JPS6242799Y2 - - Google Patents

Info

Publication number
JPS6242799Y2
JPS6242799Y2 JP10823484U JP10823484U JPS6242799Y2 JP S6242799 Y2 JPS6242799 Y2 JP S6242799Y2 JP 10823484 U JP10823484 U JP 10823484U JP 10823484 U JP10823484 U JP 10823484U JP S6242799 Y2 JPS6242799 Y2 JP S6242799Y2
Authority
JP
Japan
Prior art keywords
wastewater
solids
layer
water
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10823484U
Other languages
Japanese (ja)
Other versions
JPS6035798U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984108234U priority Critical patent/JPS6035798U/en
Publication of JPS6035798U publication Critical patent/JPS6035798U/en
Application granted granted Critical
Publication of JPS6242799Y2 publication Critical patent/JPS6242799Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は廃水を活性汚泥等の微生物処理した後
の排水(以下、単に排水という)中に存在する固
形物を水より軽い比重の粒子群を材として用い
て除去し、かつ該材により捕捉された排水中の
固形物を洗浄水を用いることなく処理して層の
再生を行なう装置に関する。 一般に排水中の固形物を過分離する場合に、
砂・アンスラサイト等排水の比重より大きな比重
を有する粒子群を用いて層を形成し、排水を下
向流・上向流または水平方向へ通水して、層内
にて固形物を捕捉除去している。このような場合
層内に捕捉された固形物により圧損失が上昇し
てきた時には、層への排水の供給及び層から
の処理水の流出を止めて、水または空気及び水を
層の底部より流入させて、層を膨張させ粒子
同志の衝突及び混合を生じさせて捕捉された固形
物の排出及び層の洗浄操作を行つている。この
洗浄操作によつて生じてくる洗浄排水は、別個処
理設備等を設けて洗浄排水中に含まれている固形
物を除去する必要があつた。これらの設備費は
過装置全体のコストの約50%を占める程大きくな
る場合もあり、洗浄排水の処理はその排水中に含
まれている固形物の処分も含めて考えると、水処
理コストの上で大きな割合を占めていた。特にこ
の傾向は水処理能力が小規模の場合ほど処理及び
処分方法が限定されてくるためにコストアツプが
顕著になつてくる傾向を示していた。 また一般的に、微生物処理例えば活性汚泥法・
散水床や回転円板法などの処理を行つた排水中
に存在している固形物は、単純に沈降槽などにて
沈降分離したり、場合によつては凝集剤等を添加
して凝集分離等にて除去しており、これらの処理
後一般的な過装置に供給し排水中に残留してい
る微細固形物を除去している。このような方法に
て層内に捕捉された固形物は上述した方法にて
層の洗浄操作を行なつて生じた排水中に含まれ
ており、これらの固形物を含んだ排水は前述した
沈降槽等に返送することにより固形物と排水との
分離は簡単に行えるが発生している汚泥量そのも
のは減少せず、一般的には微生物処理装置に流入
してくるBOD量の40〜80%に相当していると言
われている。このような汚泥は別途処分をするた
めには更に新しく設備を設置する必要が生じてい
る。 またこれらの汚泥は有機性固形物が主体である
ため無機性固形物と比較して濃縮率が悪く汚泥容
積が大きくなるということや、圧縮性であるため
に脱水処理が極めて行ないにくいということ等の
欠点を有していた。 上記問題点を解決する方法について、本願考案
の出願人はさきに特開昭56−33013号「過方
法」(以下先願発明と言う)を提案した。すなわ
ち排水の比重より小さい比重を有する粒子を材
として用い、該粒子が浮上して過装置の上部に
設けた通水性保持板にて形成する層の上面より
下部にドラフトチユーブの上端開口部を有する
過装置にて排水を過し、層内の圧力損失が大
きくなつた時、排水の流出入を止めて前記ドラフ
トチユーブの下方から空気を噴出し層内に循環
流を生じさせて排水中の固形物を除去する方法を
提案した。然しながら先願発明では循環流は保持
板を通水しないため、大型装置では層全体が均
一に膨張せずシヨートパスを生じドラフトチユー
ブの付近のみで循環流が生じ効果的に層の洗浄
が行なわれない場合がある。また浮上粒子はドラ
フトチユーブ内を通つて循環する為、ドラフトチ
ユーブに送入した空気は浮上性粒子層及び保持板
を通過する間にこの部分により差圧を生じること
から空気を送入する為に大きな背圧を必要とす
る。さらに保持板とドラフトチユーブ上端部との
クリアランス部に浮上性粒子が閉塞することによ
りドラフトチユーブを通じ粒子の循環が生じなく
なつたり、又循環水が偏流やシヨートパスを起こ
す場合もある。従つて先願発明では場合によつて
は必ずしも効果的に層の洗浄は行なわれ得ない
ものであつた。又、先願発明では形成している浮
上性粒子層を膨張させ、粒子相互の衝突により粒
子に付着した固形物を剥離させることがその主眼
であり、剥離された固形物は静置により装置底部
に沈降分離させて後これを取出す方式のものであ
る。従つて分離した固形物は空気の吹込みを止め
て後、装置を所定時間静置させることにより装置
底部に沈降分離させた後装置外部へ抜出す必要が
あり、排出固形物は別途その処理を行なう必要が
あつた。 本考案者らは上述の如き問題点について更に改
良するために種々研究を行なつた結果、これらの
問題の無い優れた装置を見出した。 すなわち、本考案は排水の入口を装置下部に、
処理水の出口を装置上部に備え、排水の比重より
小さい比重を有する粒子を材とし、該粒子群の
浮上又は流出を阻止する通水性保持板を過装置
の上部に設け、前記過装置には上端が前記保持
板より上に突出し、下端が前記粒子群で形成され
た層より下に突出してそれぞれ開口する垂直な
ドラフトチユーブを設け、該ドラフトチユーブの
下方に空気を上方に向けて噴出させるノズルを有
する微生物処理水中の固形物を除去する装置を提
供するものである。 本考案の装置は、微生物処理等を行なつた固形
物を含む排水の過を行なうと共に、層内の圧
力損失が大きくなつた時、洗浄水を用いることな
く層内の固形物を除去して層の再生を計ると
ともに固形物中の有機性固形物を好気性消化処理
することにより排出固形物の量を大巾に減少する
ものである。 本考案の装置は、排水の比重より小さい比重を
有する粒子を材として用い、該粒子群が浮上し
て過装置上部に設けた通水性保持板下に形成す
る層に、上端が前記保持板より上に突出し、下
端が前記層より下に突出しそれぞれ開口するド
ラフトチユーブを設けた過装置の下部より排水
を上向流で通して該排水中の固形分の過を行な
い、処理水を該装置の上部より抜出して層内に
捕捉された固形物により層内の圧力損失が増大
した時に、排水の流出入を止めて該層内の液面
をドラフトチユーブの上端付近に保持し前記ドラ
フトチユーブの下方から空気を噴出し、該チユー
ブ内に空気泡の上昇による水の上向流と層に水
の下向流の循環流を形成させることにより層を
膨張させて層内に捕捉された固形物の排除と粒
子表面に付着した固形物の剥離洗浄を行なうとと
もに有機性固形物を溶存酸素によつて好気性消化
処理して減少せしめることを特徴とする微生物処
理水中の固形物除去装置である。 即ち、本考案の装置を用いて層を形成せし
め、この層内に微生物処理を行なつた排水を上
向流に通水し排水中の固形物を過分離し、層
内に捕捉された固形物により所定圧力損失に到達
した時新たな洗浄用水等を導入せず過装置内に
設けられているドラフトチユーブ内に空気を導入
して層内に下向流を生ぜしめて層を膨張させ
ることにより層内にて捕捉された固形物を排除
し、しかも固形物のうち有機性固形物は好気性消
化処理を行なつて発生汚泥量を減少させることを
特徴としている。 本考案の装置において排水中に存在している固
形物を過するために、過装置内の水面下にグ
