JPS6242784B2 - - Google Patents

Info

Publication number
JPS6242784B2
JPS6242784B2 JP56010882A JP1088281A JPS6242784B2 JP S6242784 B2 JPS6242784 B2 JP S6242784B2 JP 56010882 A JP56010882 A JP 56010882A JP 1088281 A JP1088281 A JP 1088281A JP S6242784 B2 JPS6242784 B2 JP S6242784B2
Authority
JP
Japan
Prior art keywords
vibration
sheet
weight
active hydrogen
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56010882A
Other languages
Japanese (ja)
Other versions
JPS57127139A (en
Inventor
Juzo Kurashige
Hidetoshi Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP1088281A priority Critical patent/JPS57127139A/en
Publication of JPS57127139A publication Critical patent/JPS57127139A/en
Publication of JPS6242784B2 publication Critical patent/JPS6242784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、たとえば自動車・鉄道車両・航空機
等の輸送機器、建造物などの天井、内壁、その他
類似構造部分の防振処理に適した防振方法に関
し、とくに改善された広温度域適性、すなわち、
より広い範囲の温度領域で安定した改善防振効果
を維持でき、耐寒性、耐熱性、接着性などの点で
も改善された防振方法に関する。 更に詳しくは、本発明は、活性水素基含有液状
ジエン系重合体100重量部、歴青物質約50〜約600
重量部及びイソシアネート基/該ジエン系重合体
の有する活性水素基(当量比)が0.5〜0.95とな
る量の有機ポリイソシアネート化合物を含有して
成るシート状成形体(A)の片面を拘束層(B)と、他方
の面を基体(C)表面と、接着剤を介することなく接
合一体化してサンドイツチ構造を形成することを
特徴とする基体の防振方法に関する。 例えば金属板の如き基体の防振に、防振材を用
いて防振処理することは知られており、基体表面
に比重の大きな充填材を多量に含有させた防振材
組成物を厚く塗布したり、或はまたシート状に成
形された防振材を基体表面に熱融着もしくは接着
剤を用いて貼着したりして、基体と防振材を接合
一体化させる手法が知られている。更に又、例え
ば金属板の如き基体表面に粘弾性を有する共重合
体樹脂を塗布し、その塗布層上に拘束層たとえば
他の金属板を重ねて接合一体化させて、金属板/
粘弾性共重合体樹脂/金属板の所謂“サンドイツ
チ構造”の防振板構造物とする手法も知られてい
る。 又、このサンドイツチ構造の防振複合金属板に
ついて、その緩衝性中間体として使用される樹脂
層に種々の工夫が試みられ、例えば、ホモポリマ
ーとした際の樹脂のガラス転移点が20℃以上異な
るような複数種の異種モノマーの組み合わせから
共重合体樹脂を用いる提案(特公昭39−12451
号)、その他特定の種々の組み合せのモノマーか
ら導かれたグラフトポリマー等を用いる提案(特
公昭45−34703号、特公昭45−35662号、特公昭46
−31457号、特公昭46−37898号、特公昭46−
37902号等)も数多くなされてきた。更に又、自
動車の車内天井基板上に設けられた防振材として
ブチルゴム系防振材層とその上に設けられたアル
ミ箔拘束層を有する防振手段を行われている。 しかしながら、これら従来公知の防振材による
防振効果は、常温付近の比較的狭い温度域でのみ
得られるものであり、例えば寒冷期や寒冷地域に
おいて0℃以下にまで降温したり、或いは真夏の
直射日光により80℃近くまで昇温し得る輸送機器
の天井やドア等の部位では、防振効果が著しく損
われるトラブルがあり、これを克服して、より広
い温度領域に於て安定した且つ改善された防振効
果を示し、耐寒性、耐熱性、接着性、施工容易
性、基体表面形状へのなじみ性乃至適合性(賦形
性)、経済性などの点でも優れた防振方法及び防
振材の開発が望まれている。 本発明者等は、このような改善要望を満足し得
る防振方法及び防振材を提供すべく研究を行つて
きた。 その結果、活性水素基含有液状ジエン系重合
体、歴青物質及びイソシアネート基/該ジエン系
重合体の有する活性水素基(当量比)が或る特定
範囲の値、とくに0.5〜0.95となる量の有機ポリ
イソシアネート化合物の組み合わせを含有して成
るシート状成形体(A)を、その片面を拘束層(B)と、
他方の面を基体(C)表面と接合一体化することによ
つて、上記改善要望を満足し得る防振処理が容易
に達成できることを発見した。 従つて、本発明の目的は改善された防振方法を
提供するにある。 本発明の上記目的及び更に多くの他の目的なら
びに利点は、以上の記載から一層明らかとなるで
あろう。 本発明方法で用いるシート状成形体(A)は、活性
水素基含有液状ジエン系重合体100重量部、歴青
物質約50〜約600重量部及びイソシアネート基/
該ジエン系重合体の有する活性水素基(当量比)
が0.5〜0.95となる量の有機ポリイソシアネート
化合物を含有して成るシート状成形体であつて、
その平面形状は防振処理される基体平面形状に応
じて任意の形状であることができる。 該活性水素基含有液状ジエン系重合体とは、ジ
エンモノマーもしくはこれを主成分とするモノマ
ーの少なくとも一種から導かれた室温で流動性を
示す重合体もしくは共重合体であつて、活性水素
含有官能基を有するものをいう。例えば、数平均
分子量(n)が約500〜約20000程度で、粘度約
2000ポイズ以下、より好ましくは約500ポイズ以
下の活性水素基含有液状ジエン系重合体を、好ま
しく例示できる。又、化学構造的には、1、4結
合繰り返し単位含有率が約50%以上を占めるもの
の利用が好ましい。 このような液状ジエン系重合体は、末端に活性
水素基を有するテレキーリツク液状ジエン系ゴム
が好ましく、1分子当りの活性水素含有官能基数
(functionality)が2もしくは2付近のものの利
用が好ましい。このような活性水素基の例として
は、−OH、−CHO、−COOH、−OOH、−SH、−
NH2の如き活性水素含有官能基を例示することが
できる。貯蔵時や他成分との混練加工時にトラブ
ルを生ずるような過度に反応性の高い官能基、有
機ポリイソシアネート化合物と反応した際に有害
物質を副生するおそれのある官能基の利用は好ま
しくなく、製造コスト、大量生産適性なども考慮
して適当なものを選択利用するのがよく、−
OH、−COOHの如き活性水素含有官能基が好ま
しい。 このような液状ジエン系重合体の例としては、
末端水酸基を有する液状ポリブタジエンを例示で
き、水酸基含有量約0.75〜約0.83meq/g、水酸
基価約42.1〜約46.6、数平均分子量(n)約
2800の液状ジエン系重合体が市場で入手でき、本
発明で利用することができる。 液状ポリブタジエン以外のジエン系重合体ある
いは共重合体としては、ポリイソプレン、ブタジ
エン−イソプレンコポリマー、ブダジエン−スチ
レンコポリマー、ブタジエン−アクリロニトリル
コポリマー、ブタジエン−2−エチルヘキシルア
クリレートコポリマー、ブタジエン−n−オクタ
デシルアクリレートコポリマーなどを例示するこ
とができる。 本発明方法で用いるシート状成形体(A)を構成す
る第二の成分である歴青物質の例としては、スト
レートアスフアルト、セミブロンアスフアルト、
ブロンアスフアルト、これらの混合物などを例示
でき、好ましくはストレートアスフアルトもしく
はストレートアスフアルトと他のアスフアルトと
の併用が例示できる。 上記例示の如き歴青物質は、前記活性水素基含
有液状ジエン系重合体100重量部に対して約50〜
約600重量部、より好ましくは約100〜約500重量
部の使用量で利用される。使用量が過少にすぎる
と広い温度範囲での安定した防振効果の維持が困
難となり、また接着力も低下する難点があり、過
剰にすぎると耐寒性、耐熱性が低下し、更に、低
温領域における防振効果が悪化するので、上記使
用量範囲で利用される。 更に、本発明方法で用いるシート状成形体(A)を
構成する第三の成分である有機ポリイソシアネー
ト化合物は、ポリイソシアネートすなわち1分子
中に2個若しくはそれ以上のイソシアネート基を
有する有機化合物であつて、前記活性水素基含有
液状ジエン系重合体の有する活性水素含有官能基
に対する反応性イソシアネート基を有する。この
ような有機ポリイソシアネート化合物はよく知ら
れており、またポリオールとポリイソシアネート
を予め反応せしめて得られる末端にイソシアネー
ト基を有するプリポリマーの形の化合物であつて
もよい。有機ポリイソシアネート化合物の例とし
