ
れており、リブ付電極と同様に端部に充填剤を充填して
ウエットシールされるように構成されている。この場合
の構成は図6に示したような単位セルが構成され、さら
に、燃料電池が構成される。
Similarly, in the bipolar type, the end of the plate electrode and the end of the electrolyte reservoir plate are also several hundredths.
It is composed of a porous member having a pore distribution of tens of μm, and is configured to be wet-sealed by filling the end portion with a filler like the ribbed electrode. In this case, the unit cell shown in FIG. 6 is formed, and further the fuel cell is formed.

【0025】(1−b)リブ付電極の製造方法 燃料電池の電極部材としては、電気伝導性、熱伝導性、
機械的強度、耐熱、耐薬品性が要求される。この特性を
満足させるため、炭素繊維、あるいは黒鉛または炭素質
粉末に樹脂を加えて成形して、これを焼成することによ
り多孔質性のリブ付電極、あるいはバイポーラ型の平板
状電極、電解質リザーバープレートが得られる。従っ
て、炭素繊維、あるいは黒鉛または炭素質粉末自身の粒
子径分布、これらと樹脂との混合比率、樹脂と炭素繊
維、あるいは黒鉛または炭素質粉末の混合分散状態によ
り、数百分の1〜数十μmの気孔分布を有する多孔質性
基材が得られる。
(1-b) Method for producing ribbed electrode As an electrode member of a fuel cell, electrical conductivity, thermal conductivity,
Mechanical strength, heat resistance and chemical resistance are required. In order to satisfy these characteristics, a resin is added to carbon fiber, graphite or carbonaceous powder, which is then molded and fired to form a porous ribbed electrode, a bipolar flat plate electrode, or an electrolyte reservoir plate. Is obtained. Therefore, depending on the particle size distribution of the carbon fiber, or the graphite or carbonaceous powder itself, the mixing ratio of these with the resin, the mixed dispersion state of the resin and the carbon fiber, or the graphite or the carbonaceous powder, several hundreds to several tens to several tens are obtained. A porous substrate with a pore distribution of μm is obtained.

【0026】このような製造方法としては、例えば、多
孔質性炭素基材として気孔分布が少ないものを用いる。
これには、できるだけ均一な粒子径を持つ炭素繊維、あ
るいは黒鉛または炭素質粉末を使用し、樹脂とできるだ
け均一になるように混合することによって得られる。
As such a manufacturing method, for example, a porous carbon base material having a small pore distribution is used.
This can be obtained by using carbon fibers having a particle diameter as uniform as possible, or graphite or carbonaceous powder, and mixing them with a resin so as to be as uniform as possible.

【0027】一方、充填剤は、できるだけ粒子径の揃っ
た細かいもの使用し、充填剤を分散させた粘度を下げて
均一に充填する方法などが挙げられる。さらに容易な方
法としては、充填剤を分散させた溶液の充填剤濃度を上
げる方法が考えられる。最も確実な方法としては、充填
剤濃度の異なる溶液を数回に分けて充填する方法があ
る。例えば、充填剤としてカーボンを用いた場合、最初
に比較的低濃度(5〜40重量%程度)の溶液を充填
し、乾燥する。次に、高濃度(40〜70重量%程度)
の溶液を充填する。充填材濃度を逆にしても可能であ
る。
On the other hand, as the filler, there may be mentioned a method of using fine particles having a uniform particle diameter as much as possible and decreasing the viscosity of the dispersed filler to uniformly fill the filler. An even easier method is to increase the concentration of the filler in the solution in which the filler is dispersed. The most reliable method is to fill a solution having different filler concentrations in several times. For example, when carbon is used as the filler, a solution having a relatively low concentration (about 5 to 40% by weight) is first filled and dried. Next, high concentration (about 40-70% by weight)
The above solution is filled. It is also possible to reverse the filler concentration.

【0028】端部に充填する充填材は、原則的には、耐
熱、耐リン酸性の粉体であれば、あらゆる粉体を使用す
ることができるが、好ましくは、カーボン、黒鉛、Si
C、PTFEなどのフッ素樹脂、金属酸化物、金属炭化
物などである。粉体の粒子径は細かい方が望ましく、少
くとも数ミクロン以下のものが好ましい。また、数種の
粒子径の異なる粉体を混合して用いることも可能であ
る。粒子の形状は、できるだけ球形に近い方が好まし
い。同じ粒子径ならば球形に近い方が溶液の粘度が小さ
く流動性も良好で、より均一に充填することができる。
As the filler to be filled in the end portion, in principle, any powder can be used as long as it is heat resistant and phosphoric acid resistant powder, but carbon, graphite and Si are preferable.
Examples thereof include fluororesins such as C and PTFE, metal oxides and metal carbides. It is desirable that the particle diameter of the powder is small, and at least several microns or less is preferable. It is also possible to mix and use several kinds of powders having different particle sizes. The shape of the particles is preferably as spherical as possible. If the particles have the same particle size, the closer they are spherical, the lower the viscosity of the solution, the better the fluidity, and the more uniform the filling.