リツド・目皿・金網等により製作されている通水
性保持板下に水より軽い粒子を用いて層を形成
し、この層に上向流にて排水を通水せしめる。
この場合、粒子は浮力によつて互いに接近した状
態で保持板下に層を形成しているため、排水中
の固形物の過分離が行なわれる。又、排水中に
微生物が含まれているために材粒子表面に微生
物膜が時間の経過とともに形成され、排水中の溶
存酸素により残存BODの処理も可能となるもの
である。層内に捕捉された有機性固形物も同時
に、生物基礎代謝により細胞が減少し、層内で
の圧力損失の増大もゆるやかになり長時間の過
処理が行える。 過処理の継続に伴つて、層内の圧力損失が
増加したとき、層の洗浄が必要となる。一般に
従来の洗浄方法では洗浄水単独あるいは空気など
との併用にて層下部にこれらの流体を導入し
て、材を膨張させるとともに粒子同士を衡突さ
せて層内に捕捉されていた固形物を剥離し洗浄
水とともに排出させていた。このため多量の洗浄
排水が生じており、この処理が必要であつた。本
考案の装置では過装置内にドラフトチユーブの
下に空気を送入し、ドラフトチユーブ内に上向流
を、また層部に下向流を生ぜしめて装置内に水
の循環流を形成させて、層上部より下部への下
向流により新たな洗浄水を使用せずに層を膨張
させて層内に捕捉されている固形物を開放し、
粒子表面に付着している固形物の剥離も行わせし
めるものであり更に又空気を送入させることによ
り装置内に溶存酸素濃度を高めた液を循環せし
め、固形物のうち有機性固形分を該装置内にて好
気性消化させて発生汚泥量を大幅に減少せしめる
ものである。汚泥の好気性消化を終了させた所で
ドラフトチユーブ内への空気の送入を停止させて
循環流を止め循環流中に残留している固形物を該
装置底部へ沈降させ、循環流によつて膨張してい
た材粒子を再び浮上させ上部に設置されている
通水性保持板下に層を形成させる。底部へ沈降
して堆積した固形物は適宜ポンプなどを利用して
本装置内より抜出し前処理装置である微生物処理
装置へ返送する。また、場合によつては系外の汚
泥槽などに抜き出して貯留させる。 以上の説明から明らかなように本考案の装置で
は層内に固形物が捕捉され層の洗浄操作を行
う時には処理水出口を止めて水位がドラフトチユ
ーブ上端付近に達した時に排水入口からの流入を
止め、該装置内のドラフトチユーブ内への空気の
送入を開始するのみで良く、従来の過装置にお
ける洗浄時の洗浄用水の必要もなく洗浄水を処理
するための付帯設備も不要になつてくる。また同
時に捕捉固形物は好気性消化処理を行つて減少す
るため汚泥の量も少量となる。 本考案において層を形成するために使用する
粒子としては、みかけの比重が1.0以下のもので
水中に存在しても水を吸収しないものが適してい
る。一般的には軽量骨材として利用されているパ
ーライト、シラスバルーンなどの天然材料や、比
重1.0以下のプラスチツクスや発泡プラスチツク
スなどの人工材料を使用する。このうち比重、形
状、均等係数などを任意に選定可能なものとして
発泡プラスチツクスが最も望ましい。特に発泡プ
ラスチツクスはその製造時に充填材として炭酸カ
ルシウム、硫酸バリウム、酸化マグネシウムなど
の無機物を1種以上充填材として添加することに
より比重を任意に変えることが可能であり、また
微生物付着性も良く粒子強度も大きなため半永久
的に使用できしかも安価であることなどから極め
て望ましいものである。比重1.0以上の粒子を用
いる濾層においては濾層下部に通水性保持板を設
けているため、濾層内に固形物が捕捉されてきて
圧力損失が大きくなると、排水は他の部分へ流れ
ようとして、局所的に流速が早くなつたりして
層を形成している材を動かせてしまうため、捕
捉された固形物が流出しやすく、処理水質の悪化
を招く。比重1.0以下の粒子では上部に通水性保
持板を設けてあるため、このようなことはない。
本装置に使用する粒子の代表径としては表面に微
生物膜が形成されることを考慮して1〜20mmの範
囲のものが望ましい。 本考案の装置は、排水の入口を装置下部に処理
水の出口を装置上部に備え、浮上性粒子を層に
使用した過装置に空気の送入口を有するドラフ
トチユーブを備えている必要がある。このドラフ
トチユーブの上端は層の浮上を抑える通水性保
持板より上で排水入口の水位付近に位置しまたド
ラフトチユーブ下端の開口部は過操作時に於て
層最下層より層厚の1/3以上下部に位置してい
ることが望ましい。空気の送入位置はドラフトチ
ユーブの下端の開口部直下に設けておくのが望ま
しい。またドラフトチユーブの面積は層断面積
の1/100〜1/3に相当するものが用いられる。送入
される空気量は浮上性粒子群の膨張が大きくなり
過ぎてドラフトチユーブ下端よりドラフトチユー
ブ内に粒子が流入することのない程度とすること
が必要である。 次に本考案の装置に効率よく排水中の固形物を
除去するために複数基の上記過装置を設け、1
基以上が過処理を行なつている間に残りの基は
洗浄及び好気性消化処理を行い、両操作を交互に
切替えて実施することにより連続的に排水中の固
形物を除去することができる。すなわち例えば3
基の該過装置を設置し、この中2基をシリーズ
に連結して過処理に用い残りの1基を層の洗
浄及び好気性消化処理に当て排水の連続的処理を
行ない、過を行つている上流側の該装置の圧力
損失が増大した場合これを過操作より洗浄及び
好気性消化処理に切替え、一方洗浄及び好気性消
化処理が終つた他の装置を後段の過装置に切替
え連続的に排水中の固形物除去を行なうことがで
きる。 また活性汚泥処理等の微生物処理装置と本考案
の過装置とを組み合せた装置を用いて前段の微
生物処理装置により、廃水の微生物処理を行なつ
た後、処理水をその中に含まれる固形分の沈降分
離を行なうことなくそのまま後段の過装置に通
して固形分の過を行なうことができる。またさ
らに前段に微生物処理装置を、後段に本考案の
過装置を2基以上設置し、前段の微生物処理装置
より排出される処理水の出口と後段の過装置の
排水取入口とを連結した廃水処理装置を用いて前
段の微生物処理装置により廃水の微生物処理を行
なつた後、処理水をその中に含まれる固形分の沈
降分離を行なうことなくそのまま後段の過装置
の中少なくとも1基に通して排水中の固形分の
過を行ない、層内に捕捉された固形物により
層内の圧力損失が増大した時、該過装置への排
水を残りの過装置へ通水するよう切替えて引き
続き過を行なうと共に流出入を止めた上記過
装置に対しドラフトチユーブ内への空気吹込みに
より層内に捕捉された固形物の排除と剥離の為
の層の洗浄及び有機性固形物の好気性消化処理
を行ない、この処理を終わつた装置を再び過操
作に使用し、かくして過装置を過と層の洗
浄・好気性消化処理とに順次又は交互に切替える
ことにより廃水を連続的に処理することができ、
これにより一般の微生物処理に設けられている固
形物の沈降分離装置を省略し廃水処理設備のため
の用地の節減及び装置のコンパクト化を計り得る
ものである。 次に本考案について図面に基づいて説明する。
第1図は本考案の排水中の固形物除去装置のうち
過操作について説明したものである。第2図は
本考案のうち層の洗浄及び好気性消化処理操作
について示したものである。また第3図は洗浄及
び好気性消化処理操作終了後、残留固形分を沈降
分離して沈降汚泥を前処理装置である微生物処理
装置へ返送した時の状況を示している。 第1図の過操作においては、排水を前処理装
置として設けられている微生物処理装置より水位
差を利用して排水入口1より過装置内へ流入さ
せ、浮上性粒子群の充填層7を上向流で通水させ
ながら処理水出口2より抜出される。この充填層
7を流れていくに従つて排水中に存在している固
形物は層内にて捕捉されて除去される。排水中の
固形物が層内にて捕捉されるにつれて層の圧
力損失が増大し水位が徐々に上昇してきてドラフ
トチユーブ上端付近に達した時に、処理水出口2
より水の流出を止めその後該装置内の水位がドラ
フトチユーブ上端付近となつた時点にて排水入口
1よりの流入を止める。その後、第2図に示すよ
うに、ドラフトチユーブ5の下部に設けられてい
る空気流入管3よりドラフトチユーブ内に空気を
送入させ、層の洗浄操作を開始する。空気流入
管3のノズルより送入した空気は、ドラフトチユ
ーブ5内を上昇することにより、エアリフト現象
を生じ、ドラフトチユーブ5内を上昇流にて、ま
た外部の層部を下向流にて流れる水の循環流を
形成させる。層部を流れる下向流により層を膨
張させ、層内にて捕捉された固形物を排除し、
また粒子同士の衝突作用により粒子表面に付着し
ている固形物の剥離を行わしめる。それととも
