JPS6243048B2 - - Google Patents

Info

Publication number
JPS6243048B2
JPS6243048B2 JP13844981A JP13844981A JPS6243048B2 JP S6243048 B2 JPS6243048 B2 JP S6243048B2 JP 13844981 A JP13844981 A JP 13844981A JP 13844981 A JP13844981 A JP 13844981A JP S6243048 B2 JPS6243048 B2 JP S6243048B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
temperature
waste gas
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13844981A
Other languages
Japanese (ja)
Other versions
JPS5841210A (en
Inventor
Shunichi Anzai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13844981A priority Critical patent/JPS5841210A/en
Publication of JPS5841210A publication Critical patent/JPS5841210A/en
Publication of JPS6243048B2 publication Critical patent/JPS6243048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein

Description

【発明の詳細な説明】 本発明は廃熱回収発電プラントに係り、特に廃
ガス温度の変動を考慮して廃熱回収発電効率が良
好な廃熱回収発電プラントを提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waste heat recovery power generation plant, and particularly provides a waste heat recovery power generation plant that takes into account fluctuations in waste gas temperature and has good waste heat recovery power generation efficiency.

石油資源の枯渇が間近いと予想されることか
ら、エネルギを有効に利用するための方式が種々
試みられている。例えば、鉱工業生産システム等
(以下生産システムと呼ぶ)において、製品の残
熱あるいは廃熱を利用して原料の予熱を行うなど
の省エネルギ化を図つているが、さらに生産シス
テムでは利用出来ない低レベルの廃熱から電気動
力を回収するための装置が提案されている。第1
図は、従来実施されている廃熱回収発電プラント
の系統を示すものである。第1図において1は蒸
発器、2は予熱器、4はタービン発電機3で駆動
される発電機、5は凝縮器、6は媒体を凝縮器5
から予熱器2へ送るポンプである。蒸発器1は、
上部ドラム7、加熱管8、下部ドラム9および下
降管10から構成されている。かかる廃熱回収発
電プラントの作動媒体には、廃ガス温度が十分高
い場合には水―蒸気を用いることも可能である
が、通常は廃ガス源である生産システムで十分に
利用されて200〜400℃の温度に低下しているた
め、廃熱回収発電効率の観点からトリクロロトリ
フルオロエタン、トリクロロトリフルオロメタン
等の低沸点媒体(以下媒体と記す)が利用されて
いる。媒体は予熱器2でその供給圧力の飽和温度
近くまで予熱され、さらに給液管11より蒸発器
1の上部ドラム7に供給される。蒸発器1では媒
体が加熱管8で廃ガスにより加熱され、その一部
が気化蒸発する。それに伴つて加熱管8中には媒
体の気泡が発生し、下降管10中の媒体との密度
差によつて、上部ドラム7、下降管10、下部ド
ラム9および加熱管8を系とした自然循環流が生
じる。発生媒体蒸気は上部ドラム7で分離し、主
蒸気管13よりタービン3へ供給して動力を回収
し、凝縮器5よりポンプ6を介して予熱器2へ戻
る閉サイクルを形成する。なお16及び17は廃
ガス胴を示す。
BACKGROUND OF THE INVENTION Since it is predicted that oil resources will soon be depleted, various methods have been attempted to utilize energy effectively. For example, in mining and industrial production systems (hereinafter referred to as production systems), efforts are being made to save energy by preheating raw materials using the residual heat or waste heat of products, but there are also energy savings that cannot be used in production systems. A device has been proposed for recovering electrical power from waste heat at a level. 1st
The figure shows the system of a conventional waste heat recovery power generation plant. In FIG. 1, 1 is an evaporator, 2 is a preheater, 4 is a generator driven by a turbine generator 3, 5 is a condenser, and 6 is a condenser 5
This is a pump that sends water from the air to the preheater 2. Evaporator 1 is
It consists of an upper drum 7, a heating tube 8, a lower drum 9 and a downcomer 10. Water-steam can be used as the working medium in such waste heat recovery power generation plants if the waste gas temperature is high enough, but usually water-steam is used as the working medium in the production system, which is the waste gas source. Since the temperature has dropped to 400°C, low boiling point media (hereinafter referred to as media) such as trichlorotrifluoroethane and trichlorotrifluoromethane are used from the viewpoint of waste heat recovery power generation efficiency. The medium is preheated in the preheater 2 to a temperature close to the saturation temperature of the supply pressure, and is further supplied to the upper drum 7 of the evaporator 1 through the liquid supply pipe 11. In the evaporator 1, the medium is heated by the waste gas in the heating tube 8, and a part of the medium is vaporized. Along with this, bubbles of the medium are generated in the heating tube 8, and due to the density difference with the medium in the downcomer tube 10, the system consisting of the upper drum 7, downcomer tube 10, lower drum 9 and heating tube 8 Circulating flow occurs. The generated medium steam is separated in the upper drum 7, supplied to the turbine 3 through the main steam pipe 13 to recover power, and returns to the preheater 2 from the condenser 5 via the pump 6, forming a closed cycle. Note that 16 and 17 indicate waste gas cylinders.