【0029】このようにして作製した充填剤を含む溶液
を、リブ付電極部、あるいはバイポーラ型においては平
板状電極の端部と電解質リザーバプレートの端部へ、大
きい気孔の全気孔容積の割合はガスシール性を保たれる
程度以下なるように充填する。すなわち、気孔半径10
μm以上の気孔の気孔容積の割合を30%以下になるよ
うに充填する。この充填方法はどんな方法でも良いが、
一般的には、充填剤を溶媒に分散させた溶液を加圧して
リブ付電極端部へ充填する方法を使用する。あるいは、
充填剤を溶媒に分散させた溶液に電極端部を浸漬して充
填することも可能である。
The ratio of the total pore volume of the large pores to the ribbed electrode portion, or to the end portion of the plate electrode and the end portion of the electrolyte reservoir plate in the ribbed electrode portion, or the bipolar type electrode It is filled so that the gas sealing property is maintained or less. That is, pore radius 10
It is filled so that the ratio of the pore volume of pores of μm or more is 30% or less. This filling method can be any method,
Generally, a method of applying pressure to a solution in which a filler is dispersed in a solvent and filling the end portion of the ribbed electrode is used. Alternatively,
It is also possible to immerse the electrode end portion in a solution in which a filler is dispersed in a solvent to fill it.

【0030】充填剤の充填後、加熱乾燥して溶媒のみを
除去する。加熱乾燥の場合は、全体を均一に、徐々に温
度を上げて加熱乾燥する。この場合の乾燥温度は、溶媒
の沸点以上とする。また、この加熱乾燥において、一方
向のみから加熱した場合には、溶媒の蒸発と共に充填材
が加熱面側に偏り不均一となるため、複数の方向から加
熱することが望ましい。さらに、急激に加熱乾燥した場
合には、充填材含有溶液が突沸して、充填材が飛散し、
また、電極端部の内部に気泡が残るなどの不都合を生じ
る恐れがあるため、温度上昇速度ができるだけ低くなる
ようにして加熱乾燥を行うことが望ましい。
After the filling with the filler, it is heated and dried to remove only the solvent. In the case of heat drying, the whole is uniformly heated and gradually heated to dry. In this case, the drying temperature is not lower than the boiling point of the solvent. In addition, in this heating and drying, when heating is performed from only one direction, the filler is unevenly distributed toward the heating surface side as the solvent evaporates, and thus it is desirable to heat from a plurality of directions. Furthermore, when heated and dried rapidly, the filler-containing solution bumps and the filler scatters,
Further, since there is a possibility that air bubbles may remain inside the electrode end portion, it is desirable to perform heat drying so that the temperature rising rate is as low as possible.

【0031】(2)実施例の作用 (2−a)作用の概要 以上のように構成されたリブ付電極、あるいはバイポー
ラ型におうては平板状電極、電解質リザーバープレート
の作用は次の通りである。すなわち、電極端部のガスシ
ール性は、リブ付電極端部の平均気孔径よりもむしろそ
の気孔分布に関係する。そして、このガスシール性は、
特に、気孔半径10μm以上の大きい気孔の容積に関係
し、気孔半径10μm以上の気孔容積が30%を越える
と、ガスリーク量が急激に増加する。そのため、端部3
を、その全気孔容積に対する気孔半径10μm以上の気
孔容積の割合が30%以下になるように構成した本実施
例においては、端部3におけるガスリーク量を低く抑制
することができる。
(2) Operation of the Embodiment (2-a) Outline of Operation The operation of the ribbed electrode, or the flat plate type electrode of the bipolar type, and the electrolyte reservoir plate configured as described above is as follows. is there. That is, the gas sealability at the electrode end is related to the pore distribution of the ribbed electrode end rather than the average pore diameter. And this gas sealing property is
In particular, it relates to the volume of large pores having a pore radius of 10 μm or more, and when the pore volume having a pore radius of 10 μm or more exceeds 30%, the amount of gas leak increases rapidly. Therefore, the end 3
In the present embodiment in which the ratio of the pore volume having a pore radius of 10 μm or more to the total pore volume is 30% or less, the gas leak amount at the end portion 3 can be suppressed to be low.

【0032】(2−b)実施例と従来例における気孔分
布とガスリーク量の比較 以上のような本実施例の作用について、図2により詳細
に説明する。ここで、図2は、本実施例(図1)のリブ
付電極の電極端部Aの気孔分布と全気孔容積に対する累
積気孔容積を示す特性図である。
(2-b) Comparison of Pore Distribution and Gas Leakage in Example and Conventional Example The operation of the present example as described above will be described in detail with reference to FIG. Here, FIG. 2 is a characteristic diagram showing the pore distribution of the electrode end A of the ribbed electrode of the present embodiment (FIG. 1) and the cumulative pore volume with respect to the total pore volume.