ては、通常の芳香族、脂肪族および脂環族のもの
をあげることができ、たとえばトリレンジイソシ
アネート、ヘキサメチレンジイソシアネート、ジ
フエニルメタンジイソシアネート、液状変性ジフ
エニルメタンジイソシアネート、ポリメチレンポ
リフエニルイソシアネート、キシリレンジイソシ
アネート、シクロヘキシルジイソシアネート、シ
クロヘキサンフエニレンジイソシアネート、ナフ
タリン−1・5−ジイソシアネート、イソプロピ
ルペンゼン−2・4−ジイソシアネート、ポリプ
ロピレングリコールとトリレンジイソシアネート
付加反応物などがある。該有機ポリイソシアネー
ト化合物は、前記活性水素基含有液状ジエン系重
合体の硬化乃至架橋成分として作用し、本発明に
於ては、イソシアネート基/該ジエン系重合体の
有する活性水素基(当量比)が0.5〜0.95となる
量で使用される。この使用量が当量比たとえば
0.4未満と過少にすぎると、シート状成形体(A)の
ゴム弾性が不充分となり、防振効果が不満足とな
る。イソシアネート基/活性水素基(当量比)が
1以上となると自己接着性が失われるので、拘束
層(B)や基体(C)との接合一体化に接着剤の利用が必
要である。従つて、シート状成形体(A)が自己接着
性を有することを望む場合には、該当量比を1未
満とするのがよく、0.5〜0.95が好ましい。この
ような当量比領域においては、シート状成形体(A)
と拘束層(B)や基体(C)との接合一体化に接着剤の使
用の必要がない利点がある。 本発明方法で用いるシート状成形体(A)は、活性
水素基含有液状ジエン系重合体、歴青物質び有機
ポリイソシアネート化合物を混練し、所望形状の
シート状成形体に成形することにより提供でき
る。該シート状成形体(A)は、更に各種の添加剤を
含有することができる。このような添加剤の例と
しては、ジオクチルフタレート、プロセスオイル
などの如き粘度低下剤、石油樹脂類の如き粘着性
付与剤、各種安定剤、雲母、炭酸カルシウム、タ
ルクの如き繊維状もしくは粉末状充填剤、ジ−n
−ブチルスズリラウレート、スタナスオクトエー
ト、トリエチレンジアミン、ナフテン酸金属塩、
オクチル酸金属塩の如きウレタン硬化触媒等を例
示することができる。 上記例示の如き添加剤の使用量は適宜に選択で
きるが、例えば(成形体(A)形成用組成物;以下同
様)重量に基いて約5〜約50重量%の粘度低下
剤、防振材組成物重量に基いて約5〜約50重量%
の粘着性付与剤、防振材組成物重量に基いて約5
〜約30重量%の繊維状もしくは粉末状充填剤、液
状ジエン系重合体重量に基いて約0.005〜約0.5重
量%の硬化触媒の如き使用量を例示することがで
きる。 本発明方法によれば、上述の如きシート状成形
体(A)からなる構造体の片面を拘束層(B)と、他方の
面を基体(C)表面と接着剤を介することなく接合一
体化して(B)/(A)/(C)のサンドイツチ構造物とする
ことにより、優れた防振加工処理を行うことがで
きる。その場で、基体(C)に順次シート状成形体(A)
および拘束層(B)を接着剤を介さずに接合一体化し
てこのような防振方法を実施することもできる
し、予め、接着剤を介さずに、拘束層(B)とシート
状成形体(A)とからなる積層構造の防振材を形成し
ておいて、所望基体(C)上にこの積層構造防振材
を、接着剤を介さずに接合一体化して実施するこ
ともできる。 このように、防振加工処理を該拘束層(B)を該シ
ート状成形体(A)の片面に接合したのち、該成形体
(A)の他方の面を基体(C)表面と接合することにより
行う態様に於ては、例えば、任意の所望形状を有
する該シート状成形体(A)の片面に拘束層(B)を設
け、他の片面に例えば離型紙の如き離型層を設け
た積層構造防振材、或は又、例えば長尺の拘束層
(B)上に、所望厚みのシート状に押出し成形したシ
ート状成形体(A)上に、さらに離型層を積層したの
ち、任意の所望形状に裁断した積層構造防振材を
利用することができ、好ましい。 拘束層(B)としては、それ自体公知の材料が利用
でき、例えば、アルミ箔の如き金属薄片、樹脂含
浸紙、樹脂含浸フエルト、樹脂含浸不繊布、その
他類似の室温で適当な剛性を有し拘束層機能を示
す任意の材料を利用することができる。このよう
な拘束層(B)は、加熱により乾燥硬化膜を形成して
拘束層機能を発揮できる塗膜層であつてもよい。
このような塗膜層形成性組成物としては、塗膜形
成性熱硬化性合成樹脂もしくは該樹脂を主成分と
して、たとえばポリスチレンなどの如き熱可塑性
合成樹脂、充填剤、着色剤などを含有していてよ
い塗膜形成性組成物が利用でき、シート状成形体
(A)の片面に塗布したり、スプレーしたりしたのち
加熱硬化させたり、或は予めフイルム状に成形し
て積層したりして拘束層(B)を形成させることがで
きる。 このような拘束層(B)の種類は、基体(C)の表面形
状や施工部位などに応じて適宜に選択することが
できる。例えば自動車を例にとるならば、車内天
井裏やドア裏などでは基体表面が比較的フラツト
であるが、防振材が車内背面や垂直面になる部位
には拘束層としてアルミ箔などの薄片を上層に組
み合せて常温で用いるのが好ましく、床面の如く
基体表面が凹凸形状を有しており、防振材が表面
に来る部品の場合、加熱により軟化して形状にな
じみしかるのち硬化し剛性を有する拘束層を形成
する組成物を用いるのが好ましい。 本発明方法において、シート状成形体(A)層の厚
み及び拘束層の厚みは任意であつて良く何ら制限
はない。例えば、前者は約0.5〜5mm、後者は約
30μのアルミ箔から約10mm程度の樹脂含浸フエル
トまで自由に組み合せて用い得る。 本発明方法で用いるシート状成形体(A)は、イソ
シアネート基/活性水素基(当量比)が0.5〜
0.95で優れた粘着性を有しており、基体表面に貼
着するに当り何ら他の接着手段を用いることなく
貼着でき、しかも室温で用いても加熱して用いて
も優れた接着力を顕現し得るものである。 以下に実施例を挙げ本発明の実施の態様をより
詳細に説明する。当然のことながら本発明は以下
の実施例のみに限定されるものではない。 実施例及び比較例 表1上段に示した配合物を約100℃にて加熱混
合し約1.7mm厚にて押し出し成形しシート状の防
振成形体を得た。得られた防振成形体(A)を表1中
段に示した拘束層を上層として0.8m/mの鋼板
に貼着し、表1下段に示した各項目の試験を行つ
た結果、本発明方法により形成されたサンドイツ
チ構造の防振材は極めて優れた防振性能を広い温
度域において顕現し得、又接着力、耐寒性、耐熱
性等の諸性能においても著しく優れていることが
判明した。
The present invention relates to a vibration isolation method suitable for vibration isolation treatment of transportation equipment such as automobiles, railway vehicles, aircraft, etc., ceilings, internal walls, and other similar structural parts of buildings, and particularly relates to a vibration isolation method that has improved wide temperature range suitability, that is, ,
This invention relates to an anti-vibration method that can maintain a stable improved anti-vibration effect over a wider temperature range and also has improved cold resistance, heat resistance, adhesion, etc. More specifically, the present invention includes 100 parts by weight of a liquid diene polymer containing active hydrogen groups, about 50 to about 600 parts by weight of a bituminous material,
