JPS62103405A - Recuperator - Google Patents

Recuperator

Info

Publication number
JPS62103405A
JPS62103405A JP24375885A JP24375885A JPS62103405A JP S62103405 A JPS62103405 A JP S62103405A JP 24375885 A JP24375885 A JP 24375885A JP 24375885 A JP24375885 A JP 24375885A JP S62103405 A JPS62103405 A JP S62103405A
Authority
JP
Japan
Prior art keywords
working fluid
expander
evaporator
heat
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24375885A
Other languages
Japanese (ja)
Inventor
Akira Horiguchi
章 堀口
Hiroyuki Sumitomo
住友 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP24375885A priority Critical patent/JPS62103405A/en
Publication of JPS62103405A publication Critical patent/JPS62103405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To increase output with carrying out sufficient heat transfer, by providing an evaporator which generates a working fluid steam supplied to a volume type expander, and injecting a heating medium into the pipe line between the evaporator and the expander. CONSTITUTION:A working fluid steam which is supplied from an evaporator 13 to a volume type expander 11 rotates a rotor, and power thereof is transferred to a generator 12. On the other hand, an oil which is heated for higher temperature than the working fluid steam by a heater 17 is injected into the working fluid steam from a nozzle 19 which is provided on the way of a pipe line 20 which extends from the evaporator 13 to the expander 11. Thereby, the working fluid steam which is supplied to the expander 11 is superheated, touching directly with the higher temperature oil. Thus, the working fluid steam is made sure of sufficient time and area of contact with the high temperature oil, and smooth heat transfer is assured, so that efficient power recovery can be achieved.

Description

【発明の詳細な説明】 主東上例机朋分肪 この発明はスクリューエキスパンダのような容積式膨張
機を使用した熱回収装置に関するもので、工場から排出
される廃熱の回収等に利用することができる。
[Detailed description of the invention] This invention relates to a heat recovery device using a positive displacement expander such as a screw expander, and is used to recover waste heat emitted from a factory. be able to.

従未Ω肢■ 工場で排出される温排水等から小温度差利用のランキン
サイクルによって熱回収を行い発電等に利用するように
した熱回収装置が知られている。この装置は温排水等を
熱源として作動流体例えばフロンを加熱して蒸発せしめ
るための蒸発器、蒸発器で発生したフロン蒸気によって
回転するタービン、タービンから排出されるフロン蒸気
を冷却して凝縮せしめるための凝縮器、およびフロンを
系内で循環させるためのフロン循環ポンプを包含してい
る。タービンの出力軸は発電機等の負荷に連結されてい
る。
A heat recovery device is known that uses a Rankine cycle that uses small temperature differences to recover heat from heated wastewater discharged from factories and uses it for power generation, etc. This device uses heated wastewater as a heat source to heat and evaporate working fluids such as fluorocarbons, an evaporator, a turbine that is rotated by the fluorocarbon vapor generated in the evaporator, and a fluorocarbon vapor discharged from the turbine that is cooled and condensed. condenser, and a fluorocarbon circulation pump for circulating fluorocarbons within the system. The output shaft of the turbine is connected to a load such as a generator.

この装置の欠点は、熱源たる温排水等の低温度のゆえに
作動流体を充分に加熱することができず、換言すれば大
きな温度差を確保することができず、そのため充分な動
力回収を行い難いということである。
The disadvantage of this device is that it cannot sufficiently heat the working fluid due to the low temperature of the heat source, such as heated wastewater, or in other words, cannot secure a large temperature difference, making it difficult to recover sufficient power. That's what it means.

かかる欠点を補うために、蒸発器から得られるフロン蒸
気を追加の熱交換器に導いてそこでスーパーヒー1〜し
た上でタービンへ供給するようにすれば、動力回収量の
増大が期待できる。
In order to compensate for this drawback, if the Freon vapor obtained from the evaporator is led to an additional heat exchanger and superheated there before being supplied to the turbine, an increase in the amount of power recovery can be expected.