かかる従来の廃熱回収プラントでは、廃ガス温
度の変動時に廃熱回収発電効率が低い欠点があつ
た。すなわち、廃熱回収発電プラントを設計する
際には熱源温度を生産システムの廃ガス条件を見
較べてほぼその平均温度に設定されるが、実機で
は生産システムの生産状況により廃ガス温度が常
時変動する。従来の定負荷運転プラントでは廃ガ
ス温度が設計温度より高温になつたときには、廃
ガス供給胴15のダンパー19とバイパス放出胴
20のバイパスダンパー18との調節により廃ガ
スの一部を外部放出し、蒸発器1への廃ガス供給
量を減らすことによつて媒体の蒸発量を調節し発
電出力を定格出力に押えている。また従来には、
廃ガス温度の高温変動時に廃ガス供給量を調節し
ないで蒸発器1の蒸発量を増加させ、タービン3
の定格蒸気量以上の蒸気量をバイパス蒸気管14
で凝縮器5に放出して冷却することもある。
Such conventional waste heat recovery plants have the disadvantage that the efficiency of waste heat recovery and power generation is low when the temperature of the waste gas fluctuates. In other words, when designing a waste heat recovery power generation plant, the heat source temperature is set to approximately the average temperature after comparing the waste gas conditions of the production system, but in actual equipment, the waste gas temperature constantly fluctuates depending on the production status of the production system. do. In a conventional constant load operation plant, when the exhaust gas temperature becomes higher than the design temperature, a part of the exhaust gas is discharged to the outside by adjusting the damper 19 of the exhaust gas supply cylinder 15 and the bypass damper 18 of the bypass discharge cylinder 20. By reducing the amount of waste gas supplied to the evaporator 1, the amount of evaporation of the medium is adjusted, thereby suppressing the power generation output to the rated output. Also, conventionally,
When the exhaust gas temperature fluctuates, the evaporation amount of the evaporator 1 is increased without adjusting the exhaust gas supply amount, and the turbine 3
bypass steam pipe 14
It may also be discharged to a condenser 5 for cooling.

さらに廃ガス温度が設計温度より低下した場合
には、蒸発器1における媒体の蒸発量は減少する
が、それに伴つて予熱器2の廃ガスと媒体との温
度差が大きくなり、予熱器2内で媒体が沸騰する
ようになる。予熱器内における媒体の沸騰現象
は、伝熱管の損傷やプラントを安定に運転するた
めに与える影響が大きいためさける必要がある。
従来のプラントでは、第1図に示すごとく予熱器
2の媒体放出管を分岐してバイパス液管12を設
け、廃ガス温度が設計温度より低下した場合には
予熱器2への媒体供給量を増やして媒体の沸騰を
防ぎ、その増加分をバイパス液管12で凝縮器5
へ放出して冷却している。
Furthermore, when the exhaust gas temperature falls below the design temperature, the amount of evaporation of the medium in the evaporator 1 decreases, but the temperature difference between the exhaust gas and the medium in the preheater 2 increases, and the temperature inside the preheater 2 increases. The medium will come to a boil. The boiling phenomenon of the medium in the preheater must be avoided because it can damage the heat exchanger tubes and have a large effect on the stable operation of the plant.
In conventional plants, as shown in Fig. 1, the medium discharge pipe of the preheater 2 is branched to provide a bypass liquid pipe 12, and when the waste gas temperature falls below the design temperature, the amount of medium supplied to the preheater 2 is reduced. The increased amount is transferred to the condenser 5 through the bypass liquid pipe 12 to prevent the medium from boiling.
It is cooled by releasing it to the

これらのバイパス廃ガス放出量あるいはバイパ
ス蒸気放出量、またはバイパス液放出量は廃ガス
温度が設計温度との差が大きくなるほど多く、高
温廃ガスの一部を廃棄し、またはせつかく廃ガス
熱を熱エネルギとして回収しながら動力化するこ
となく凝縮器で廃棄していることになる。
The amount of bypass waste gas released, bypass steam released, or bypass liquid released increases as the difference between the waste gas temperature and the design temperature increases. This means that while the heat energy is recovered, it is disposed of in the condenser without being turned into power.

