JPS6242708A - Defoamer - Google Patents

Defoamer

Info

Publication number
JPS6242708A
JPS6242708A JP18345985A JP18345985A JPS6242708A JP S6242708 A JPS6242708 A JP S6242708A JP 18345985 A JP18345985 A JP 18345985A JP 18345985 A JP18345985 A JP 18345985A JP S6242708 A JPS6242708 A JP S6242708A
Authority
JP
Japan
Prior art keywords
chamber
liquid
permeable membrane
gas permeable
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18345985A
Other languages
Japanese (ja)
Inventor
Katsumi Hamamoto
勝美 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
Kyoto Daiichi Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Daiichi Kagaku KK filed Critical Kyoto Daiichi Kagaku KK
Priority to JP18345985A priority Critical patent/JPS6242708A/en
Publication of JPS6242708A publication Critical patent/JPS6242708A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To defoam in an extremely short time, to continuously defoam and to surely defoam even a small amt. of liq. by providing a reduced-pressure chamber above a defoaming chamber furnished with the inlet and the outlet of liq. through a gas permeable membrane. CONSTITUTION:A defoaming chamber 2 is formed at a part of a liq. passage and a reduced-pressure chamber 3 is provided along the upper part of the liq. passage through a gas permeable membrane 4. An inlet 10 and an outlet 11 are connected to the defoaming chamber 2 and a discharge port 12 is protruded from the reduced-pressure chamber 3. When the defoamer thus constituted is incorporated in the passage of the eluate 14 sent by a feed pump 15, the air bubbles 16 mixed into the eluate 14 or generated are floated in the defoaming chamber 2, passed through the gas permeable membrane 4, sucked by the reduced-pressure chamber 3 and discharged from the discharge port 12 to the outside of the system. The eluate 14 contg. no air bubbles is continuously sent into a column 17 in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体中に含まれる気泡を除去する装置に係り
、特に液体クロマトグラフ分析における溶離液や光学的
分析に供する液体試料をチューブやパイプでカラムやセ
ル等の検出部に送液する途中において、気体透過膜を用
いて有効に除去するものに関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for removing air bubbles contained in a liquid, and in particular to a device for removing air bubbles contained in a liquid, and particularly for removing an eluent in liquid chromatography analysis or a liquid sample to be subjected to optical analysis using a tube or a device. It relates to a device that uses a gas permeable membrane to effectively remove liquid while it is being sent through a pipe to a detection unit such as a column or cell.

〔従来技術及びその問題点〕[Prior art and its problems]

カラムやフローセルを用いて液体試料の分析を行なう場
合、溶離液や液体試料中の気泡の存在は極めて厄介なも
のである。特に液体クロマトグラフ分析の場合、気泡が
カラムに入ると固定相と移動相の接触が断たれて正常な
分析が不可能になるし、気泡中の酸素により固定相や試
料が劣化や酸化分解を起こし特性や分解能を悪化させ、
遂には使用不能に至らしめる。また、ポンプによる正常
な送液を妨げる。一方、フローセルを用いる比色分析や
散乱能測定においては、気泡により光の正常な透過や散
乱が妨げられノイズの原因となる。
When analyzing liquid samples using columns or flow cells, the presence of air bubbles in the eluent or liquid sample is extremely troublesome. Particularly in the case of liquid chromatography analysis, if air bubbles enter the column, the contact between the stationary phase and the mobile phase is broken, making normal analysis impossible, and the oxygen in the air bubbles can cause deterioration or oxidative decomposition of the stationary phase and sample. This may worsen the raising characteristics and resolution.
Eventually it becomes unusable. It also prevents normal liquid delivery by the pump. On the other hand, in colorimetric analysis and scattering power measurement using a flow cell, bubbles prevent normal transmission and scattering of light and cause noise.

しかるに、これらの装置では溶離液・試料液の吸引箇所
やチューブ、パイプその他の連結箇所等で気泡が混入し
たり、溶存気体が温度や内圧の変化で気泡化することは
避は難い。また、光学測定用試料液の多くは被検液と試
薬を攪拌混合させて得られるが、攪拌により多量の空気
が混入される。
However, in these devices, it is inevitable that air bubbles will be mixed in at the eluent/sample liquid suction points, tubes, pipes, and other connection points, and that dissolved gases will become bubbles due to changes in temperature and internal pressure. Further, most sample liquids for optical measurement are obtained by stirring and mixing a test liquid and a reagent, but a large amount of air is mixed in with the stirring.