One side of a sheet-like molded article (A) containing an organic polyisocyanate compound in an amount such that the weight part and isocyanate group/active hydrogen group possessed by the diene polymer (equivalent ratio) is 0.5 to 0.95 is coated with a constraining layer ( B) and the other surface of the substrate (C) are integrally joined to the surface of the substrate (C) without using an adhesive to form a sanderch structure. For example, it is known that a vibration isolating material is used to perform vibration isolation treatment on a substrate such as a metal plate, and a vibration isolating material composition containing a large amount of a filler with a large specific gravity is applied thickly to the surface of the substrate. There is also a known method of bonding and integrating the base and the vibration isolator by attaching the vibration isolator formed into a sheet shape to the surface of the base using heat fusion or adhesive. There is. Furthermore, a copolymer resin having viscoelasticity is coated on the surface of a substrate such as a metal plate, and a restraining layer, such as another metal plate, is overlaid on the coated layer and joined together to form a metal plate/
A method of forming a so-called "Sandermanch structure" vibration isolation plate structure of a viscoelastic copolymer resin/metal plate is also known. In addition, various improvements have been made to the resin layer used as a cushioning intermediate for this anti-vibration composite metal plate with a sandwich structure. A proposal to use a copolymer resin from a combination of multiple types of different monomers (Japanese Patent Publication No. 39-12451)
), and other proposals using graft polymers derived from various specific combinations of monomers (Japanese Patent Publication No. 45-34703, Japanese Patent Publication No. 45-35662, Japanese Patent Publication No. 1973)
−31457, Special Publication No. 37898, Special Publication No. 1977-
37902 etc.) have also been made numerous times. Furthermore, a vibration isolating means having a butyl rubber vibration isolating material layer and an aluminum foil restraining layer provided thereon is used as a vibration isolating material provided on a ceiling board inside an automobile. However, the vibration-proofing effect of these conventionally known vibration-proofing materials can only be obtained in a relatively narrow temperature range around room temperature. There is a problem in parts such as ceilings and doors of transportation equipment where the temperature can rise to nearly 80℃ due to direct sunlight, where the vibration isolation effect is significantly impaired. A vibration-proofing method and vibration-proofing method that exhibits excellent vibration-proofing effects and is also excellent in terms of cold resistance, heat resistance, adhesion, ease of construction, conformability to the shape of the substrate surface (shapeability), economical efficiency, etc. Development of vibration materials is desired. The present inventors have conducted research to provide a vibration isolating method and vibration isolating material that can satisfy such demands for improvement. As a result, the active hydrogen group-containing liquid diene polymer, the bituminous substance, and the isocyanate group/the active hydrogen group possessed by the diene polymer (equivalence ratio) are in a certain range, especially in an amount of 0.5 to 0.95. A sheet-like molded body (A) containing a combination of organic polyisocyanate compounds, one side of which is a constraining layer (B),
It has been discovered that by bonding and integrating the other surface with the surface of the base (C), it is possible to easily achieve a vibration-proofing treatment that satisfies the above-mentioned improvement requests. It is therefore an object of the present invention to provide an improved vibration isolation method. The above objects and many other objects and advantages of the present invention will become more apparent from the above description. The sheet-like molded article (A) used in the method of the present invention comprises 100 parts by weight of a liquid diene polymer containing active hydrogen groups, about 50 to about 600 parts by weight of a bituminous material, and an isocyanate group/
Active hydrogen groups possessed by the diene polymer (equivalent ratio)
A sheet-shaped molded article containing an organic polyisocyanate compound in an amount of 0.5 to 0.95,