このような廃ガス温度の変動時の従来プラント
の運転状況を試算した。試算条件として、設計廃
ガス温度250℃、廃ガス量480000Nm3/k、熱回
収媒体として前記トリクロロトリフルオロエタン
を使用し、作動圧力14Kg/cm2、蒸発器のピンチポ
イント24℃、予熱器出口の媒体サブクール温度10
℃とした。かかる条件において廃熱回収発電プラ
ントを設計し、廃ガス温度が±30℃の幅でsin形
状に変動した場合のヒートバランスを予熱器出口
媒体サブクール温度10℃以上として求めた。第2
図に試算結果を示す。ここで廃ガスのサイクル時
間は1時間として試算した。廃ガス温度が定格設
計温度である250℃では約2810kwの発電出力が得
られ、バイパス蒸気放出流量あるいはそれ相当の
廃ガスバイパス放出量およびバイパス液放出流量
は零である。廃ガス温度が設計温度250℃以上に
なると、蒸発器1の蒸発量が増えるがその増加分
はバイパス蒸気管14で凝縮器5に放出し(バイ
パス蒸気流量)、あるいはそれ相当の廃ガス量を
ダンパー19およびバイパスダンパー18の調節
によつて外部放出する。これによつて主蒸気流量
を一定にコントロールし、発電出力を一定に押え
ている。一方、廃ガス温度の低下時には媒体蒸発
量および発電出力が減少するのは当然であるが、
それに伴つてバイパス放出液が流れ出し、より低
温ほど多量になる。
We calculated the operating status of a conventional plant under such fluctuations in waste gas temperature. The calculation conditions are: design waste gas temperature 250℃, waste gas amount 480000Nm 3 /k, using the above-mentioned trichlorotrifluoroethane as the heat recovery medium, operating pressure 14Kg/cm 2 , evaporator pinch point 24℃, preheater outlet. Medium subcool temperature of 10
℃. A waste heat recovery power generation plant was designed under these conditions, and the heat balance when the waste gas temperature fluctuated in a sinusoidal manner within a range of ±30°C was determined by setting the preheater outlet medium subcool temperature to 10°C or higher. Second
The figure shows the trial calculation results. Here, the cycle time of waste gas was calculated as 1 hour. When the waste gas temperature is the rated design temperature of 250°C, a power generation output of approximately 2810 kW is obtained, and the bypass steam release flow rate or the equivalent waste gas bypass release flow rate and bypass liquid release flow rate are zero. When the waste gas temperature exceeds the design temperature of 250°C, the amount of evaporation in the evaporator 1 increases, but the increased amount is released into the condenser 5 through the bypass steam pipe 14 (bypass steam flow rate), or the amount of waste gas equivalent to the amount is reduced. External discharge is achieved by adjusting the damper 19 and the bypass damper 18. This controls the main steam flow rate and keeps the power generation output constant. On the other hand, it is natural that the amount of medium evaporation and power generation output decrease when the exhaust gas temperature decreases;
Along with this, the bypass discharge liquid flows out, and the amount becomes larger as the temperature becomes lower.

このように従来の廃熱回収発電プラントでは、
生産システムの生産状況によつて発生する廃ガス
温度の変動時に、その高温廃ガスの一部を廃棄し
たり、せつかく熱エネルギを回収しながら電気動
力に変換することなく冷却源に放熱している。
In this way, in conventional waste heat recovery power generation plants,
When the temperature of waste gas generated varies depending on the production status of the production system, some of the high-temperature waste gas can be disposed of, or the heat energy can be recovered and radiated to a cooling source without converting it into electric power. There is.