【0033】この本実施例の電極端部Aの図2および、
前述の従来の電極端部Bの気孔分布を示す図7と比較す
ると、従来の電極端部Bの気孔分布は、気孔半径の大き
い10μm以上のピークが大きくなっており、その結
果、全気孔容積に対する気孔半径10μm以上の気孔容
積の割合が30%を越えている。これに対し、本実施例
の電極端部Aの気孔分布は、気孔半径の大きい10μm
以上のピークは極めて小さく、その結果、全気孔容積に
対する気孔半径10μm以上の気孔容積の割合は10%
にも満たない程度となっている。また、電極端部A,B
の平均気孔半径(気孔分布曲線の積分値の平均値)は、
従来の電極端部Bの方が約2倍程度大きい。
FIG. 2 of the electrode end A of this embodiment and
Compared with FIG. 7 showing the pore distribution of the conventional electrode end B described above, the pore distribution of the conventional electrode end B has a large peak of 10 μm or more with a large pore radius, resulting in a total pore volume. The ratio of the volume of pores having a pore radius of 10 μm or more with respect to is over 30%. On the other hand, the pore distribution of the electrode end portion A in this embodiment is 10 μm with a large pore radius.
The above peaks are extremely small, and as a result, the ratio of the pore volume with a pore radius of 10 μm or more to the total pore volume is 10%.
It is less than that. Also, the electrode ends A, B
The average pore radius of (the average of the integrated values of the pore distribution curve) is
The conventional electrode end B is about twice as large.

【0034】そして、これらの電極端部A,Bについて
ガスリーク量を調べたところ、本実施例の電極端部Aの
ガスリーク量に比べて、従来の電極端部Bのガスリーク
量は、約130倍にも達した。このようなガスリーク量
の大差は、図2と図7を比較すれば明らかなように、電
極端部A,Bの平均気孔径よりも、むしろその気孔分
布、すなわち、全気孔容積に対する気孔半径の大きい気
孔容積の影響が大きい。
When the gas leak amount of these electrode end portions A and B was examined, the gas leak amount of the conventional electrode end portion B was about 130 times that of the electrode end portion A of this embodiment. Also reached. As is clear from a comparison between FIG. 2 and FIG. 7, such a large difference in gas leak amount is not the average pore diameter of the electrode ends A and B, but rather the pore distribution, that is, the pore radius with respect to the total pore volume. Large pore volume has a large effect.

【0035】(2−c)気孔分布とガスリーク量の関係
に関する実験 また、以上のような電極端部の全気孔容積に対する気孔
半径の大きい気孔容積の影響をより具体的に示すため
に、端部3の全気孔容積に対する気孔半径10μm以上
の気孔容積の割合とガスリーク量の関係を、次のように
して調べた。
(2-c) Experiment on Relation between Pore Distribution and Gas Leakage In order to more specifically show the influence of the pore volume having a large pore radius on the total pore volume of the electrode end as described above, The relationship between the ratio of the pore volume having a pore radius of 10 μm or more to the total pore volume of No. 3 and the gas leak amount was examined as follows.

【0036】すなわち、まず、気孔率約70%のリブ付
電極を用いて、リブ付電極端部の空隙に充填濃度の異な
る溶液を充填させることにより、全気孔容積に対する気
孔半径10μm以上の気孔容積の割合を変化させた。こ
の場合、充填材としては、粒子径2ミクロン以下のカー
ボン粉体を使用した。そして、このカーボンを水と少量
の分散剤を用いて分散した溶液を、リブ付電極端部に充
填して乾燥後、200℃リン酸中に一昼夜放置してリン
酸を含浸した後、ガスリーク量を調べた。なお、この時
点で、気孔にはリン酸が60%以上含浸されていること
を確認した。また同時に、気孔分布を水銀ポロシメータ
ーで測定した。
That is, first, by using a ribbed electrode having a porosity of about 70%, the voids at the ends of the ribbed electrode are filled with solutions having different filling concentrations, so that the pore volume with a pore radius of 10 μm or more with respect to the total pore volume. Was changed. In this case, carbon powder having a particle diameter of 2 microns or less was used as the filler. Then, a solution in which this carbon was dispersed using water and a small amount of a dispersant was filled in the end portion of the electrode with ribs, dried, and allowed to stand in 200 ° C. phosphoric acid for a whole day and night to be impregnated with phosphoric acid. I checked. At this point, it was confirmed that the pores were impregnated with 60% or more of phosphoric acid. At the same time, the pore distribution was measured with a mercury porosimeter.

【0037】以上のような実験から、図3に示すような
結果が得られた。ここで、図3は、リブ付電極の電極端
部の全気孔容積に対する気孔半径10μm以上の気孔容
積の割合とガスリーク量の関係を示すグラフである。こ
の図3に示すように、電極端部の全気孔容積に対する気
孔半径10μm以上の気孔容積の割合が30%程度以下
である場合にはガスリーク量は小さいが、30%を越え
るとガスリーク量が急激に増加するという傾向が認めら
れる。
From the above experiment, the results shown in FIG. 3 were obtained. Here, FIG. 3 is a graph showing the relationship between the gas leak amount and the ratio of the pore volume having a pore radius of 10 μm or more to the total pore volume of the electrode end of the ribbed electrode. As shown in FIG. 3, when the ratio of the pore volume of the pore radius of 10 μm or more to the total pore volume of the electrode end portion is about 30% or less, the gas leak amount is small, but when it exceeds 30%, the gas leak amount is rapidly increased. There is a tendency to increase.