しかし、この場合、フロンは蒸気の状態で追加の熱交換
器に入るため、そのフロン蒸気をスーパーヒートするた
めの当該熱交換器は大型のものとならざるを得ない。し
たがって、蒸発器とタービンとの間に当該熱交換器用の
大きなスペースを要し、装置全体が非常に大型化してし
まうとい・)!i点がある。
However, in this case, the fluorocarbon enters the additional heat exchanger in the form of vapor, so the heat exchanger for superheating the fluorocarbon vapor must be large-sized. Therefore, a large space is required for the heat exchanger between the evaporator and the turbine, making the entire device extremely large! There is point i.

装置の大型化を伴うことなく、作動流体蒸気をスーパー
ヒートできるようにし、しかして動力回収量の増大を図
ったものとして、本出願人の出願に係る特開昭60−1
44594号公報に記載の発明がある。この先発明は、
吸入孔及び吐出孔を有するケース本体、ケース本体内に
回転自在に収納された、スクリュー状をした雄ロータ及
び雌ロータからなるスクリューエキスパンダと、スクリ
ューエキスパンダに供給する作動流体を蒸発さセるため
の蒸発器と、スクリューエキスパンダに(バ給する潤滑
油を作動流体の蒸気温度より高温に加熱するための加熱
器と、スクリューエキスパンダから排出された蒸気を凝
縮させるための凝縮器と、上記作動流体及び潤滑油をそ
れぞれ循環させるための第1及び第2のポンプとによっ
て構成し、スクリューエキスパンダに供給する作動流体
の蒸気と潤滑油とをスクリューエキスパンダの吸入孔内
で直接接触させて、蒸気をスーパーヒー1−させること
により、動力回収量を増加させることを企図したもので
ある。
Japanese Unexamined Patent Publication No. 1986-1 filed by the present applicant discloses a device that can superheat the working fluid vapor without increasing the size of the device, thereby increasing the amount of power recovery.
There is an invention described in Publication No. 44594. The future invention is
A case body having suction holes and discharge holes, a screw expander consisting of a screw-shaped male rotor and a female rotor rotatably housed within the case body, and a working fluid supplied to the screw expander that is evaporated. an evaporator for heating the screw expander, a heater for heating the lubricating oil to be supplied to the screw expander to a higher temperature than the steam temperature of the working fluid, and a condenser for condensing the steam discharged from the screw expander; The pump is configured by first and second pumps for circulating the working fluid and lubricating oil, respectively, and is configured to bring the vapor of the working fluid supplied to the screw expander into direct contact with the lubricating oil within the suction hole of the screw expander. The idea is to increase the amount of power recovered by superheating the steam.

途」ト市忙決−し&芙ζす31M週り禮」二記の先発明
は油をエキスパンダの吸込孔付近から噴射してエキスパ
ンダの内部で作動流体蒸気と接触させるため、両者の接
触時間が短く、十分な熱移動が行われにくい。従って、
企図した出力の向上は果々しくなかった。
The earlier invention described in the above two injects oil from near the suction hole of the expander and makes it contact with the working fluid vapor inside the expander. Contact time is short and sufficient heat transfer is difficult. Therefore,
The intended improvement in output was not fruitful.

本発明はかかる不す1合を改善せんとするものである。The present invention aims to improve these disadvantages.

すなわち、本発明の主たる目的は、工場温排水のような
低温度の熱源を利用して作動流体を蒸発させ、その作動
流体蒸気によって動力回収を行うようにした熱回収装置
において、作動流体蒸気と熱媒体との接触時間を十分に
確保して作動媒体蒸気のスーパーヒートを確実ならしめ
ることにより、出力増大という所期の目的を達成しろる
熱回収装置を提供することにある。
That is, the main object of the present invention is to provide a heat recovery device that uses a low-temperature heat source such as factory heated wastewater to evaporate a working fluid and recovers power using the working fluid vapor. It is an object of the present invention to provide a heat recovery device that can achieve the intended purpose of increasing output by ensuring sufficient contact time with a heat medium to ensure superheating of working medium vapor.

一間苅直A」葭決J)ト六叉及佳 本発明は、膨張機(11)の作動流体吸入孔(22)よ
りも上流側、言い換えると蒸発器(13)からの作動流
体蒸気を膨張機(11)へ導く管路(20)の途中で、
加熱した熱媒体を作動流体蒸気中に噴射するようにした
ことを特徴とする。
The present invention allows the working fluid vapor to flow from the upstream side of the working fluid suction hole (22) of the expander (11), in other words, from the evaporator (13). In the middle of the pipe line (20) leading to the expander (11),
It is characterized in that the heated heat medium is injected into the working fluid vapor.