本発明の目的は上記従来の欠点を除き、廃ガス
温度の変動時の有効エネルギを利用して発電出力
の増加を図り、廃熱回収発電効率の良好な廃熱回
収発電プラントを提供するものである。
An object of the present invention is to eliminate the above-mentioned conventional drawbacks, and to provide a waste heat recovery power generation plant that utilizes effective energy when the temperature of waste gas fluctuates to increase power generation output and has good waste heat recovery power generation efficiency. be.

本発明は、廃ガスの一部で加熱蓄熱する蓄熱装
置を設置し、予熱器バイパス液を前記蓄熱装置で
加熱蒸気化して発電出力を増加させるものであ
る。
The present invention installs a heat storage device that heats and stores heat using a part of the waste gas, and heats and vaporizes preheater bypass liquid with the heat storage device to increase power generation output.

本発明の一実施例を第3図により説明する。第
3図において従来と同一構成部品は第1図と同一
番号で示してあり、21はその内部に蓄熱材2
2、媒体を通す伝熱管23を装填した蓄熱装置で
ある。蓄熱装置21にはバイパス放出廃ガスを供
給するバイパス放出胴20、予熱器バイパス放出
液を導びくバイパス液管12を接続し、さらに発
生蒸気を蒸発器1からの主蒸気管13に供給する
ための蒸気管25を配管する。蓄熱材22にはコ
ンクリート、炭石、不燃性油等の顕熱を利用して
蓄熱するものや、KNO3―NaNO2―NaNO3(53―
40―7w%,mp142℃、融解潜熱19.4kcal/Kg)、
FeCl3―NaCl(76.5―23.5w%、mp158℃、融解
潜熱37.7kcal/Kg)、KOH―NaOH(59―41w
%、mp170℃、融解潜熱55.1kcal/Kg)等の固液
相変化に伴う融解潜熱を利用するものが考えられ
る。被加熱体である媒体をタービンを駆動する一
定温度に加熱するためには、その主蒸気温度に近
い温度に融点のある潜熱を利用する蓄熱材の方が
望ましい。この場合のように、あるいは不燃性油
のように蓄熱材が液体となる場合には、蓄熱材2
2は小容量に充填し、あるいは受血に納めて装填
しても良い。さらに第3図の蓄熱器21は蓄熱材
22を内臓した構造を示したが、蓄熱材を別置し
て熱交換器を循環する形成でも良い。なお26は
廃ガス胴を示す。
An embodiment of the present invention will be described with reference to FIG. In FIG. 3, components that are the same as the conventional ones are indicated by the same numbers as in FIG.
2. It is a heat storage device loaded with heat transfer tubes 23 through which a medium passes. The heat storage device 21 is connected to a bypass discharge shell 20 for supplying bypass discharged waste gas, a bypass liquid pipe 12 for guiding preheater bypass discharged liquid, and further for supplying generated steam to the main steam pipe 13 from the evaporator 1. A steam pipe 25 is installed. The heat storage material 22 includes materials that store heat using sensible heat such as concrete, coal stone, and non-flammable oil, and materials such as KNO 3 -NaNO 2 -NaNO 3 (53-
40-7w%, mp142℃, latent heat of fusion 19.4kcal/Kg),
FeCl 3 - NaCl (76.5-23.5w%, mp158℃, latent heat of fusion 37.7kcal/Kg), KOH-NaOH (59-41w
%, mp 170°C, latent heat of fusion 55.1 kcal/Kg), etc., that utilize the latent heat of fusion associated with solid-liquid phase change. In order to heat the medium, which is the object to be heated, to a constant temperature that drives the turbine, it is preferable to use a heat storage material that uses latent heat that has a melting point close to the main steam temperature. As in this case, or when the heat storage material is a liquid such as non-flammable oil, the heat storage material 2
2 may be filled in a small volume or placed in a blood vessel. Further, although the heat storage device 21 in FIG. 3 has a structure in which the heat storage material 22 is built-in, the heat storage material may be placed separately and circulated through a heat exchanger. Note that 26 indicates a waste gas cylinder.