【0038】(2−d)実験結果の解釈 さらに、以上のような実験結果、すなわち、電極端部の
全気孔容積に対する気孔半径10μm以上の大きな気孔
の気孔容積の割合とガスリーク量の関係は、次のように
解釈できる。
(2-d) Interpretation of Experimental Results Further, the above experimental results, that is, the relationship between the ratio of the pore volume of large pores having a pore radius of 10 μm or more to the total pore volume at the electrode end and the gas leak amount is as follows. It can be interpreted as follows.

【0039】まず、端部3のウェットシールは、前述し
たように、電極基板となる多孔質炭素板に充填材を充填
することにより大気孔径を微小気孔径に変化させ、その
微小気孔径の部分にリン酸などの電解質を含浸してこの
リン酸の表面張力によりガスをシールするものである。
このような原理を有するウェットシールのシール性は、
電極端部の気孔径が小さいほど、また、リン酸と充填
材、あるいはリン酸と電極基板である多孔質炭素板の馴
染みが良いほど向上する。そのため、理想的には、均一
な微小気孔径を有することが望ましいことになる。
First, in the wet seal of the end portion 3, as described above, the porous carbon plate serving as the electrode substrate is filled with the filler to change the atmospheric pore diameter to the minute pore diameter, and the portion having the minute pore diameter. An electrolyte, such as phosphoric acid, is impregnated in and the gas is sealed by the surface tension of the phosphoric acid.
The sealability of the wet seal having such a principle is
The smaller the pore size at the electrode end, and the better the compatibility between phosphoric acid and the filler, or phosphoric acid and the porous carbon plate that is the electrode substrate, the better. Therefore, ideally, it is desirable to have a uniform micropore diameter.

【0040】しかしながら、多孔質炭素板などからなる
電極基板は、実際には数百分の1〜数10μmの分布を
持っている。一方、シール性を表わす毛細管圧は、リン
酸による濡れ性が十分であれば、ほぼ気孔半径に反比例
する。したがって、気孔半径10μmに満たない微小気
孔は、毛細管圧が高くかつ毛細管現象によりリン酸も十
分存在しているため、十分なシール性が得られる。これ
に対して、気孔半径10μm以上の大きな気孔は、気孔
半径10μmに満たない微小気孔に比べ毛細管圧が低く
リン酸の存在も不十分であるため、そのシール性は不十
分である。
However, the electrode substrate made of a porous carbon plate or the like actually has a distribution of several hundredths to several tens of μm. On the other hand, if the wettability with phosphoric acid is sufficient, the capillary pressure representing the sealing property is almost inversely proportional to the pore radius. Therefore, the micropores having a pore radius of less than 10 μm have a high capillary pressure and sufficient phosphoric acid is present due to the capillary phenomenon, so that a sufficient sealing property can be obtained. On the other hand, large pores having a pore radius of 10 μm or more have lower capillary pressure and insufficient presence of phosphoric acid as compared with micropores having a pore radius of less than 10 μm, and therefore their sealing properties are insufficient.

【0041】そして、このようにシール性の不十分な気
孔半径10μm以上の大きな気孔の気孔容積が全気孔容
積に対して占める割合が30%程度以下である場合に
は、この大きな気孔が比較的分散して存在しているた
め、仮にこれらの大きな気孔の一部においてリン酸によ
るウェットシールが破れても、ウェットシールの破れは
その部分だけで止まり、大きなガスリークに至らず、シ
ール性への影響が少ないものと考えられる。これに対し
て、気孔半径10μm以上の大きな気孔の気孔容積が全
気孔容積に対して占める割合が30%程度を越える場合
には、大きな気孔が比較的密集して存在しているため、
これらの大きな気孔の一部においてリン酸によるウェッ
トシールが破れると、大きな気孔同志の連結が生じやす
くなり、ウェットシールの破れが拡大し、ガスリーク量
が急激に増加するものと考えられる。
When the ratio of the pore volume of large pores having a pore radius of 10 μm or more with insufficient sealing property to the total pore volume is about 30% or less, the large pores are relatively large. Even if the wet seal due to phosphoric acid breaks in some of these large pores because they exist in a dispersed state, the break in the wet seal stops only in that part, and it does not lead to a large gas leak, affecting the sealing performance. Is considered to be small. On the other hand, when the ratio of the pore volume of the large pores having a pore radius of 10 μm or more to the total pore volume exceeds about 30%, the large pores are relatively densely present,
It is considered that if the wet seal due to phosphoric acid breaks in some of these large pores, the connection of the large pores is likely to occur, the breakage of the wet seal expands, and the amount of gas leak increases rapidly.