に、粒子に付着している有機性固形物並びに循環
水中に存在している有機成分を水中の溶存酸素を
利用して好気性消化させて有機性汚泥を減少させ
る。好気性処理が充分に完了したのち、第3図に
示すように空気流入管3よりの空気の流入を停止
させ、再び粒子を浮上させて層を形成させると
ともに、残留固形分を本装置底部へ沈降させる。
底部に沈降した汚泥は汚泥引抜管4よりポンプな
どを利用して前処理装置として設置されている微
生物処理装置へ返送するか又は系外に取出す。こ
の後、処理水出口2より処理水の流出を、排水入
口1より排水の流入をそれぞれ再開させて、通常
の過操作を開始させる。 第4図は微生物処理装置と本考案の過装置と
を組合せて一体化した装置の1例を示した図であ
る。図の中央のは角型微生物処理装置、その左
右にあるは何れも角型過装置であり、右側の
は過操作中で、左側のは洗浄及び好気性消化処
理操作中の図である。廃水は11よりの微生物
処理装置に導かれ、ここで活性微生物による好気
性酸化処理を受け、処理された排水は排水入口1
より右側の過装置へ導入され浮上性粒子群の充
填層7を上向流にて通水し処理水出口2より抜出
される。この層7を流れていくに従つて排水中
に存在している固形物は層内にて捕捉されて除
去される。排水中の固形物が層内にて捕捉され
るにつれて層の圧力損失が上昇し、排水入口の
水位が徐々に上昇してきて微生物処理装置の水位
近くに達した時に処理水出口2を止め、その後該
過装置の水位が微生物処理装置の水位と同一と
なつた時点にて排水入口1よりの流入を止め洗浄
及び好気性消化処理を行なう(第4図の左側に示
す。)。すなわち左側の過装置は洗浄及び好気性
消化処理操作中を示しており、排水入口1処理水
出口2は閉止され、ドラフトチユーブ5の下部に
設けられている空気送入管3より空気を送入し
層の洗浄操作を行つている。空気送入管より送入
した空気はドラフトチユーブ5内を上昇流にて、
また外部の層部を下向流にて流れる水の循環流
を形成させ、層を膨張させて層部内に捕捉さ
れている固形物の排除と粒子に付着している固形
分の剥離を行なうとともに有機性固形分を排水中
の溶存酸素を利用して好気性消化させて有機性汚
泥を減少させる。上記の洗浄及び好気性消化処理
が十分に完了した後、空気送入管3よりの空気の
送入を停止し、再び粒子を浮上させて層を形成
させるとともに残留固形分を該装置底部へ沈降さ
せる。底部に沈降した汚泥は汚泥引抜管4よりポ
ンプ等を利用して中央部の微生物処理装置又はそ
の他の処理装置へ返送する。この後処理水出口2
より処理水の流出及び排水入口1より排水の流入
を再開させて再び過を行なう。上記のように、
微生物処理装置で処理された排水はその中に含ま
れる固形成分を沈降分離槽により分離されること
なくそのまま過槽に導いて過処理され、又左
右に設けた2基の過装置はそれぞれ過と洗浄
及び好気性消化処理とを同時に行なつており交互
に両処理操作の切替えを行なうことにより連続的
に排水中の固形物を処理することができる。 次に本考案の実施例を述べるが本実施例は本考
案を限定するものではない。 A社食堂廃水を前処理として粒状担体使用微生
物処理装置を用いて処理を行なつた後、第1図に
示した過装置を用いて排水の処理を行なつた。
本実験に使用した主なる装置寸法及び実験条件は
以下の通りである。 微生物処理装置 370mmW×550mmL×600mmD 反応部容積 60 370mmW×400mmL×420mmD 使用担体粒子 炭酸カルシウム20wt%添加発泡
ポリプロピレン粒子3.5mmφ×4.0mmL 粒子密度 0.82g/cm3 使用量 26 ドラフトチユーブ 50mmW×370mmL×500mmD 流入空気量 60N/min 過装置 100mmφ×3500mmH 層容積 11.5 100mmφ×1500mmH 使用担体粒子 性状は微生物処理装置の使用担体
粒子と同一 使用量 11.5 ドラフトチユーブ 25mmφ×3000mmH 通水量 平均23.6/hr 上記の微生物処理装置を用いて廃水の処理を行
なつて得られた排水(過原水)及び本考案の
過装置により処理された処理水の性状は表1のと
おりであつた。 過装置を運転開始後284時間経過して過層
の差圧が87cmAqとなつた時過を止めて過装
置のドラフトチユーブに3.1N/minの空気を送
つて層の洗浄及び好気性消化処理を行なつた。
この場合における該装置内の水質の経時的変化を
表2に示す。284時間の循環によりSS及びCODは
約1/4に減少していることが解る。 284時間後の該装置内の水の2時間静置後の上
ずみ液の性状を表3に示す。なお該装置底部に堆
積していた固形物の量は約1.4となつていた。
The present invention removes solids present in wastewater (hereinafter simply referred to as wastewater) after microbial treatment of wastewater such as activated sludge using a particle group with a specific gravity lighter than water as a material, and the solids that are captured by the material. The present invention relates to a device that regenerates layers by treating solids in wastewater without using washing water. Generally, when over-separating solids in wastewater,
A layer is formed using a group of particles such as sand and anthracite that have a specific gravity greater than the specific gravity of the wastewater, and the wastewater is passed downward, upward, or horizontally to capture and remove solids within the layer. are doing. In such cases, when the pressure loss increases due to solids trapped in the bed, the supply of wastewater to the bed and the outflow of treated water from the bed are stopped, and water or air and water are allowed to flow in from the bottom of the bed. This causes the bed to expand and particles to collide and mix, thereby discharging trapped solids and cleaning the bed. The cleaning wastewater produced by this cleaning operation requires separate treatment equipment or the like to remove solids contained in the cleaning wastewater. These equipment costs can be so large that they account for approximately 50% of the total cost of the filtration equipment, and when considering the treatment of washing wastewater, including the disposal of the solids contained in the wastewater, the cost of water treatment is much lower. occupied a large proportion of the top. In particular, this trend showed that the smaller the water treatment capacity, the more limited the treatment and disposal methods, and the more significant the cost increase. Generally, microbial treatment such as activated sludge method and