本システムでも廃ガス温度が定格設計温度とほ
ぼ同温度のときは、前記従来プラントの運転方式
と同一である。本発明の作用および効果は、熱源
である生産システムの生産状況の変化により廃ガ
ス温度が変動したときに現われる。すなわち、廃
ガス温度が定格設計温度以上に上昇したときに
は、ダンパー19、バイパスダンパー18の開度
調節により蒸発器1への廃ガス供給量を減らし、
その蒸発量を定格運転必要蒸気量に押える。余分
な廃ガス量はバイパス放出胴20より蓄熱器21
に導びき、蓄熱材22を加熱し蓄熱する。次に廃
ガス温度が設計温度より低下したときには、予熱
器2において媒体が沸騰しないように媒体供給量
を増やし、その増加分をバイパス液管12で蓄熱
器21に導びき、伝熱管23を通して蓄熱材22
により加熱蒸気化させ、発生蒸気を蒸気管25よ
り主蒸気管13、タービン3へ供給して電気動力
を得る。
In this system, when the exhaust gas temperature is approximately the same as the rated design temperature, the operation method is the same as that of the conventional plant. The functions and effects of the present invention appear when the temperature of the exhaust gas fluctuates due to changes in the production status of the production system that is the heat source. That is, when the exhaust gas temperature rises above the rated design temperature, the amount of exhaust gas supplied to the evaporator 1 is reduced by adjusting the opening degrees of the damper 19 and the bypass damper 18.
The amount of evaporation is suppressed to the amount of steam required for rated operation. The excess amount of waste gas is transferred from the bypass discharge cylinder 20 to the heat storage device 21.
heats the heat storage material 22 and stores heat. Next, when the waste gas temperature falls below the design temperature, the amount of medium supplied is increased to prevent the medium from boiling in the preheater 2, and the increased amount is guided to the heat storage device 21 through the bypass liquid pipe 12, and is stored through the heat transfer pipe 23. Material 22
The steam is heated and vaporized, and the generated steam is supplied from the steam pipe 25 to the main steam pipe 13 and the turbine 3 to obtain electric power.

本発明の効果を前記従来例と同一条件のもとに
試算した。その試算結果を第4図に示す。本計算
では、蓄熱器21の蓄熱材22には冷媒トリクロ
ロトリフルオロエタンの供給圧力14Kg/cm2の沸点
約156℃に近い温度に融点のある前記蓄熱材例
FeCl3―NaCl(mp158℃)を使用して試算した。
第4図において蒸発器発生主蒸気流量は、蒸発器
1で発生しタービン3へ供給する主蒸気流量であ
り、廃ガス温度が定格設計温度250℃以上では廃
ガスの一部をバイパス放出させるため一定量とな
るが、設計温度以下では急激に減少する。有効蓄
熱量は蓄熱器21に蓄えられた利用可能な蓄熱
量、すなわち予熱器バイパス媒体液温度以上に相
当する熱量であり、廃ガス温度が定格設計温度
250℃以上のときにバイパス放出廃ガスにより蓄
えられる。蓄熱器21の必要蓄熱容量すなわち蓄
熱材22の必要量は、最高有効蓄熱量を蓄えるこ
とが可能な量にする必要があり、本試算例の場合
には最高有効蓄熱量約7×105kcalから約18500Kg
のFeCl3―NaClを必要とする。さらに第4図にお
いてバイパス液の蓄熱器加熱主蒸気流量は、廃ガ
ス温度が設計温度250℃以下に低下したときに予
熱器2のバイパス液を蓄熱装置21により加熱蒸
発させた媒体蒸気流量であり、本発明ではこの蒸
気により発電出力が増加する。このとき蓄熱装置
の有効蓄熱量は媒体に放熱するため順時減少す
る。また廃ガス温度が低下するほど予熱器バイパ
ス液量が多くなるので発生蒸気量がより増加す
る。なお、プラントを運転開始した直後の有効蓄
熱量は蓄熱材22の温度が常温のため零である
が、連続運転のもとでは最低使用蓄熱材温度(す
なわち予熱媒体温度)を下限として第4図に示し
たごとく連続的に使用することが出来る。
The effects of the present invention were estimated under the same conditions as the conventional example. The trial calculation results are shown in Figure 4. In this calculation, the heat storage material 22 of the heat storage device 21 is an example of a heat storage material having a melting point close to the boiling point of approximately 156°C at a supply pressure of 14 Kg/cm 2 of the refrigerant trichlorotrifluoroethane.
Estimated using FeCl 3 -NaCl (mp 158℃).
In Fig. 4, the evaporator generated main steam flow rate is the main steam flow rate generated in the evaporator 1 and supplied to the turbine 3, and when the waste gas temperature is higher than the rated design temperature of 250°C, part of the waste gas is released by bypass. Although it is a constant amount, it decreases rapidly below the design temperature. The effective heat storage amount is the usable heat storage amount stored in the heat storage device 21, that is, the heat amount equivalent to the preheater bypass medium liquid temperature or higher, and the exhaust gas temperature is the rated design temperature.
It is stored by bypass discharged waste gas when the temperature is above 250℃. The required heat storage capacity of the heat storage device 21, that is, the required amount of the heat storage material 22, needs to be the amount that can store the maximum effective heat storage amount, and in the case of this trial calculation example, the maximum effective heat storage amount is approximately 7 × 10 5 kcal. From about 18500Kg
FeCl 3 - requires NaCl. Further, in FIG. 4, the regenerator heating main steam flow rate of the bypass liquid is the medium steam flow rate when the bypass liquid in the preheater 2 is heated and evaporated by the heat storage device 21 when the exhaust gas temperature drops to the design temperature of 250°C or less. In the present invention, this steam increases the power generation output. At this time, the effective heat storage amount of the heat storage device gradually decreases because heat is radiated to the medium. Furthermore, as the exhaust gas temperature decreases, the amount of preheater bypass liquid increases, so the amount of generated steam increases. Note that the effective amount of heat storage immediately after the plant starts operation is zero because the temperature of the heat storage material 22 is room temperature, but under continuous operation, the minimum usable heat storage material temperature (i.e., preheating medium temperature) is set as the lower limit as shown in Figure 4. It can be used continuously as shown.