【0042】なお、実際に充填材を充填した端部3の表
面を顕微鏡で観察したところ、全気孔容積に対する気孔
半径10μm以上の気孔の気孔容積の割合が30%程度
以下のものは、細かい気孔がほぼ均一に分散した状態で
あったが、30%程度を越えるものは所々大きな気孔の
固まりが見られた。このような気孔の固まりを生じる原
因は、充填材の充填が不均一で、その部分に十分な量の
充填剤が供給されなかったか、あるいは、電極基板とな
る多孔質炭素板の気孔分布自体が大きな気孔の偏りを有
するためであるものと考えられる。
When the surface of the end portion 3 actually filled with the filling material is observed with a microscope, it is found that pores having a pore radius of 10 μm or more with respect to the total pore volume have a pore volume ratio of about 30% or less. Were dispersed almost uniformly, but in the case of more than 30%, large lumps of pores were observed in some places. The cause of such agglomeration of the pores is that the filling of the filler is not uniform and a sufficient amount of the filler was not supplied to that portion, or the pore distribution itself of the porous carbon plate serving as the electrode substrate was It is considered that this is because of the large deviation of the pores.

【0043】(2−e)実施例と従来例における電池性
能特性の比較 以下には、実際に単位セルを製作してそのガスシール性
を検証した結果について説明する。まず、充填材とし
て、粒子径2ミクロン以下のカーボン粉体を含む溶液を
加圧して、電極端部の空隙に充填した後、溶媒の沸点以
上の温度で乾燥して溶媒を除去し、一対のリブ付電極を
製作した。気孔分布を測定した結果、全気孔容積に対す
る気孔半径10μm以上の気孔の気孔容積の割合はアノ
ード端部は3.9%、カソード端部は9.8%であっ
た。そして、このようなガスシール構造を持つ一対のリ
ブ付電極を用いて単位セルを構成した。
(2-e) Comparison of Battery Performance Characteristics between Example and Conventional Example Below, the result of actually manufacturing a unit cell and verifying its gas sealing property will be described. First, as a filler, a solution containing carbon powder having a particle diameter of 2 microns or less is pressurized to fill the voids at the end of the electrode and then dried at a temperature not lower than the boiling point of the solvent to remove the solvent. A ribbed electrode was manufactured. As a result of measuring the pore distribution, the ratio of the pore volume of pores having a pore radius of 10 μm or more to the total pore volume was 3.9% at the anode end and 9.8% at the cathode end. Then, a unit cell was constructed using a pair of electrodes with ribs having such a gas sealing structure.

【0044】比較用として、従来のガスシール構造を持
ち、すなわち全気孔容積に対する気孔半径10μm以上
の気孔の気孔容積の割合はアノード端部は31%、カソ
ード端部は23%であった。それ以外は、本実施例のリ
ブ付電極と全く同一の構成の一対のリブ付電極を用い
て、本実施例の単位セルと同一寸法形状の単位セルを構
成した。
For comparison, the conventional gas seal structure was used, that is, the ratio of the pore volume of pores having a pore radius of 10 μm or more to the total pore volume was 31% at the anode end and 23% at the cathode end. Other than that, a pair of ribbed electrodes having exactly the same configuration as the ribbed electrode of this example was used to form a unit cell of the same size and shape as the unit cell of this example.

【0045】以上のようにして構成した本実施例による
単位セルと従来例の単位セルとを、同一の条件下で長時
間にわたって運転を行い、その電位変化を調査した。な
お、試験前のリブ付電極端部の空隙には、ほぼ60%以
上のリン酸が満たされていることを確認した。図4は、
このようにして得られた電位変化を示す図であり、この
図4に示すように、本実施例による特性曲線X1は、従
来例の特性曲線Y1と比較して、長時間の運転を行って
も電池性能は劣化しないことが分かる。この結果は、本
実施例のガスシール構造が従来例に比べて格段に優れて
おり、ガスリーク量が少ないために、長時間にわたって
高い電池性能を維持できることを実証するものである。
The unit cell according to this embodiment and the unit cell according to the conventional example configured as described above were operated under the same conditions for a long time, and the potential change thereof was investigated. It was confirmed that the voids at the end portions of the ribbed electrodes before the test were filled with phosphoric acid at about 60% or more. Figure 4
It is a figure which shows the electric potential change obtained in this way, and as shown in this FIG. 4, the characteristic curve X1 by a present Example compares with the characteristic curve Y1 of a prior art example, and long-time driving | operation is performed. It can be seen that the battery performance does not deteriorate. This result demonstrates that the gas seal structure of this example is remarkably superior to the conventional example, and since the gas leak amount is small, high battery performance can be maintained for a long time.