、uMJ− 以下、図面に示すこの発明の実施例について述べる。, uMJ- Embodiments of the invention shown in the drawings will be described below.

まず第1図を参照すると、熱回収装置は出力軸を負荷(
例えば発電機)  (12)に連結したスクリユーエキ
スパンダ(11)を使用している。
First, referring to Figure 1, the heat recovery device connects the output shaft to the load (
For example, a screw expander (11) connected to a generator (12) is used.

なお、スクリューエキスパンダに代えてその他の容積式
膨張機を使用することもできる。このエキスパンダ(1
1)に供給されるフロンのごとき作動流体は、温排水等
を熱源として作、動流体を加熱して蒸発せしめるための
蒸発器(13)、エキスパンダ(11)から排出された
作動流体蒸気と油とを分離せしめるための分離器(14
)および、分離器(]4)からの作動流体蒸気を冷却水
で冷却して凝縮せしめるための凝縮器(15)でもって
構成される系内を、作動流体循環ポンプ(16)により
i層頂せしめられる。エキスパンダ(11)には潤滑お
よびシールの作用をなすと共に、作動流体蒸気をスーパ
ーヒートするための熱媒体として、油も供給される。こ
の油は、作動流体蒸気よりも高温に加熱するだめの加熱
器(17)と、エキスパンダ(11)および、分離器(
14)でもって構成される系内を、ポンプ(18)によ
り循環せしめられる。なお、」二記の油に代えてその他
の適当な熱媒体を使用してもよい。また、加熱器(17
)の熱源には、図示のごとく蒸発器(13)用のものを
共用してもよいが、別の熱源を使用することもできる。
Note that other positive displacement expanders may be used instead of the screw expander. This expander (1
1) The working fluid such as fluorocarbons supplied to the evaporator (13) and the expander (11) operate by using heated waste water as a heat source to heat and evaporate the working fluid, and the working fluid vapor discharged from the expander (11). A separator (14
) and a condenser (15) for cooling and condensing the working fluid vapor from the separator (4) with cooling water. I am forced to do it. Oil is also supplied to the expander (11) for lubricating and sealing purposes and as a heating medium for superheating the working fluid vapor. This oil is heated to a higher temperature than the working fluid vapor by a heater (17), an expander (11) and a separator (
14) is circulated by a pump (18). In addition, other suitable heat medium may be used in place of the oil mentioned in 2. In addition, a heater (17
) may share the heat source for the evaporator (13) as shown, but another heat source may also be used.

エキスパンダ(11)は第2〜4図に示すように、作動
流体の吸入孔(22)および吐出孔(23)を有するケ
ーシング(21)と、ケーシング内に互いに平行にかつ
回転自在に延在する一対の雄ロータ(24)および繭ロ
ータ(25)とを主要な構成要素としている。両ロータ
(24)  (25>は互いに噛み合って両者間に歯形
空間(26)を形成する。ロータ<24>  (25)
の形状は歯形空間(26)が吸入孔側から吐出孔側へ移
動するにしたがってその容門が増大するように設定しで
ある。ロータ(24)  (25)の外周はケーシング
(21)により囲繞されており、吸入孔(22)および
吐出孔(23)はロータ(24)  (25)の端面に
向けて開口している。
As shown in FIGS. 2 to 4, the expander (11) has a casing (21) having a working fluid suction hole (22) and a discharge hole (23), and extends rotatably and parallel to each other within the casing. The main components are a pair of male rotors (24) and a cocoon rotor (25). Both rotors (24) (25) mesh with each other to form a tooth space (26) between them.Rotor <24> (25)
The shape of the tooth-shaped space (26) is set such that the capacity thereof increases as the tooth-shaped space (26) moves from the suction hole side to the discharge hole side. The outer circumference of the rotor (24) (25) is surrounded by a casing (21), and the suction hole (22) and the discharge hole (23) are open toward the end surface of the rotor (24) (25).