Solids present in wastewater that has been treated using a sprinkler bed or rotating disk method can be separated by simple sedimentation in a sedimentation tank, or in some cases, a coagulant can be added to separate the solids by coagulation. After these treatments, the wastewater is fed to a general filtration device to remove fine solids remaining in the wastewater. The solids trapped in the layer by this method are contained in the wastewater generated by cleaning the layer by the method described above, and the wastewater containing these solids is subject to the sedimentation described above. Although it is easy to separate solids and wastewater by returning them to a tank, the amount of sludge generated does not decrease, and generally accounts for 40 to 80% of the amount of BOD flowing into the microbial treatment equipment. It is said to be equivalent to In order to dispose of such sludge separately, it is necessary to install new equipment. Furthermore, since these sludges are mainly composed of organic solids, they have a poor concentration rate compared to inorganic solids, resulting in large sludge volumes, and are compressible, making dewatering extremely difficult. It had the following drawbacks. As a method for solving the above-mentioned problems, the applicant of the present invention previously proposed the method of JP-A No. 56-33013 (hereinafter referred to as the prior invention). That is, particles having a specific gravity smaller than the specific gravity of the waste water are used as the material, and the upper end opening of the draft tube is located below the upper surface of the layer formed by the particles floating and formed by the water-permeable retaining plate provided at the upper part of the filtration device. When the wastewater is passed through the filtration device and the pressure loss in the bed becomes large, the flow of wastewater is stopped and air is blown out from below the draft tube to create a circulation flow in the bed and remove the solids in the wastewater. He proposed a method to remove the object. However, in the prior invention, the circulating flow does not pass water through the holding plate, so in large equipment, the entire layer does not expand uniformly, resulting in a shot pass, and the circulating flow occurs only near the draft tube, making it impossible to effectively clean the layer. There are cases. In addition, since the floating particles circulate through the draft tube, the air introduced into the draft tube creates a pressure difference in this area while passing through the buoyant particle layer and the holding plate. Requires large back pressure. Furthermore, floating particles may block the clearance between the holding plate and the upper end of the draft tube, which may prevent particles from circulating through the draft tube, or may cause uneven flow or shot passes in the circulating water. Therefore, in the prior invention, it was not always possible to effectively clean the layer in some cases. In addition, in the prior invention, the main purpose is to expand the buoyant particle layer that has been formed and peel off the solid matter attached to the particles by colliding with each other. This method involves sedimentation and separation, followed by extraction. Therefore, after stopping the blowing of air, it is necessary for the separated solids to settle and separate at the bottom of the device by allowing the device to stand still for a predetermined period of time, and then to be extracted from the device, and the discharged solids must be treated separately. It was necessary to do it. The inventors of the present invention conducted various studies to further improve the above-mentioned problems, and as a result, they discovered an excellent device that does not have these problems. In other words, the present invention places the drainage inlet at the bottom of the device.