本実施例における発電出力は第4図に示したご
とく、従来プラントの発電出力(点線)より増加
していることがわかる。廃ガス温度変動1サイク
ル(本試算では1時間)当りの発電量は、本発明
では約2690kw・hとなり、従来例の約2460kw・
hより約9.3%増加する。この増加割り合いは廃
ガス温度の変動幅により異なり、その計算結果を
まとめて第5図に示した。廃ガス温度が定格設計
温度250℃に対して±30℃、±40℃、±50℃変動し
たときには、従来に比べてそれぞれ約9.3%、13
%、17.5%の発電量増加が見込める。
As shown in FIG. 4, it can be seen that the power generation output in this example is greater than the power generation output (dotted line) of the conventional plant. The amount of power generated per cycle of waste gas temperature fluctuation (1 hour in this trial calculation) is approximately 2,690kw/h in the present invention, compared to approximately 2,460kw/h in the conventional example.
It increases by about 9.3% from h. The rate of increase varies depending on the fluctuation range of the exhaust gas temperature, and the calculation results are summarized in FIG. 5. When the exhaust gas temperature fluctuates by ±30°C, ±40°C, and ±50°C with respect to the rated design temperature of 250°C, the temperature decreases by approximately 9.3% and 13% compared to conventional methods, respectively.
%, an increase in power generation of 17.5% is expected.

以上、本発明の代表的実施例について説明した
が、本発明の範囲内で他の実施方法が考えられ
る。すなわち前記説明では、定負荷運転プラント
の廃ガス温度が定格設計温度と差が生じたときの
運転方法について示したが、負荷追従運転プラン
トでは蒸発器の媒体圧力の測定によつても同様の
運転が出来、同様の効果がある。タービン発電機
にかかる負荷が廃ガスの保有熱量(すなわち蒸発
器の蒸発量)より少ない場合には蒸発器の媒体作
動圧力が上昇する傾向にあり、その圧力が上昇し
ないように廃ガスの一部を蓄熱装置に導びいて蓄
熱する。逆に負荷の方が多い場合には蒸発器の作
動圧力が低下する傾向にあり、その圧力が低下し
ないように蒸発器の蒸発量を押えるとともに予熱
媒体液の一部を蓄熱装置に導びいて加熱蒸発さ
せ、発生蒸気をタービン発電機に供給して発電出
力の増加が図れる。
Although representative embodiments of the invention have been described above, other implementations are possible within the scope of the invention. In other words, in the above explanation, we have shown the operation method when the waste gas temperature of a constant load operation plant differs from the rated design temperature, but in a load following operation plant, the same operation method can also be performed by measuring the medium pressure of the evaporator. can be done and have the same effect. When the load on the turbine generator is less than the heat capacity of the waste gas (that is, the amount of evaporation in the evaporator), the medium working pressure of the evaporator tends to increase, and in order to prevent this pressure from increasing, some of the waste gas is is guided to a heat storage device to store heat. On the other hand, when the load is higher, the operating pressure of the evaporator tends to decrease, so in order to prevent the pressure from decreasing, the amount of evaporation in the evaporator is suppressed and a portion of the preheating medium liquid is guided to the heat storage device. It is possible to increase the power generation output by heating and evaporating the generated steam and supplying it to a turbine generator.