第5図に示すように、蒸発器(13)とエキスパンダ(
11)の作動流体吸込孔(22)とを接続して蒸発器(
13)からの作動流体蒸気をエキスパンダ(11)に導
く管路(20)の途中に、加熱器(17)を経た油を噴
射するためのノズル(19)を設けである。
As shown in Figure 5, the evaporator (13) and expander (
11) to the working fluid suction hole (22) of the evaporator (
A nozzle (19) for injecting oil that has passed through a heater (17) is provided in the middle of a pipe (20) that leads the working fluid vapor from the expander (13) to the expander (11).

次に上記実施例装置の作用について述べる。Next, the operation of the apparatus of the above embodiment will be described.

蒸発器(13〉からエキスパンダ(11)の吸入孔(2
2)へ供給される作動流体蒸気はロータ(24)  (
25)間の歯形空間(26)内に流入し、膨張しつつ吐
出孔(23)へ進み、しかしてロータ(24)  (2
5>を回転せしめる。この動力はエキスパンダ(11)
の出力軸を介して発電機等の負荷(12)へ伝えられる
From the evaporator (13) to the suction hole (2) of the expander (11)
The working fluid vapor supplied to the rotor (24) (
25), flows into the tooth space (26) between the rotor (24), expands and advances to the discharge hole (23), and then the rotor (24) (2
5> Rotate. This power is an expander (11)
is transmitted to a load (12) such as a generator through the output shaft of the generator.

また、加熱器(17)で作動流体蒸気よりも高温に加熱
された油は、蒸発器(13)からエキスパンダ(11)
へ通ずる管路(20)の途中に設けられたノズル(19
)から作動流体蒸気中に噴射される。これによりエキス
パンダ(11)に供給される作動流体蒸気はそれよりも
高温の油と直接接触してスーパーヒートされる。このこ
とを第6図のP−H線図を参照して説明すると、同図に
おいてaおよび8゛はエキスパンダ(11)の作動流体
吸入孔(つまり蒸発器(13)出口)、b、Jδよびb
゛はエキスパンダ(11)の作動流体吐出孔(つまり凝
縮器(15)入口)、cは凝縮器(15)出口、dは蒸
発器(13)入口における作動流体の状態を示す。作動
流体蒸気をスーパーヒートシない場合の熱力学サイクル
はa−−−b−→c −y dとなり、そのときの動力
回収9ば△)(−Ha−!(bで表される。これに対し
て作動流体蒸気をスーパーヒートする場合の熱力学す・
イクルつまり再熱サイクルば、a°→b°−→C−→d
となり、動力回収發は△H’ ・=IIa’  −11
b’ で哀される。かくで、八〇’/△11 >1.0
なる関係が成り立つ。ちなみにエキスパンダ(11)の
入日での作動流体温度が60°C1出口で30℃という
条件において、油噴射によって作動流体蒸気を20℃ス
ーパーヒートすると、△11’/△H#1.1 となり
、約10%の動力回収量増加が実現する。
Further, the oil heated to a higher temperature than the working fluid vapor by the heater (17) is transferred from the evaporator (13) to the expander (11).
A nozzle (19) provided in the middle of a conduit (20) leading to
) is injected into the working fluid vapor. As a result, the working fluid vapor supplied to the expander (11) comes into direct contact with the oil at a higher temperature and is superheated. This will be explained with reference to the P-H diagram in FIG. call b
゛ indicates the state of the working fluid at the working fluid discharge hole of the expander (11) (that is, the inlet of the condenser (15)), c indicates the outlet of the condenser (15), and d indicates the state of the working fluid at the inlet of the evaporator (13). The thermodynamic cycle when the working fluid vapor is not superheated is a---b-→c-yd, and the power recovery at that time is expressed as 9B△)(-Ha-!(b). Thermodynamics of superheating working fluid vapor using
cycle or reheat cycle, a°→b°−→C−→d
Therefore, the power recovery is △H'・=IIa' -11
b' makes me sad. Kakude, 80'/△11 >1.0
A relationship holds true. By the way, if the temperature of the working fluid at the entrance of the expander (11) is 60°C and the temperature at the exit of the expander 1 is 30°C, if the working fluid vapor is superheated to 20°C by oil injection, △11'/△H#1.1. , an increase in power recovery of approximately 10% is achieved.