An outlet for the treated water is provided at the top of the device, and a water-permeable retaining plate made of particles having a specific gravity smaller than the specific gravity of the waste water and preventing the particles from floating or flowing out is provided at the top of the device. A nozzle that includes vertical draft tubes each having an opening with an upper end protruding above the holding plate and a lower end protruding below the layer formed by the particle group, and air is ejected upward below the draft tube. The present invention provides an apparatus for removing solid matter from microbially treated water. The device of the present invention not only filters wastewater containing solids that has been treated with microorganisms, but also removes solids in the layer without using washing water when the pressure loss in the layer becomes large. By regenerating the layer and subjecting the organic solids in the solids to aerobic digestion, the amount of solids discharged is greatly reduced. The device of the present invention uses particles having a specific gravity smaller than the specific gravity of wastewater as a material, and the particles float to a layer formed under a water-permeable retaining plate provided at the top of the device, with the upper end being higher than the retaining plate. The waste water is passed in an upward flow from the lower part of the filtration device, which is equipped with draft tubes that protrude upward and have draft tubes whose lower ends protrude below the layer and open respectively, to filter the solid content in the waste water, and the treated water is passed through the device. When the pressure loss in the layer increases due to the solids extracted from the upper part and trapped in the layer, the flow of wastewater is stopped and the liquid level in the layer is maintained near the upper end of the draft tube, and the liquid level is kept below the draft tube. Air is ejected from the tube to form a circular flow of upward flow of water due to the rise of air bubbles in the tube and downward flow of water in the layer, thereby expanding the layer and removing the solids trapped within the layer. This is an apparatus for removing solids from microbial-treated water, which performs removal and cleaning of solids attached to the surface of particles, and reduces organic solids by aerobic digestion using dissolved oxygen. That is, a layer is formed using the device of the present invention, and wastewater that has been subjected to microbial treatment is passed through the layer in an upward flow to overseparate the solids in the wastewater, and the solids trapped in the layer are By introducing air into the draft tube installed in the filtration device to create a downward flow in the bed and expand the bed, without introducing new water for washing when the specified pressure loss is reached due to the material. The method is characterized in that solids trapped in the bed are removed, and organic solids among the solids are subjected to aerobic digestion to reduce the amount of sludge generated. In order to pass through the solid matter present in the wastewater in the device of this invention, particles lighter than water are placed under the water-permeable retaining plate made of grids, perforations, wire mesh, etc. under the water surface in the device. This layer is used to form a layer, and the wastewater is passed through this layer in an upward flow.