そして、液体クロマトグラフ分析に於ける溶離液やフロ
ーセルを用いて連続・自動的に分析する試料液の場合、
これらに混入した或いは内部で発生した気泡は必ず検出
部に移行する。
In the case of sample liquids that are continuously and automatically analyzed using eluents and flow cells in liquid chromatography analysis,
Air bubbles mixed into these or generated inside are sure to migrate to the detection section.

そこで従来は、液体クロマトグラフ分析に用いる溶離液
中の気泡を、加熱、減圧或いは超音波処理等種々な手段
で除去していた。しかしこれらは何れも装置が人がかり
となり、操作性やコストの面で難がある。またこれらの
処理は、通常開放下で脱気するためバッチ式的なものと
なり、溶離液の吸引時に再度気泡が混入する危険性があ
る。しかも、有機系溶離液は加熱により発火する危険が
あるし、バッファー等溶質を含むものでは変質や溶媒の
蒸発による濃度変化の問題もある。
Therefore, conventionally, bubbles in the eluent used in liquid chromatography analysis have been removed by various means such as heating, reduced pressure, or ultrasonic treatment. However, all of these devices require a lot of manual labor, and are problematic in terms of operability and cost. In addition, these processes are usually batch-type since they are degassed in an open environment, and there is a risk that air bubbles may be mixed in again when the eluent is sucked. Moreover, organic eluents have the risk of igniting when heated, and those containing solutes such as buffers have the problem of deterioration and concentration changes due to evaporation of the solvent.

一方、液体試料を光学的に測定する場合前記同様の問題
があるとともに、臨床検査の如く少量(1mt以下ない
し数−程度の場合が多い)の検体を多数連続測定するよ
うな場合には、従来の脱泡処理は困難乃至極めて手間が
かかり実際的でない。
On the other hand, when measuring liquid samples optically, there are problems similar to those mentioned above, and when a large number of small samples (often 1mt or less to several meters) are continuously measured, such as in clinical tests, conventional Defoaming treatment is difficult or extremely time-consuming and impractical.

そこで、この場合気泡を除去しないまま測定し、得られ
た信号が成る基準値を越えた場合は気泡或いは塵埃の影
響であるとしてその信号を無視して測定するとか(例え
ば特開昭57−23844) 、かかる信号を受けてス
イッチ回路により非測定状態にする等種々な手段が取ら
れている(例えば特公昭58−2365 )。しかし、
これの方法は信号処理に余分な回路を必要とする等コス
トがかかるとともに、測定結果の信頼性は低くならざる
を得ない。
Therefore, in this case, measurement is performed without removing air bubbles, and if the obtained signal exceeds the reference value, the signal is considered to be the effect of air bubbles or dust, and the signal is ignored and measured. ), various measures have been taken, such as receiving such a signal and placing it in a non-measuring state using a switch circuit (for example, Japanese Patent Publication No. 58-2365). but,
This method requires an extra circuit for signal processing, which is costly, and the reliability of the measurement results inevitably becomes low.

尚、特開昭57−165007号公報にはチューブ状そ
の他の合成樹脂製容器内に液体を入れ、その合成樹脂製
容器を減圧雰囲気中にさらして液体中の溶存ガスを脱気
する技術が開示されている。これは合成樹脂の気体透過
性を利用したものであるが、その性質上気泡のような大
きなものは除去できない。また有効に溶存ガスを除去す
るには10〜20mにも及ぶ長尺なチューブを必要とし
、装置が大型化し高価なものとなる。従って、光学的分
析特に少量の試料液を取り扱う場合には不向きであり、
溶離液の処理も別途脱泡装置を必要とするなど実際的で
ない。
Furthermore, JP-A-57-165007 discloses a technique in which a liquid is placed in a tubular or other synthetic resin container and the synthetic resin container is exposed to a reduced pressure atmosphere to degas the dissolved gas in the liquid. has been done. This utilizes the gas permeability of synthetic resin, but due to its nature, large objects such as air bubbles cannot be removed. Furthermore, in order to effectively remove dissolved gas, a long tube of 10 to 20 m is required, making the device large and expensive. Therefore, it is not suitable for optical analysis, especially when handling small amounts of sample liquid.
Treatment of the eluent is also impractical as it requires a separate defoaming device.