仕事を終えた作動流体蒸気と油とはエキスパンダ(11
)の吐出孔(23)から排出されて分離器(14)へ入
る。分離器(14)にて作動流体蒸気は油と分離し、凝
縮器(15)へ進む。凝縮器(15)にて凝縮した作動
流体はポンプ(16)で蒸発器(13)へ送られる。一
方、分離器(14)にて作動流体から分離した油は、ポ
ンプ(18)で再びノズル(19)へ送られる。
The working fluid steam and oil that have finished their work are transferred to the expander (11
) is discharged from the discharge hole (23) and enters the separator (14). The working fluid vapor is separated from oil in the separator (14) and proceeds to the condenser (15). The working fluid condensed in the condenser (15) is sent to the evaporator (13) by a pump (16). On the other hand, the oil separated from the working fluid in the separator (14) is sent to the nozzle (19) again by the pump (18).

発皿夏飲釆 この発明によれば、作動流体蒸気に対する高温油噴射を
エキスパンダの作動流体吸入孔の上流側において行うこ
とにより、作動流体蒸気と熱媒体との十分な接触時間、
面積が確保され、両者間の円滑な熱移動が保証される。
According to the present invention, by injecting high-temperature oil to the working fluid vapor at the upstream side of the working fluid suction hole of the expander, sufficient contact time between the working fluid vapor and the heat medium can be achieved.
The area is secured and smooth heat transfer between the two is guaranteed.

したがって、比較的低温の廃熱からも9)J率良く動力
回収を達成することができる。
Therefore, power recovery can be achieved at a high rate of 9) even from relatively low-temperature waste heat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例たる熱回収装置のブロック
線図、第2図は第1図のノズル部分の拡大説明図、第3
〜5図はそれぞれスクリューエキスパンダの、m1it
断面略図、横断面略図および模式的斜視図、第6図は縦
軸に圧力P、横軸にエンタルピ11をとった作動流体の
PH線図である。 (111−−スクリューエキスパンダ(容積式膨張機)
、(12) −発電機(負荷)、(13) −・蒸発器
、(14) −分離器、、  (15L−凝縮器、(1
6)−作動流体循環ポンプ、(17)−加熱器、(18
)−油(熱媒体)循環ポンプ、(19) =−ノズル、
<22)−m−作動流体吸入孔、(23)−作動流体吐
出孔。 第1図 第6図 一ン 八 ′ 図              の寸      
     派
Fig. 1 is a block diagram of a heat recovery device which is an embodiment of the present invention, Fig. 2 is an enlarged explanatory view of the nozzle portion of Fig. 1, and Fig.
~ Figure 5 shows the m1it of the screw expander, respectively.
The schematic cross-sectional view, the schematic cross-sectional view, and the schematic perspective view, and FIG. 6 are PH diagrams of the working fluid, with pressure P on the vertical axis and enthalpy 11 on the horizontal axis. (111--Screw expander (positive displacement expander)
, (12) - Generator (load), (13) - Evaporator, (14) - Separator, (15L-Condenser, (1
6) - Working fluid circulation pump, (17) - Heater, (18
) - oil (heat medium) circulation pump, (19) = - nozzle,
<22)-m-working fluid suction hole, (23)-working fluid discharge hole. Figure 1 Figure 6 Dimensions of Figure 1-8'
sect

Claims (1)