【0046】(3)実施例の効果 以上のように、本発明によるガスシール構造を持つリブ
付電極の端部、あるいはバイポーラ型の平板状電極の電
極端部、電解質リザーバープレートの電極端部は、その
全気孔容積に対する気孔半径10μm以上の気孔の気孔
容積の割合が30%以下になるように構成したことによ
り、従来に比べてガスシール性を格段に向上させること
ができ、その結果、長時間にわたって安定した性能を維
持できる。
(3) Effects of Embodiments As described above, the end of the ribbed electrode having the gas sealing structure according to the present invention, the electrode end of the bipolar plate electrode, or the electrode end of the electrolyte reservoir plate is Since the ratio of the pore volume of pores having a pore radius of 10 μm or more to the total pore volume is 30% or less, the gas sealability can be significantly improved as compared with the conventional one, and as a result, Stable performance can be maintained over time.

【0047】なお、全気孔容積に対する気孔半径10μ
m以上の気孔の気孔容積の割合は、本実施例のように3
0%程度以下であれば十分なシール性が得られるが、さ
らに言及すれば、30%程度以下よりもさらに10%以
下が最も好ましく、シール性はより確実となる。
It should be noted that the pore radius relative to the total pore volume is 10 μm.
The ratio of the pore volume of pores of m or more is 3 as in this embodiment.
If it is about 0% or less, sufficient sealing property can be obtained, but if further mentioned, 10% or less is more preferable than about 30% or less, and the sealing property becomes more reliable.

【0048】(4)他の実施例 前記実施例では、充填材としてカーボンを使用している
が、他の黒鉛、SiC、PTFEなどのフッ素樹脂、金
属酸化物、金属炭化物などの耐熱、耐リン酸性の粉体を
使用した場合にも同様の効果が得られることは言うまで
もない。
(4) Other Examples Although carbon is used as the filler in the above examples, other graphite, fluororesins such as SiC and PTFE, heat resistance and phosphorus resistance such as metal oxides and metal carbides. Needless to say, the same effect can be obtained when an acidic powder is used.

【0049】また、前記実施例では、充填材を電極端部
に充填する方法を使用しているが、電極端部において、
その全気孔容積に対する気孔半径10μm以上の気孔の
気孔容積の割合が30%以下になるような方法であれ
ば、いかなる方法を使用することも可能であり、充填材
を充填した場合と同様の効果が得られることはいうまで
もない。
Further, in the above-mentioned embodiment, the method of filling the electrode end portion with the filling material is used.
Any method can be used as long as the ratio of the pore volume of pores having a pore radius of 10 μm or more to the total pore volume is 30% or less, and the same effect as in the case of filling with a filler can be used. Needless to say, can be obtained.

【0050】例えば、多孔質電極基板の製造時に、この
電極基板の両端部に電極基板形成材料をあらかじめ多く
散布し、加圧加熱して端部の密度を上げることにより、
電極端部における、その全気孔容積に対する気孔半径1
0μm以上の気孔の気孔容積の割合を30%以下にする
ことが可能である。また、電極基板端部に、全気孔容積
に対する気孔半径10μm以上の気孔の気孔容積の割合
が30%以下の炭素板を予め接着することもできる。あ
るいは、多孔質炭素板の両端部に配置するプリプレグの
積層枚数を中央部分より多くし、加圧加熱して一体化す
ることにより、全気孔容積に対する気孔半径10μm以
上の気孔の気孔容積の割合が30%以下となるように構
成することも可能である。
For example, when manufacturing a porous electrode substrate, a large amount of the electrode substrate forming material is previously sprayed on both ends of this electrode substrate and heated under pressure to increase the density of the ends.
Pore radius 1 at the end of the electrode for its total pore volume
It is possible to reduce the proportion of pore volume of pores of 0 μm or more to 30% or less. Further, a carbon plate having a ratio of the pore volume of pores having a pore radius of 10 μm or more to the total pore volume of 30% or less to the end portion of the electrode substrate may be adhered in advance. Alternatively, the ratio of the pore volume of pores with a pore radius of 10 μm or more to the total pore volume is increased by increasing the number of laminated prepregs arranged at both ends of the porous carbon plate from the central portion and heating under pressure to integrate them. It is also possible to configure it to be 30% or less.

【0051】[0051]

【発明の効果】以上のように、本発明においては、リブ
付電極の端部、あるいはバイポーラ型の平板状の電極の
電極端部と電解質リザーバープレート端部を、全気孔容
積に対する気孔半径10μm以上の気孔の気孔容積の割
合が30%以下になるように構成することにより、電極
端部のガスシール性を従来に比べて格段に向上させるこ
とができるため、長時間にわたって安定した性能を維持
できる信頼性の高い燃料電池を得ることができる。
As described above, according to the present invention, the end of the ribbed electrode, or the end of the electrode of the bipolar plate electrode and the end of the electrolyte reservoir plate are set to have a pore radius of 10 μm or more with respect to the total pore volume. By configuring the pore volume ratio of the pores to be 30% or less, the gas sealability at the electrode end can be significantly improved as compared with the conventional one, so that stable performance can be maintained for a long time. It is possible to obtain a highly reliable fuel cell.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電池の一実施例を示す図であ
り、特にそのリブ付電極の一部を模式的に示す斜視図。
FIG. 1 is a view showing an embodiment of a fuel cell according to the present invention, and is a perspective view schematically showing a part of an electrode with ribs in particular.