In this case, the particles are brought close to each other by buoyancy and form a layer under the holding plate, resulting in excessive separation of solids in the waste water. In addition, since the wastewater contains microorganisms, a microbial film is formed on the surface of the material particles over time, and residual BOD can be treated by dissolved oxygen in the wastewater. At the same time, the cells of the organic solids trapped within the layer are reduced due to basic biological metabolism, and the increase in pressure loss within the layer becomes gradual, allowing for long-term overtreatment. Cleaning of the bed becomes necessary when the pressure drop within the bed increases with continued overtreatment. In general, in conventional cleaning methods, these fluids are introduced into the bottom of the bed, either alone or in combination with air, to expand the material and cause particles to collide with each other to remove solids trapped in the bed. It was peeled off and discharged with washing water. This resulted in a large amount of cleaning wastewater, which needed to be treated. In the device of the present invention, air is introduced into the filter device under the draft tube to create an upward flow in the draft tube and a downward flow in the layer section, thereby forming a circulating flow of water in the device. , the bed is expanded by a downward flow from the top to the bottom of the bed without using new wash water, and solids trapped in the bed are released;
The system also removes solid matter adhering to the particle surface, and by introducing air, a liquid with a high dissolved oxygen concentration is circulated within the device to remove organic solids from the solid matter. The sludge is aerobically digested in the equipment, greatly reducing the amount of sludge generated. When the aerobic digestion of the sludge is completed, the supply of air into the draft tube is stopped to stop the circulating flow, and the solids remaining in the circulating flow are allowed to settle to the bottom of the device, allowing the circulating flow to continue. The material particles, which had expanded due to the heat, float again and form a layer under the water-permeable retaining plate installed above. The solid matter that has settled and accumulated at the bottom is extracted from the device using a pump or the like as appropriate and returned to the microbial treatment device, which is a pretreatment device. In some cases, it may be extracted and stored in a sludge tank or the like outside the system. As is clear from the above explanation, in the device of the present invention, solid matter is trapped in the layer, and when cleaning the layer, the treated water outlet is stopped, and when the water level reaches near the upper end of the draft tube, the inflow from the drain inlet is stopped. All you have to do is stop the air flow and start feeding air into the draft tube inside the device, and there is no need for water for washing during washing in the conventional filtering device, and there is no need for incidental equipment to treat the washing water. come. At the same time, the captured solids are reduced through aerobic digestion, so the amount of sludge is also reduced. Particles used to form the layer in the present invention are suitable if they have an apparent specific gravity of 1.0 or less and do not absorb water even if they exist in water. Natural materials such as perlite and shirasu balloons, which are generally used as lightweight aggregates, and artificial materials such as plastics and foamed plastics with a specific gravity of 1.0 or less are used. Among these, foamed plastics are most desirable as they allow arbitrary selection of specific gravity, shape, uniformity coefficient, etc. In particular, it is possible to arbitrarily change the specific gravity of foamed plastics by adding one or more inorganic substances such as calcium carbonate, barium sulfate, and magnesium oxide as fillers during their manufacture, and they also have good microbial adhesion. It is extremely desirable because it has high particle strength, can be used semi-permanently, and is inexpensive. For filter layers that use particles with a specific gravity of 1.0 or more, a water-permeable retaining plate is provided at the bottom of the filter layer, so if solid matter becomes trapped in the filter layer and the pressure loss becomes large, the wastewater will flow to other parts. As a result, the flow velocity locally increases and the materials forming the layer move, making it easy for trapped solids to flow out, leading to deterioration in the quality of treated water. This does not happen with particles with a specific gravity of 1.0 or less because a water-permeable retaining plate is provided on the top.
The representative diameter of the particles used in this device is preferably in the range of 1 to 20 mm, taking into account the formation of a microbial film on the surface. The device of the present invention must have an inlet for wastewater at the bottom of the device, an outlet for treated water at the top of the device, and a filtration device using buoyant particles as a layer with a draft tube having an air inlet. The upper end of this draft tube is located above the water-permeable retaining plate that prevents the layer from floating and near the water level of the drainage inlet.The opening at the lower end of the draft tube is located at least 1/3 of the layer thickness from the bottom layer during over-operation. Preferably located at the bottom. It is desirable that the air supply position be provided directly below the opening at the lower end of the draft tube. Further, the area of the draft tube used is equivalent to 1/100 to 1/3 of the cross-sectional area of the layer. It is necessary that the amount of air introduced is such that the buoyant particles do not expand too much and the particles do not flow into the draft tube from the lower end of the draft tube. Next, in order to efficiently remove solids from wastewater, the device of the present invention is equipped with a plurality of the above-mentioned filtration devices.
While the above group is being overtreated, the remaining group is being washed and aerobically digested, and solids in the wastewater can be continuously removed by alternating between the two operations. . For example, 3
Two of these units are connected in series for overtreatment, and the remaining unit is used for layer cleaning and aerobic digestion to continuously treat wastewater and perform filtration. If the pressure loss of the equipment on the upstream side increases, it will be switched from over-operation to cleaning and aerobic digestion, while other equipment that has finished cleaning and aerobic digestion will be switched to the subsequent filtration equipment and continuously operated. Solids can be removed from wastewater. In addition, after microbial treatment of wastewater is performed by the microbial treatment device in the first stage using a device that combines a microbial treatment device such as activated sludge treatment and the filtration device of the present invention, the treated water is treated to remove the solids contained therein. The solid content can be filtered by directly passing it through a subsequent filtration device without performing sedimentation separation. Further, a microbial treatment device is installed in the first stage and two or more filtration devices of the present invention are installed in the second stage, and the waste water is produced by connecting the outlet of the treated water discharged from the first stage microbial treatment device and the waste water intake of the second stage filtration device. After the wastewater is subjected to microbial treatment by the first-stage microbial treatment device using the treatment device, the treated water is directly passed through at least one of the second-stage filtration devices without performing sedimentation separation of solids contained therein. When the pressure drop in the bed increases due to the solids trapped in the bed, the waste water to the filter device is switched to flow to the remaining filter device, and the filtration continues. At the same time, air is blown into the draft tube of the above-mentioned filtration device, which has stopped the inflow and outflow, to clean the layer to remove and peel off the solids trapped in the layer, and to aerobically digest the organic solids. After completing this treatment, the device is used again for over-operation, and thus the wastewater can be continuously treated by sequentially or alternately switching the filtration device to filtration, bed washing, and aerobic digestion treatment. ,
As a result, it is possible to omit the sedimentation and separation device for solid matter provided in general microbial treatment, thereby saving land for wastewater treatment equipment and making the equipment more compact. Next, the present invention will be explained based on the drawings.