Its planar shape can be any shape depending on the planar shape of the base to be subjected to anti-vibration treatment. The active hydrogen group-containing liquid diene polymer is a polymer or copolymer that exhibits fluidity at room temperature and is derived from at least one diene monomer or a monomer containing this as a main component, and is a polymer or copolymer that exhibits fluidity at room temperature. Refers to something that has a group. For example, the number average molecular weight (n) is about 500 to about 20,000, and the viscosity is about
Preferred examples include liquid diene polymers containing active hydrogen groups of 2000 poise or less, more preferably about 500 poise or less. In terms of chemical structure, it is preferable to use one in which the content of 1,4 bond repeating units is about 50% or more. Such a liquid diene polymer is preferably a telechelic liquid diene rubber having an active hydrogen group at the end, and preferably has a functionality of 2 or around 2 containing active hydrogen per molecule. Examples of such active hydrogen groups are -OH, -CHO, -COOH, -OOH, -SH, -
Examples include active hydrogen-containing functional groups such as NH 2 . It is undesirable to use excessively reactive functional groups that may cause trouble during storage or kneading with other ingredients, or functional groups that may produce harmful substances as by-products when reacting with the organic polyisocyanate compound. It is best to select and use the appropriate one, taking into consideration manufacturing costs and suitability for mass production.
Active hydrogen-containing functional groups such as OH and -COOH are preferred. Examples of such liquid diene polymers include:
An example is liquid polybutadiene having a terminal hydroxyl group, with a hydroxyl group content of about 0.75 to about 0.83 meq/g, a hydroxyl value of about 42.1 to about 46.6, and a number average molecular weight (n) of about
2800 liquid diene-based polymers are commercially available and can be utilized in the present invention. Examples of diene polymers or copolymers other than liquid polybutadiene include polyisoprene, butadiene-isoprene copolymer, butadiene-styrene copolymer, butadiene-acrylonitrile copolymer, butadiene-2-ethylhexyl acrylate copolymer, butadiene-n-octadecyl acrylate copolymer, etc. I can give an example. Examples of the bituminous substance that is the second component constituting the sheet-like molded product (A) used in the method of the present invention include straight asphalt, semi-brown asphalt,
Examples include blown asphalt and mixtures thereof, and preferably straight asphalt or a combination of straight asphalt and other asphalt. The bituminous substance as exemplified above is about 50 to 100 parts by weight based on 100 parts by weight of the active hydrogen group-containing liquid diene polymer.
It is utilized in an amount of about 600 parts by weight, more preferably about 100 to about 500 parts by weight. If the amount used is too small, it will be difficult to maintain a stable anti-vibration effect over a wide temperature range, and the adhesion strength will also decrease. Since the anti-vibration effect deteriorates, it is used within the above usage range. Furthermore, the organic polyisocyanate compound which is the third component constituting the sheet-like molded product (A) used in the method of the present invention is a polyisocyanate, that is, an organic compound having two or more isocyanate groups in one molecule. It has an isocyanate group that is reactive with the active hydrogen-containing functional group of the active hydrogen group-containing liquid diene polymer. Such organic polyisocyanate compounds are well known, and may be in the form of a prepolymer having isocyanate groups at the ends obtained by reacting a polyol and a polyisocyanate in advance. Examples of organic polyisocyanate compounds include the usual aromatic, aliphatic and cycloaliphatic ones, such as tolylene diisocyanate, hexamethylene diisocyanate, diphenylmethane diisocyanate, liquid