本発明の実施例では、トリクロロトリフルオロ
エタンを媒体とし、試算条件を定めて示した。し
かし、廃ガスの温度レベルによつては他の低沸点
媒体および作動条件でも良い。さらに第4図に示
す本発明の効果の試算では、廃ガス温度の変動サ
イクルを1時間としたが、さらに長時間あるいは
短時間のサイクルでも発明の効果は同一である。
この場合には蓄熱装置の必要蓄熱容量をそのサイ
クル時間および温度変動幅に相応した量にする必
要がある。また、本発明の実施例では蓄熱材に
FeCl3―NaClを用いて記述したが、廃ガス温度お
よび媒体蒸発温度によつては他の蓄熱材料および
蓄熱方式でも良いことは勿論である。
In the examples of the present invention, trichlorotrifluoroethane was used as a medium, and trial calculation conditions were determined and shown. However, other low boiling media and operating conditions may be used depending on the temperature level of the waste gas. Furthermore, in the trial calculation of the effects of the present invention shown in FIG. 4, the exhaust gas temperature fluctuation cycle was set to 1 hour, but the effects of the invention are the same even if the cycle is longer or shorter.
In this case, it is necessary to set the required heat storage capacity of the heat storage device to an amount commensurate with its cycle time and temperature fluctuation range. In addition, in the embodiment of the present invention, the heat storage material
Although FeCl 3 -NaCl was used in the description, it goes without saying that other heat storage materials and heat storage methods may be used depending on the exhaust gas temperature and medium evaporation temperature.

このように本発明によれば、生産システムの生
産状況の変化に伴う廃ガス温度の変動時における
有効エネルギを利用して発電出力の増加が図れ、
廃熱回収発電効率の良好な廃熱回収発電プラント
を提供することが出来る。
As described above, according to the present invention, it is possible to increase the power generation output by using effective energy when the waste gas temperature fluctuates due to changes in the production status of the production system.
A waste heat recovery power generation plant with good waste heat recovery power generation efficiency can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の廃熱回収発電プラントのシステ
ム系統図、第2図は従来プラントの廃ガス温度変
動時における発電出力試算結果を示す線図、第3
図は本発明の一実施例を示す廃熱回収発電プラン
トのシステム系統図、第4図は本発明を実施した
プラントの廃ガス温度変動時の発電出力試算結果
を示す線図、第5図は本発明の効果を従来例と比
較して示した線図である。 1……蒸発器、2……予熱器、3……タービ
ン、4……発電機、5……凝縮器、6……ポン
プ、12……バイパス液管、13……主蒸気管、
15……廃ガス供給胴、20……バイパス放出
胴、21……蓄熱装置、22……蓄熱材、25…
…蒸気管。
Figure 1 is a system diagram of a conventional waste heat recovery power generation plant, Figure 2 is a diagram showing the estimated power generation output when the waste gas temperature fluctuates in the conventional plant, and Figure 3
Figure 4 is a system diagram of a waste heat recovery power generation plant showing an embodiment of the present invention, Figure 4 is a line diagram showing the results of trial calculations of power generation output when the temperature of waste gas fluctuates in the plant implementing the present invention, and Figure 5 is FIG. 3 is a diagram showing the effects of the present invention in comparison with a conventional example. 1... Evaporator, 2... Preheater, 3... Turbine, 4... Generator, 5... Condenser, 6... Pump, 12... Bypass liquid pipe, 13... Main steam pipe,
15... Waste gas supply cylinder, 20... Bypass discharge cylinder, 21... Heat storage device, 22... Heat storage material, 25...
...steam pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 廃ガスにより、低沸点媒体を加熱する予熱器
と、この加熱された低沸点媒体を蒸発させる蒸発
器とを有し、前記蒸発した低沸点媒体の蒸気で作
動するタービンと、このタービンで駆動される発
電機と、タービンで仕事した蒸気を凝縮液化する
凝縮器と、凝縮器で液化した低沸点媒体を上記予
熱器に送入するポンプとを有する廃熱回収発電プ
ラントにおいて、上記廃ガスの一部を供給し、物
質の固液相変化に伴う融解潜熱あるいは温度差に
伴う顕熱を利用する蓄熱材によつて前記廃ガスの
熱を蓄熱する蓄熱器と、上記予熱器で加熱された
低沸点媒体の一部を蓄熱器に供給し、蓄熱器に供
給された低沸点媒体は蓄熱材で蒸発させると共に
蒸発した低沸点媒体をタービンに供給する管路を
設けてなることを特徴とする廃熱回収発電プラン
ト。
1. A turbine that has a preheater that heats a low boiling point medium using waste gas and an evaporator that evaporates the heated low boiling point medium, and that operates with the steam of the evaporated low boiling point medium, and a turbine that is driven by this turbine. In a waste heat recovery power generation plant, the plant has a generator that is used to generate electricity, a condenser that condenses and liquefies the steam worked by the turbine, and a pump that sends the low-boiling medium that has been liquefied in the condenser to the preheater. A heat storage device stores the heat of the waste gas using a heat storage material that utilizes the latent heat of fusion caused by the solid-liquid phase change of the substance or the sensible heat caused by the temperature difference, and the waste gas is heated by the preheater. A part of the low boiling point medium is supplied to the heat storage device, the low boiling point medium supplied to the heat storage device is evaporated by the heat storage material, and a pipe line is provided to supply the evaporated low boiling point medium to the turbine. Waste heat recovery power plant.
JP13844981A 1981-09-04 1981-09-04 Waste heat recovering power plant Granted JPS5841210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13844981A JPS5841210A (en) 1981-09-04 1981-09-04 Waste heat recovering power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13844981A JPS5841210A (en) 1981-09-04 1981-09-04 Waste heat recovering power plant