〔本発明の目的〕[Object of the present invention]

本発明は上記に鑑みなされたもので、カラムやフローセ
ルを含む液体自動分析装置等に組み込んで用いられるよ
うに、連続脱泡が可能で小型軽量な気泡除去装置を提供
することを目的とする。また、構造が簡単で安価に得ら
れ、少量の試料液の脱泡も簡単な操作で確実に行える気
泡除去装置を提供することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a small and lightweight air bubble removal device capable of continuous defoaming so as to be incorporated into an automatic liquid analyzer including a column or a flow cell. Another object of the present invention is to provide a bubble removal device that has a simple structure, can be obtained at low cost, and can reliably defoam a small amount of sample liquid with a simple operation.

〔目的を達成するための手段〕[Means to achieve the purpose]

これらの目的は、気泡が液体中を上昇する性質を利用し
、液体の流入口と流出口を備えた脱泡室の上部に、気体
透過膜を介して減圧室を設けることにより達成される。
These objectives are achieved by utilizing the property of air bubbles rising in a liquid, and by providing a decompression chamber through a gas permeable membrane above a defoaming chamber equipped with a liquid inlet and an outlet.

そして流入口から送り込まれた溶離液や試料液はその上
面が気体透過膜に接しており、気泡は脱泡室内を上昇し
気体透過膜を通過して減圧室に移行し、ポンプで系外に
排出される。この気泡の移行は、溶離液や試料液の粘度
The upper surface of the eluent and sample liquid sent from the inlet is in contact with the gas permeable membrane, and the air bubbles rise inside the defoaming chamber, pass through the gas permeable membrane, move to the decompression chamber, and are pumped out of the system. be discharged. This bubble migration is caused by the viscosity of the eluent or sample solution.

気泡の大きさ等にもよるが、用いる液体は通常低粘度で
あるため極めて短時間で行なわれる。従って、a進呈の
大きさも液路程度のものが数〜十数cm+程度も有れば
十分である。
Although it depends on the size of the bubbles, etc., the liquid used usually has a low viscosity, so the process can be carried out in an extremely short time. Therefore, it is sufficient that the size of the a-presentation is about the same as that of a liquid path, which is several to several tens of cm+.

尚、溶存気体の気泡化や気泡の膨張化を図って除去を効
果的に行わしめるために、溶離液や液体試料を40〜5
0℃程度以下に昇温させたる加熱装置や振動を与える装
置を脱泡室や流入口近傍に設けてもよい。
In addition, in order to effectively remove the dissolved gas by creating bubbles and expanding the bubbles, the eluent or liquid sample should be heated at 40 to 50 ml.
A heating device that raises the temperature to below about 0° C. or a device that applies vibration may be provided in the defoaming chamber or near the inlet.

次に、本発明を図面に示す実施例に基づいて詳細に説明
する。
Next, the present invention will be described in detail based on embodiments shown in the drawings.

第1図(a)は、本発明気泡除去装置の一例を示す縦断
面したものを組み込んだ液体クロマトグラフ分析装置の
概略ブッロソク図、第1図(b)は気泡除去装置の断面
した部分斜視図である。
FIG. 1(a) is a schematic diagram of a liquid chromatograph analyzer incorporating a longitudinal section showing an example of the bubble removing device of the present invention, and FIG. 1(b) is a partial perspective view of the bubble removing device in cross section. It is.