【図2】図1のリブ付電極の電極端部Aの気孔分布と全
気孔容積に対する累積気孔容積を示す特性図。
FIG. 2 is a characteristic diagram showing a pore distribution at an electrode end portion A of the ribbed electrode of FIG. 1 and a cumulative pore volume with respect to a total pore volume.

【図3】リブ付電極の電極端部の全気孔容積に対する気
孔半径10μm以上の気孔の気孔容積の割合とガスリー
ク量の関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a gas leak amount and a ratio of a pore volume of pores having a pore radius of 10 μm or more with respect to a total pore volume of an electrode end portion of a ribbed electrode.

【図4】図1のガスシール構造を持つリブ付電極を使用
して製作した本発明による単位セルX1の長時間運転に
おける電位変化と、従来のガスシール構造を持たないリ
ブ付電極を使用して製作した単位セルY1の長時間運転
における電位変化を示す特性図。
FIG. 4 shows a change in potential of the unit cell X1 according to the present invention manufactured using the ribbed electrode having the gas seal structure of FIG. 1 during long-term operation and the ribbed electrode having no conventional gas seal structure. The characteristic view which shows the electric potential change in the long-term operation of the unit cell Y1 manufactured by.

【図5】リブ付き電極を用いた燃料電池の単位セルを模
式的に示す斜視図。
FIG. 5 is a perspective view schematically showing a unit cell of a fuel cell using a ribbed electrode.

【図6】バイポーラ型燃料電池の単位セルを模式的に示
す斜視図。
FIG. 6 is a perspective view schematically showing a unit cell of a bipolar fuel cell.

【図7】従来のリブ付電極の電極端部Bの気孔分布と全
気孔容積に対する累積気孔容積を示す特性図。
FIG. 7 is a characteristic diagram showing the pore distribution of the electrode end B of the conventional ribbed electrode and the cumulative pore volume with respect to the total pore volume.

【符号の説明】[Explanation of symbols]

1…リブ付電極 2…溝 3…電極端部 4…充填材 11…アノード 12…カソード 13…マトリックス層 14…燃料流路 15…酸化剤流路 16…触媒層 17…電解質リザーバープレート DESCRIPTION OF SYMBOLS 1 ... Electrode with rib 2 ... Groove 3 ... Electrode end 4 ... Filler 11 ... Anode 12 ... Cathode 13 ... Matrix layer 14 ... Fuel channel 15 ... Oxidant channel 16 ... Catalyst layer 17 ... Electrolyte reservoir plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液体燃料と液体酸化剤の流通溝が形成さ
れた一対の多孔質性のリブ付電極に触媒層を形成し、電
解質を含んだマトリックスを挟んで配置して単位セルを
形成する燃料電池の電極において、 前記リブ付電極の流体が通過する溝より外側に位置する
端部は、電解質によりウエットシールされ、かつその部
分での10μm以上の気孔を全気孔容積の30%以下と
したことを特徴とする燃料電池の電極。
1. A unit cell is formed by forming a catalyst layer on a pair of porous ribbed electrodes in which liquid fuel and liquid oxidizer flow channels are formed and sandwiching a matrix containing an electrolyte therebetween. In the electrode of the fuel cell, the end portion of the ribbed electrode located outside the groove through which the fluid passes is wet-sealed with an electrolyte, and the pores of 10 μm or more in that portion are 30% or less of the total pore volume. An electrode for a fuel cell, which is characterized in that
【請求項2】 一対の多孔質性の平板状電極上に触媒層
を形成し、この一対の多孔質性の平板状電極をマトリッ
クスを挟んで形成し、この一対の多孔質性の平板状電極
の外部に、液体燃料と液体酸化剤の流通溝が形成された
電解質を蓄積する多孔質性の電解質リザーバープレート
を配置して単位セルを形成する燃料電池の電極におい
て、 前記平板状電極基板の端部と電解質リザーバープレート
の流体が通過する溝より外側に位置する端部は、電解質
によりウエットシールされ、かつその部分で10μm以
上の気孔を全気孔容積の30%以下としたことを特徴と
する燃料電池の電極。
2. A catalyst layer is formed on a pair of porous flat plate electrodes, the pair of porous flat plate electrodes are formed with a matrix interposed therebetween, and the pair of porous flat plate electrodes are formed. In the electrode of the fuel cell in which a unit cell is formed by arranging a porous electrolyte reservoir plate for accumulating the electrolyte in which the liquid fuel and the liquid oxidant flow grooves are formed outside the end of the flat electrode substrate. And an end portion of the electrolyte reservoir plate located outside the groove through which the fluid passes are wet-sealed by the electrolyte, and the pores of 10 μm or more in the portion are 30% or less of the total pore volume. Battery electrode.
【請求項3】 リブ付電極の流体が通過する溝より外側
に位置する端部は、溶媒に所定濃度の充填剤を分散させ
た溶液を、リブ付電極の端部での10μm以上の気孔を
全気孔容積の30%以下であるように含浸させ、含浸後
溶液中の溶媒のみを除去することを特徴とする燃料電池
の製造方法。
3. The end portion of the ribbed electrode located outside the groove through which the fluid passes has a solution in which a filler having a predetermined concentration is dispersed in a solvent, and has pores of 10 μm or more at the end portion of the ribbed electrode. A method for producing a fuel cell, which comprises impregnating so as to have a total pore volume of 30% or less, and removing only the solvent in the solution after impregnation.
【請求項4】 平板状電極基板の端部と電解質リザーバ
ープレートの流体が通過する溝より外側に位置する端部
は、溶媒に所定濃度の充填剤を分散させた溶液を、電解
質リザーバープレートの端部での10μm以上の気孔の
全気孔容積の30%以下であるように含浸させ、含浸後
溶液中の溶媒のみを除去することを特徴とする燃料電池
の製造方法。
4. The end portion of the flat electrode substrate and the end portion of the electrolyte reservoir plate located outside the groove through which the fluid passes, the end portion of the electrolyte reservoir plate containing a solution of a filler having a predetermined concentration dispersed in a solvent. The method for producing a fuel cell is characterized in that impregnation is performed so as to be 30% or less of the total pore volume of pores of 10 μm or more in the part, and only the solvent in the solution is removed after impregnation.
【請求項5】 リブ付電極の端部ならびに平板状電極基
板の端部、電解質リザーバープレートの端部に充填する
充填剤は、カーボン、黒鉛、フッ素樹脂、金属酸化物、
金属炭化物の粒子であることを特徴とする燃料電池の電
極。
5. The filler for filling the end of the ribbed electrode, the end of the flat electrode substrate, and the end of the electrolyte reservoir plate is carbon, graphite, fluororesin, metal oxide,
An electrode for a fuel cell, which is particles of a metal carbide.
JP6216374A 1993-09-09 1994-09-09 Fuel cell electrode and manufacture thereof Pending JPH07134994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6216374A JPH07134994A (en) 1993-09-09 1994-09-09 Fuel cell electrode and manufacture thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-224124 1993-09-09
JP22412493 1993-09-09
JP6216374A JPH07134994A (en) 1993-09-09 1994-09-09 Fuel cell electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07134994A true JPH07134994A (en) 1995-05-23