modified diphenylmethane diisocyanate, Examples include methylene polyphenyl isocyanate, xylylene diisocyanate, cyclohexyl diisocyanate, cyclohexane phenylene diisocyanate, naphthalene-1,5-diisocyanate, isopropylbenzene-2,4-diisocyanate, polypropylene glycol and tolylene diisocyanate addition reaction product. The organic polyisocyanate compound acts as a curing or crosslinking component of the active hydrogen group-containing liquid diene polymer, and in the present invention, the isocyanate group/active hydrogen group possessed by the diene polymer (equivalent ratio) is used in an amount of 0.5 to 0.95. If this amount is equivalent to the equivalent ratio, for example
If it is too small (less than 0.4), the rubber elasticity of the sheet-like molded article (A) will be insufficient, and the vibration-proofing effect will be unsatisfactory. If the isocyanate group/active hydrogen group (equivalent ratio) is 1 or more, self-adhesiveness is lost, so it is necessary to use an adhesive for bonding and integration with the constraining layer (B) and the substrate (C). Therefore, if it is desired that the sheet-like molded article (A) has self-adhesive properties, the corresponding ratio should be less than 1, preferably 0.5 to 0.95. In such an equivalence ratio region, the sheet-like molded product (A)
There is an advantage that there is no need to use an adhesive to integrate the bonding layer (B) and the base (C). The sheet-like molded product (A) used in the method of the present invention can be provided by kneading the active hydrogen group-containing liquid diene polymer, bituminous material, and organic polyisocyanate compound, and molding the mixture into a sheet-like molded product in a desired shape. . The sheet-like molded article (A) can further contain various additives. Examples of such additives include viscosity reducers such as dioctyl phthalate, process oils, tackifiers such as petroleum resins, various stabilizers, fibrous or powder fillers such as mica, calcium carbonate, talc, etc. Agent, G-n
-butyltin laurate, stannath octoate, triethylenediamine, naphthenic acid metal salts,
Examples include urethane curing catalysts such as octylic acid metal salts. The amount of the additive used as exemplified above can be selected as appropriate, but for example, about 5 to about 50% by weight of a viscosity reducing agent, a vibration damping material, based on the weight of the molded object (A) forming composition; the same applies hereinafter. from about 5 to about 50% by weight based on the weight of the composition
of tackifier, based on the weight of the anti-vibration composition
Examples of amounts used include from about 30% by weight of fibrous or powdered filler, from about 0.005 to about 0.5% by weight of curing catalyst, based on the weight of the liquid diene polymer. According to the method of the present invention, one side of the structure made of the sheet-like molded body (A) as described above is bonded to the restraining layer (B), and the other side is bonded to the surface of the base body (C) without using an adhesive. By forming the sanderch structure of (B)/(A)/(C), excellent anti-vibration processing can be performed. On the spot, the sheet-shaped molded product (A) is sequentially placed on the base (C).
It is also possible to carry out such a vibration isolation method by integrally bonding the restraining layer (B) and the sheet-like molded body without using an adhesive. It is also possible to form a vibration damping material with a laminated structure consisting of (A) and to integrate the vibration damping material with a laminated structure onto a desired substrate (C) without using an adhesive. In this way, after the vibration-proofing treatment is performed by joining the restraining layer (B) to one side of the sheet-like molded body (A), the molded body
In an embodiment in which the other surface of (A) is bonded to the surface of the base (C), for example, a constraining layer (B) is formed on one side of the sheet-like molded product (A) having an arbitrary desired shape. A laminated vibration damping material with a release layer such as release paper on one side, or a long restraining layer, for example.