Publications (2)

Publication Number Publication Date
JPS5841210A JPS5841210A (en) 1983-03-10
JPS6243048B2 true JPS6243048B2 (en) 1987-09-11

Family

ID=15222260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13844981A Granted JPS5841210A (en) 1981-09-04 1981-09-04 Waste heat recovering power plant

Country Status (1)

Country Link
JP (1) JPS5841210A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103405A (en) * 1985-10-30 1987-05-13 Hisaka Works Ltd Recuperator
US8209819B2 (en) 2007-12-07 2012-07-03 Donald Seung-Yeup Rhee Hook and eye fastener
CN102817657B (en) * 2012-09-12 2014-08-27 重庆大学 Heat pipe technology based organic Rankine cycle low-temperature exhaust heat power generating system
JP2017025732A (en) * 2015-07-17 2017-02-02 国立研究開発法人農業・食品産業技術総合研究機構 Power generation system and power generation method using compost fermentation heat

Also Published As

Publication number Publication date
JPS5841210A (en) 1983-03-10

Similar Documents

Publication Publication Date Title
JP3391515B2 (en) Apparatus and method for obtaining power from high pressure geothermal fluid
CN101984761A (en) Combined cycle power plant
EP3004641A2 (en) Solar thermal energy storage system
JPS6048604B2 (en) solar power generation system
JP5542958B2 (en) Waste heat recovery system
JP2008309046A (en) Exhaust heat power generation device, and method for controlling degree of superheating of working medium steam of exhaust heat power generation device
JP2020148357A (en) Power generating system
JP2008267341A (en) Exhaust heat recovering device
JPS6243048B2 (en)
JP2004339965A (en) Power generating device and power generating method
JPS60122865A (en) Solar heat electric power generation apparatus
US10752821B2 (en) Dry cooling systems using thermally induced polymerization
JP2014190285A (en) Binary power generation device operation method
JPS5813112A (en) Waste-heat recovery power plant
JP2002071884A (en) Light water reactor nuclear power generation equipment and method using it
CN206755123U (en) The steam generator and its afterheat utilizing system of a kind of Ferrous Metallurgy
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
Li et al. An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators
Branover et al. Promising applications of the liquid metal MHD energy conversion technology
JPS6243047B2 (en)
JP2000303803A (en) Power generation system
EP2020728A1 (en) An energy storage process and system
JPS6196397A (en) Recovering method of heat energy
US10487694B2 (en) Dry cooling system using thermally induced vapor polymerization
US20200131940A1 (en) Steam power plant having an improved control reserve