FIG. 1 illustrates overoperation in the apparatus for removing solids from wastewater according to the present invention. FIG. 2 shows the layer cleaning and aerobic digestion operations of the present invention. Moreover, FIG. 3 shows the situation when the residual solid content is sedimented and separated after the cleaning and aerobic digestion operations are completed, and the settled sludge is returned to the microbial treatment device which is a pretreatment device. In the over-operation shown in Fig. 1, waste water is caused to flow into the filter device through the waste water inlet 1 using the water level difference from the microbial treatment device provided as a pre-treatment device, and the packed bed 7 of buoyant particles is raised. The treated water is extracted from the treated water outlet 2 while being passed in a countercurrent flow. As the wastewater flows through the packed bed 7, solids present in the wastewater are captured and removed within the bed. As the solids in the wastewater are captured in the layer, the pressure loss in the layer increases, and the water level gradually rises until it reaches the top of the draft tube.
Then, when the water level in the device reaches the vicinity of the upper end of the draft tube, the inflow from the drain inlet 1 is stopped. Thereafter, as shown in FIG. 2, air is introduced into the draft tube from the air inflow pipe 3 provided at the bottom of the draft tube 5, and the layer cleaning operation is started. The air introduced from the nozzle of the air inflow pipe 3 rises in the draft tube 5, causing an air lift phenomenon, and flows in the draft tube 5 in an upward flow and in the outer layer part in a downward flow. Form a circulating flow of water. The layer is expanded by the downward flow flowing through the layer, and solids trapped within the layer are removed.
In addition, solid matter adhering to the particle surface is peeled off due to the collision between the particles. At the same time, organic solids attached to the particles and organic components present in the circulating water are aerobically digested using dissolved oxygen in the water, thereby reducing organic sludge. After the aerobic treatment is sufficiently completed, as shown in Figure 3, the inflow of air from the air inflow pipe 3 is stopped, the particles are floated again to form a layer, and the remaining solids are sent to the bottom of the device. Let it settle.
The sludge settled at the bottom is returned to the microbial treatment device installed as a pretreatment device or taken out of the system through the sludge extraction pipe 4 using a pump or the like. Thereafter, the outflow of treated water from the treated water outlet 2 and the inflow of waste water from the drainage inlet 1 are restarted, respectively, and normal over-operation is started. FIG. 4 is a diagram showing an example of an integrated device that combines a microbial treatment device and the filtration device of the present invention. The center of the figure is a square-shaped microbial treatment device, and the ones on the left and right are square-shaped filtration devices. The wastewater is led to the microbial treatment device No. 11, where it is subjected to aerobic oxidation treatment by active microorganisms, and the treated wastewater is sent to the wastewater inlet No. 1.
The water is introduced into the filtration device on the right side, flows upward through the packed bed 7 of floating particles, and is extracted from the treated water outlet 2. As the waste water flows through this layer 7, solids present in the waste water are trapped within the layer and removed. As the solids in the wastewater are captured in the layer, the pressure loss in the layer increases, and the water level at the drain inlet gradually rises until it reaches near the water level of the microbial treatment device, when the treated water outlet 2 is stopped, and then When the water level in the filtration device becomes the same as the water level in the microbial treatment device, the inflow from the waste water inlet 1 is stopped and cleaning and aerobic digestion are performed (as shown on the left side of FIG. 4). In other words, the filtration device on the left is in the process of cleaning and aerobic digestion, with the waste water inlet 1 and the treated water outlet 2 closed, and air being fed through the air inlet pipe 3 provided at the bottom of the draft tube 5. A cleaning operation is being carried out on the layer. The air introduced from the air supply pipe flows upward in the draft tube 5.
In addition, a circulating flow of water flowing downward through the outer layer is formed, which expands the layer and removes the solids trapped within the layer and peels off the solids attached to the particles. Organic solids are aerobically digested using dissolved oxygen in wastewater to reduce organic sludge. After the above-mentioned cleaning and aerobic digestion processes are sufficiently completed, the supply of air from the air supply pipe 3 is stopped, and the particles are floated again to form a layer, and the remaining solid content is allowed to settle to the bottom of the device. let The sludge settled at the bottom is returned to the central microbial treatment device or other treatment device through the sludge extraction pipe 4 using a pump or the like. This post-treated water outlet 2
The outflow of the treated water and the inflow of wastewater from the wastewater inlet 1 are restarted to carry out the filtration again. As described above,
The solid components contained in the wastewater treated with the microbial treatment equipment are not separated by the sedimentation separation tank, but are directly guided to the filtration tank for overtreatment. Cleaning and aerobic digestion are performed at the same time, and solids in wastewater can be continuously treated by alternately switching between the two treatments. Next, examples of the present invention will be described, but these examples do not limit the present invention. Company A cafeteria wastewater was pretreated using a microbial treatment device using granular carriers, and then the wastewater was treated using the filtration device shown in FIG.