Family

ID=26521403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6216374A Pending JPH07134994A (en) 1993-09-09 1994-09-09 Fuel cell electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07134994A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156099A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp Humidifier and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156099A (en) * 2004-11-29 2006-06-15 Mitsubishi Electric Corp Humidifier and its manufacturing method

Similar Documents

Publication Publication Date Title
US4756981A (en) Seal structure for an electrochemical cell
US4824739A (en) Method of operating an electrochemical cell stack
KR100374281B1 (en) Fuel Cell
RU2182387C2 (en) Bipolar separator plate of fuel cell with proton-exchange membrane
US4652502A (en) Porous plate for an electrochemical cell and method for making the porous plate
KR100483123B1 (en) Separator for Fuel Cell and Method of Manufacture Therefor
CN100511787C (en) Gas diffusion layer and fuel cell using same
EP0107397B1 (en) Edge seal for a porous gas distribution plate of a fuel cell
JP2005514745A (en) Porous carbon body for fuel cell having electrically conductive hydrophilic agent
JPH0230143B2 (en)
KR100532897B1 (en) Electrode for fuel cell and fuel cell
WO2002027842A1 (en) Fuel cell separator, method for manufacturing the separator, and solid polymer fuel cell using the separator
JP2007128671A (en) Gas diffusion electrode, film-electrode assembly and manufacturing method of the same, and solid polymer fuel cell
Tomantschger et al. Structural analysis of alkaline fuel cell electrodes and electrode materials
JP5193478B2 (en) Gas diffusion electrode, membrane-electrode assembly and method for producing the same, and polymer electrolyte fuel cell
JP2007012424A (en) Gas diffusion electrode, membrane-electrode joined body and its manufacturing method, and solid polymer fuel cell
JP2007179870A (en) Gas diffusion electrode, membrane-electrolyte assembly, polymer electrolyte fuel cell and methods for producing them
JPH07134994A (en) Fuel cell electrode and manufacture thereof
JP2009129599A (en) Membrane electrode stack and fuel cell including the same
JP2009037933A (en) Gas diffusion electrode for solid polymer fuel cell, membrane-electrode assembly and manufacturing method for the solid polymer fuel cell, and the solid polymer fuel cell
JP2005174765A (en) Membrane electrode assembly, its manufacturing method, and its usage
US20130260277A1 (en) Diffusion layer structure of fuel cell
JP2009187903A (en) Carbon porous material, method of manufacturing the same, gas diffusion layer, and fuel cell using the same
JPH02226663A (en) Gas seal method for base material end for fuel cell
JPH06236766A (en) Fuel cell