(B) On top of (A), a release layer is further laminated on the sheet-like molded product (A) which is extruded into a sheet-like shape with a desired thickness, and then a laminated structure vibration-damping material is used, which is cut into any desired shape. is possible and preferable. As the constraining layer (B), materials known per se can be used, such as metal flakes such as aluminum foil, resin-impregnated paper, resin-impregnated felt, resin-impregnated nonwoven fabric, and other similar materials having appropriate rigidity at room temperature. Any material that exhibits constrained layer functionality can be utilized. Such a constraint layer (B) may be a coating layer that can form a dry and cured film by heating to exhibit a constraint layer function.
Such a coating layer-forming composition may contain a coating-forming thermosetting synthetic resin or a thermosetting synthetic resin containing the resin as a main component, a thermoplastic synthetic resin such as polystyrene, a filler, a coloring agent, etc. A good film-forming composition can be used, and a sheet-shaped molded product can be used.
The constraining layer (B) can be formed by coating or spraying on one side of (A) and then heating and curing it, or by forming it into a film in advance and laminating it. The type of such a constraining layer (B) can be appropriately selected depending on the surface shape of the base (C), the construction site, etc. For example, if we take a car as an example, the base surface is relatively flat in areas such as the ceiling inside the car and behind the doors, but thin pieces of aluminum foil etc. are used as a restraining layer in areas where the vibration isolating material is on the back of the car or on vertical surfaces. It is preferable to use it in combination with the upper layer at room temperature.In the case of parts where the base surface has an uneven shape, such as a floor surface, and the vibration isolating material is on the surface, it softens by heating and adapts to the shape, then hardens and becomes rigid. It is preferable to use a composition that forms a constraining layer having: In the method of the present invention, the thickness of the sheet-shaped molded body (A) layer and the thickness of the constraining layer may be arbitrary and there are no limitations. For example, the former is approximately 0.5 to 5 mm, and the latter is approximately
Any combination of materials from 30μ aluminum foil to approximately 10mm resin-impregnated felt can be used. The sheet-like molded product (A) used in the method of the present invention has an isocyanate group/active hydrogen group (equivalent ratio) of 0.5 to
It has an excellent adhesiveness of 0.95 and can be attached to the substrate surface without using any other adhesive means, and has excellent adhesive strength even when used at room temperature or heated. It is something that can be manifested. Examples are given below to explain embodiments of the present invention in more detail. Naturally, the present invention is not limited to the following examples. Examples and Comparative Examples The compositions shown in the upper row of Table 1 were heated and mixed at about 100° C. and extruded to a thickness of about 1.7 mm to obtain a sheet-like vibration-proof molded product. The obtained anti-vibration molded body (A) was attached to a 0.8 m/m steel plate with the restraining layer shown in the middle row of Table 1 as an upper layer, and tests were conducted on each item shown in the lower row of Table 1. As a result, the present invention was confirmed. It was found that the vibration isolating material with a sanderch structure formed by this method can exhibit extremely excellent vibration isolating performance over a wide temperature range, and is also extremely superior in various performances such as adhesive strength, cold resistance, and heat resistance. .