【特許請求の範囲】[Claims] (1)出力軸を負荷に連結した容積式膨張機と、廃熱を
熱源として作動流体を蒸発せしめて前記膨張機へ供給す
べき作動流体蒸気を発生させるための蒸発器と、前記膨
張機から排出された作動流体蒸気を凝縮せしめるための
凝縮器と、作動流体を前記凝縮器、蒸発器、および膨張
機で構成される系内で循環させるための作動流体循環ポ
ンプと、前記膨張機に熱媒体を供給するための熱媒体循
環ポンプと、前記膨張機に供給される熱媒体を作動流体
蒸気よりも高温に加熱するための加熱器とを包含してな
り、蒸発器からの作動流体蒸気を膨張機へ導く管路の途
中に前記の熱媒体を噴射するようにしたことを特徴とす
る熱回収装置。
(1) A positive displacement expander whose output shaft is connected to a load; an evaporator for evaporating a working fluid using waste heat as a heat source to generate working fluid vapor to be supplied to the expander; a condenser for condensing discharged working fluid vapor; a working fluid circulation pump for circulating the working fluid within a system comprising the condenser, evaporator, and expander; and a working fluid circulation pump for supplying heat to the expander. It includes a heat medium circulation pump for supplying a medium, and a heater for heating the heat medium supplied to the expander to a higher temperature than the working fluid vapor, and the working fluid vapor from the evaporator is heated to a higher temperature than the working fluid vapor. A heat recovery device characterized in that the heat medium is injected in the middle of a pipe line leading to an expander.
JP24375885A 1985-10-30 1985-10-30 Recuperator Pending JPS62103405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24375885A JPS62103405A (en) 1985-10-30 1985-10-30 Recuperator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24375885A JPS62103405A (en) 1985-10-30 1985-10-30 Recuperator

Publications (1)

Publication Number Publication Date
JPS62103405A true JPS62103405A (en) 1987-05-13

Family

ID=17108545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24375885A Pending JPS62103405A (en) 1985-10-30 1985-10-30 Recuperator

Country Status (1)

Country Link
JP (1) JPS62103405A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314937A (en) * 2005-05-13 2006-11-24 Daicen Membrane Systems Ltd Membrane module and its manufacturing method
JP4962657B2 (en) * 2009-06-09 2012-06-27 トヨタ自動車株式会社 Control device for internal combustion engine
WO2014063443A1 (en) * 2012-10-22 2014-05-01 Zhang Yuliang Self-cooled thermal work doing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841210A (en) * 1981-09-04 1983-03-10 Hitachi Ltd Waste heat recovering power plant
JPS60144594A (en) * 1984-01-05 1985-07-30 Hisaka Works Ltd Waste heat recovery device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841210A (en) * 1981-09-04 1983-03-10 Hitachi Ltd Waste heat recovering power plant
JPS60144594A (en) * 1984-01-05 1985-07-30 Hisaka Works Ltd Waste heat recovery device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314937A (en) * 2005-05-13 2006-11-24 Daicen Membrane Systems Ltd Membrane module and its manufacturing method
JP4962657B2 (en) * 2009-06-09 2012-06-27 トヨタ自動車株式会社 Control device for internal combustion engine
WO2014063443A1 (en) * 2012-10-22 2014-05-01 Zhang Yuliang Self-cooled thermal work doing method

Similar Documents

Publication Publication Date Title
US4557112A (en) Method and apparatus for converting thermal energy
US4617808A (en) Oil separation system using superheat
JP4891369B2 (en) Power generation equipment using geothermal fluid
AU578089B2 (en) Utilization of thermal energy
WO2008125827A2 (en) Organic rankine cycle apparatus and method
CN105209724A (en) Volumetric energy recovery system with three stage expansion
US10309259B2 (en) CO2 power generation system
CN208702471U (en) Cascade organic Rankine cycle power generation system
JPS61149507A (en) Heat recovery device
JP2011208569A (en) Temperature difference power generation device
CN104619959A (en) System for recovering through an organic rankine cycle (ORC) energy from a plurality of heat sources
JPS62103405A (en) Recuperator
US4608829A (en) Waste heat recovering device
JPS60144594A (en) Waste heat recovery device
CN103195518A (en) ORC (organic Rankine cycle) power generation system based on series connection of multistage evaporators
JPH0457843B2 (en)
GB2114671A (en) Converting thermal energy into another energy form
CN103195519A (en) ORC (Organic Rankine cycle) power generation system based on series connection of multistage evaporators and working medium pumps
JPH0429843B2 (en)
JPH0535242B2 (en)
US9574446B2 (en) Expander for recovery of thermal energy from a fluid
JPH02252901A (en) Lubricating device for screw expander
JPH02106665A (en) Cogeneration system utilizing absorbing type heat pump cycle
CN208749417U (en) Double heat source organic Rankine cycle power generation systems
CN208153256U (en) Single geothermal well mouth electric power station system