The main device dimensions and experimental conditions used in this experiment are as follows. Microbial treatment equipment 370mmW x 550mmL x 600mmD Reaction section volume 60 370mmW x 400mmL x 420mmD Carrier particles used Foamed polypropylene particles added with 20wt% calcium carbonate 3.5mmφ x 4.0mmL Particle density 0.82g/cm 3 Amount used 26 Draft tube 50mmW x 370mmL x 500mmD Inflow air amount 60N/min Filtration device 100mmφ×3500mmH Bed volume 11.5 100mmφ×1500mmH Carrier particles used Properties are the same amount as the carrier particles used in the microbial treatment device 11.5 Draft tube 25mmφ×3000mmH Water flow rate Average 23.6/hr The above microbial treatment device Table 1 shows the properties of the wastewater (super raw water) obtained by treating wastewater using the filtration device and the treated water treated by the filtration device of the present invention. After 284 hours had passed since the filtration device started operating, when the differential pressure in the superlayer reached 87 cmAq, the filtration was stopped and air at 3.1N/min was sent to the draft tube of the filtration device to clean the layer and perform aerobic digestion. I did it.
Table 2 shows the change in water quality within the apparatus over time in this case. It can be seen that SS and COD are reduced to about 1/4 after 284 hours of circulation. After 284 hours, the properties of the liquid in the apparatus after standing for 2 hours are shown in Table 3. The amount of solid matter deposited at the bottom of the device was approximately 1.4.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に用いる過装置の過操作の
説明図。第2図は本考案に用いる過装置の洗浄
及び好気性消化処理操作の説明図。第3図は本考
案に用いる過装置の洗浄及び好気性消化処理操
作完了後の沈降汚泥を前処理装置である微生物処
理装置へ返送した時の状況説明図である。第4図
は微生物処理装置と過装置とを組合せて一体化
した装置の説明図である。 1……排水入口;2……処理水出口;3……空
気導入管;4……汚泥引抜管;5……ドラフトチ
ユーブ;6……通水性保持板;7……層;11
……廃水入口。
FIG. 1 is an explanatory diagram of over-operation of the over-operation device used in the present invention. FIG. 2 is an explanatory diagram of the cleaning and aerobic digestion operations of the filtration apparatus used in the present invention. FIG. 3 is an explanatory diagram of the situation when the settled sludge after completion of the cleaning and aerobic digestion operations of the filtration device used in the present invention is returned to the microbial treatment device which is the pretreatment device. FIG. 4 is an explanatory diagram of an apparatus in which a microbial treatment apparatus and a filtration apparatus are combined and integrated. 1... Drainage inlet; 2... Treated water outlet; 3... Air introduction pipe; 4... Sludge withdrawal pipe; 5... Draft tube; 6... Water-permeable retaining plate; 7... Layer; 11
...Wastewater inlet.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 排水の入口を装置下部に、処理水の出口を装置
上部に備え、排水の比重より小さい比重を有する
粒子を材とし、該粒子群の浮上又は流出を阻止
する通水性保持板を過装置の上部に設け、前記
過装置には上端が前記保持板より上に突出し、
下端が前記粒子群で形成された層より下に突出
してそれぞれ開口する垂直なドラフトチユーブを
設け、該ドラフトチユーブの下方に空気を上方に
向けて噴出させるノズルを有する微生物処理水中
の固形物を除去する装置。
An inlet for wastewater is provided at the bottom of the device, an outlet for treated water is provided at the top of the device, and a water-permeable retaining plate made of particles having a specific gravity smaller than the specific gravity of the wastewater is installed at the top of the device to prevent the particles from floating or flowing out. the holding plate has an upper end protruding above the retaining plate;
Vertical draft tubes each having an opening with their lower ends protruding below the layer formed by the particle groups are provided, and solids in the microbially treated water are removed by having nozzles below the draft tubes for blowing air upward. device to do.
JP1984108234U 1984-07-19 1984-07-19 Device for removing solids from microbially treated water Granted JPS6035798U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984108234U JPS6035798U (en) 1984-07-19 1984-07-19 Device for removing solids from microbially treated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984108234U JPS6035798U (en) 1984-07-19 1984-07-19 Device for removing solids from microbially treated water

Publications (2)

Publication Number Publication Date
JPS6035798U JPS6035798U (en) 1985-03-12
JPS6242799Y2 true JPS6242799Y2 (en) 1987-11-02

Family

ID=30252598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984108234U Granted JPS6035798U (en) 1984-07-19 1984-07-19 Device for removing solids from microbially treated water

Country Status (1)

Country Link
JP (1) JPS6035798U (en)

Also Published As

Publication number Publication date
JPS6035798U (en) 1985-03-12

Similar Documents

Publication Publication Date Title
JP3984145B2 (en) Cleaning method for solid-liquid separator
JPS6242799Y2 (en)
JP2003290784A (en) Iron and manganese remover and method for the same
JPH10337585A (en) Method for back wash of surfacing filter medium
JPS6254074B2 (en)
JPH10128373A (en) Biological treatment method
JP3729585B2 (en) Wastewater treatment facility
JP3666065B2 (en) Biological filtration type nitrogen removal method
JP3024638B2 (en) Sewage treatment tank treatment method
JP3829232B2 (en) Filtration membrane cleaning method in membrane filtration water treatment equipment
JPH09276885A (en) Biological membrane filter apparatus using foldable filter material
JP4346985B2 (en) Middle water equipment, wastewater treatment equipment
JPH11221589A (en) Aerobic filter bed for sewage cleaning device
JP3369834B2 (en) Biofilm filtration device
JPH07112193A (en) Back washing method of biological filter bed
JP2000037698A (en) Method and apparatus for biological treatment of sewage
JP3851385B2 (en) Wastewater treatment equipment
JPH0642793Y2 (en) Aerobic immersion ▲ Floor ▼ Floor equipment
JP2518743B2 (en) Downflow biofilter for organic wastewater
JP3024639B2 (en) Cleaning method of aerobic treatment tank in sewage purification tank
JPH10180274A (en) Biological filter
JPH055922Y2 (en)
JP2584384B2 (en) Method and apparatus for treating organic sewage
JPH09155383A (en) Foul water purification device
JP2022142977A (en) Water sprinkling biofiltration apparatus, water sprinkling biofiltration method of water to be treated, and sewage treatment method