【表】【table】

【表】 尚、試験方法及び評価は下記に従つた。 接着力試験 拘束層を上層として有する防振材を25mm巾に
裁断し、同じく25mm巾の電着鋼板に貼着したの
ち軽く押えてテストピースとした。 ストログラフT型試験機を用い、引張速度
200mm/minで180゜ピールテストを行つた。 耐熱性試験 拘束層を上層として有する防振材を250×250
mmに裁断し300×300mmの電着鋼板に貼着後、1
枚は垂直状態に、他の1枚は試料が下に来る背
面状態に保ち、100℃の恒温器中に30日間保持
する。 〇 ズレ、脱落ナシ △ 100mm以下のズレ、面積にして1/3相当のメ
クレ発生 × ズレ、脱落発生 耐寒性試験 耐熱性試験用テスト板と同様に調整したテス
ト板を用い、−40℃の条件下で3H保持後スラミ
ングテストを行い、塗膜のワレ、ハガレの有無
を調べる。 〇 ワレ、ハガレ無し △ 試料面積の1/3以下のハガレ発生 × 〃 2/3以上の 〃 防振性能試験 拘束層を上層として有する防振材を20×180
mmの大きさに裁断し0.8×20×200mmの鋼板に貼
着したのち試験に供する。測定は共振法(日本
音響材料協会出版「騒音対策ハンドブツク」
438頁参照)により損失係数ηを求めた。ηは
値が大きい程防振効果は高く0.05以上であれば
防振効果が有るとされている。 又、実施例2に於いて用いた加熱硬化タイプの
拘束層は下記によつた。 ポリエステル(日本触媒化学工業品エポラツ
ク)35重量部、重質炭酸カルシウム49重量部、ア
スベスト15重量部、ステアリン酸亜鉛0.2重量
部、過酸化ベンゾイル0.8重量部を加えた組成物
を厚さ0.5mmとなるように施した。加熱は130℃で
1時間行つた。
[Table] The test method and evaluation were as follows. Adhesion Test A vibration-proofing material having a restraining layer as an upper layer was cut to a width of 25 mm, adhered to an electrodeposited steel plate also having a width of 25 mm, and then lightly pressed to obtain a test piece. Using a Strograph T-type testing machine, the tensile speed
A 180° peel test was conducted at 200 mm/min. Heat resistance test: 250 x 250
After cutting to mm and pasting on a 300 x 300 mm electroplated steel plate, 1
One sheet is kept vertically and the other sheet is kept on its back with the sample facing down, and kept in a thermostat at 100°C for 30 days. 〇 No displacement or falling off △ 100mm or less displacement, scratching equivalent to 1/3 of the area x Misalignment or falling off Cold resistance test Using a test plate prepared in the same way as the test plate for heat resistance tests, under -40℃ conditions After holding for 3 hours, perform a slamming test below to check for cracks and peeling of the paint film. 〇 No cracking or peeling △ Peeling occurring in 1/3 or less of the sample area × 〃 2/3 or more 〃 Vibration damping performance test A 20 x 180 piece of vibration damping material with a restraining layer as the upper layer
It is cut to a size of mm and attached to a 0.8 x 20 x 200 mm steel plate, and then used for testing. Measurement is by resonance method (Japan Acoustic Materials Association publication "Noise Countermeasures Handbook")
(see page 438), the loss coefficient η was determined. The larger the value of η, the higher the vibration-proofing effect, and it is said that if it is 0.05 or more, there is a vibration-proofing effect. Further, the heat-curing type constraining layer used in Example 2 was as follows. A composition containing 35 parts by weight of polyester (Nippon Shokubai Chemical Industry Co., Ltd. Epolack), 49 parts by weight of heavy calcium carbonate, 15 parts by weight of asbestos, 0.2 parts by weight of zinc stearate, and 0.8 parts by weight of benzoyl peroxide was prepared to a thickness of 0.5 mm. I did it so that it would work. Heating was carried out at 130°C for 1 hour.

Claims (1)

【特許請求の範囲】 1 活性水素基含有液状ジエン系重合体100重量
部、歴青物質約50〜約600重量部及びイソシアネ
ート基/該ジエン系重合体の有する活性水素基
(当量比)が0.5〜0.95となる量の有機ポリイソシ
アネート化合物を含有して成るシート状成形体(A)
の片面を拘束層(B)と、他方の面を基体(C)表面と、
接着剤を介することなく接合一体化してサンドイ
ツチ構造を形成することを特徴とする基体の防振
方法。 2 該接合一体化が、該拘束層(B)を該シート状成
形体(A)の片面に接合したのち、他方の面を基体(C)
表面と接合することにより行われる特許請求の範
囲第1項記載の防振方法。
[Scope of Claims] 1. 100 parts by weight of a liquid diene polymer containing active hydrogen groups, about 50 to about 600 parts by weight of a bituminous substance, and an isocyanate group/active hydrogen group possessed by the diene polymer (equivalent ratio) of 0.5. A sheet-shaped molded article (A) containing an organic polyisocyanate compound in an amount of ~0.95
One side is the constraining layer (B), the other side is the base (C) surface,
A vibration isolation method for a base body characterized by forming a sandwich structure by integrating the parts without using an adhesive. 2 The joining and integration process involves joining the constraining layer (B) to one side of the sheet-like molded body (A), and then attaching the other side to the base (C).
The vibration isolation method according to claim 1, which is carried out by bonding to a surface.
JP1088281A 1981-01-29 1981-01-29 Method of preventing vibration and vibration-proof member Granted JPS57127139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1088281A JPS57127139A (en) 1981-01-29 1981-01-29 Method of preventing vibration and vibration-proof member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1088281A JPS57127139A (en) 1981-01-29 1981-01-29 Method of preventing vibration and vibration-proof member

Publications (2)

Publication Number Publication Date
JPS57127139A JPS57127139A (en) 1982-08-07
JPS6242784B2 true JPS6242784B2 (en) 1987-09-10

Family

ID=11762683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1088281A Granted JPS57127139A (en) 1981-01-29 1981-01-29 Method of preventing vibration and vibration-proof member

Country Status (1)

Country Link
JP (1) JPS57127139A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261040A (en) * 1985-05-15 1986-11-19 出光石油化学株式会社 Vibration-damping material
JPS649732A (en) * 1987-07-02 1989-01-13 Asahi Tsusho Kk Vibration-damping material
JPH05239171A (en) * 1992-02-27 1993-09-17 Mitsuboshi Belting Ltd Polyurethane molding for vibration damping

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158415A (en) * 1974-11-20 1976-05-21 Yokohama Rubber Co Ltd
JPS5441922A (en) * 1977-09-09 1979-04-03 Dainippon Ink & Chemicals Asphalt composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5158415A (en) * 1974-11-20 1976-05-21 Yokohama Rubber Co Ltd
JPS5441922A (en) * 1977-09-09 1979-04-03 Dainippon Ink & Chemicals Asphalt composition

Also Published As

Publication number Publication date
JPS57127139A (en) 1982-08-07

Similar Documents

Publication Publication Date Title
US4803112A (en) Impact-cushioning sheets and direct-applying restraint type floor damping structures using the same
US4743672A (en) Sag resistant, two component urethane adhesives
JPS61273943A (en) Viscous sound-insulating structure
JP2008030257A (en) Damping capacity applying type steel sheet reinforcing material
JPH10502100A (en) Acoustically active plastisol
EP1117748A1 (en) Sealant composition, article and method
CN110402269A (en) Resin combination and resin sheet
JPS6242784B2 (en)
CN110819291B (en) Polyurethane adhesive for battery flexible package
JPS62275743A (en) Vibration-damping sound-insulating sheet for car
JPH0776275B2 (en) Damping structure
JPH01221236A (en) Adhesive sheet for reinforcement of thin sheet
JPH0134788B2 (en)
JPH03170580A (en) Adhesive and production of composite panel by using the same
JPS60190350A (en) Three layer laminate
JPH03294378A (en) Tacky tape
JPH04353447A (en) Manufacture of composite type damping material
JPS62251131A (en) Vibration-damping sound-insulating sheet for car
JPH05148371A (en) Production of automotive composite panel, and water-base adhesive used therefor
JPH0674404B2 (en) Composition for bonding metal structural materials
JPH07179839A (en) Reactive hot-melt adhesive for composite panel
WO1988000221A1 (en) Sound deadening material
EP4282908A1 (en) One-component thermosetting epoxy composition with improved adhesion
JPH02286773A (en) Method for adhering foamed polyolefin sheet
JPH0519905B2 (en)