この気泡除去装置(1)は、脱泡室(2)が液路の一部
を構成し、減圧室(3)は気体透過膜(4)を介してそ
の液路上部に沿って設けられている。そして、2枚の板
状体(5)・(6)に重ね合わした場合合致するIi1
溝(7)・・・・(8)・・・を刻設し、気体透過膜(
4)を介して重ね合わせ、ネジ(9)その他締め具、接
着剤等で一体化して形成され、下側の縦溝(7)・・・
を脱泡室(2)、上側の縦溝(8)・・・を減圧室(3
)とする。また、脱泡室(2)の上手及び下手には夫々
流入口(lのと流出口(11)が設けられ、減圧室(3
)からは排気口(12)が突設されており、夫々チュー
ブ(13)やパイプが接続される。
In this bubble removal device (1), a defoaming chamber (2) constitutes a part of the liquid path, and a decompression chamber (3) is provided along the upper part of the liquid path through a gas permeable membrane (4). There is. Then, Ii1 that matches when superimposed on the two plate-shaped bodies (5) and (6)
Grooves (7)...(8)... are carved, and the gas permeable membrane (
4) and are integrated with screws (9), other fasteners, adhesives, etc., and the vertical grooves (7) on the lower side...
the degassing chamber (2), the upper vertical groove (8)... the decompression chamber (3)
). In addition, an inlet (l) and an outlet (11) are provided at the upper and lower ends of the defoaming chamber (2), respectively, and the decompression chamber (3) is provided with an inlet (l) and an outlet (11), respectively.
) are provided with exhaust ports (12) protruding from them, to which tubes (13) and pipes are connected, respectively.

脱泡室(2)の大きさは、チューブ(13)等の太さに
もよるが1〜数l!IIIR程度とする。また脱泡室(
2)の長さは液体の流速、送液量、粘度等にもよるが数
〜十数Cl11程度有ればよく、減圧室(3)の圧力も
同様に液体の流速等によるが100〜500neml[
g程度で十分目的を達する。
The size of the defoaming chamber (2) is from 1 to several liters depending on the thickness of the tube (13), etc. It should be about IIIR. Also, the defoaming chamber (
2) The length depends on the liquid flow rate, amount of liquid fed, viscosity, etc., but it should be about several to tens of Cl11, and the pressure in the decompression chamber (3) also depends on the liquid flow rate, etc., but it is 100 to 500 neml. [
About g is sufficient to achieve the purpose.

板状体の材質は金属でもよいが、通関なプラスチックを
用いれば気泡やその除去が観察できて好ましい。更に、
大量生産するには縦溝や流出入口・排気口を樹脂で一体
成型するとよい。
The material of the plate-like body may be metal, but it is preferable to use customs-clearable plastic because bubbles and their removal can be observed. Furthermore,
For mass production, it is best to integrally mold the vertical grooves, inlets, and exhaust ports with resin.

一方気体透過膜(4)としては、微細な孔径(例えば0
.2〜数μ前後)の連続気孔を持つ多孔質プラスチック
フィルムが用いられる。このフィルムは連続気孔の故に
気体は透過させるが、四弗化エチレンやポリエチレン等
の疎水性樹脂製のものは水は透過させない。また、親水
性樹脂であるポリビニルアルコール系のものは有機溶媒
を透過させない、そこで熔1ili液や試料液の溶媒に
応じて好ましい種類のフィルムを用いるとよい。
On the other hand, the gas permeable membrane (4) has a fine pore size (for example, 0
.. A porous plastic film having continuous pores (about 2 to several microns) is used. This film allows gas to pass through because of its continuous pores, but those made of hydrophobic resins such as tetrafluoroethylene and polyethylene do not allow water to pass through. Furthermore, polyvinyl alcohol-based hydrophilic resins do not allow organic solvents to pass through them, so it is preferable to use a preferable type of film depending on the solvent of the molten liquid or sample liquid.

尚、成泡性はフィルムの気孔率が大きい程また膜厚が薄
い程良いが、特に厚みの場合は強度との兼ね合いで最適
なものを選ぶとよい。現在市販のものには、気孔率25
〜95%、厚み0.1〜0.5mm程度のものがある。
Note that the higher the porosity of the film and the thinner the film thickness, the better the foaming property is, but especially when it comes to thickness, it is best to select the optimal one in consideration of strength. Currently commercially available products have a porosity of 25
~95%, with a thickness of about 0.1 to 0.5 mm.

しかして、第1図(alの如く溶離液(I4)を送液ポ
ンプ(15)で送液する途中に気泡除去装置(1)を組
み込んでおくと、溶離液(I4)中に混入或いは発生し
た気泡(I6)・・・は脱泡室(2)内で浮上し、気体
透過膜(4)を通って減圧室(3)に引かれ、排気口(
12)から径外に排出される。かくして、気泡を含まな
い溶離液(14)がカラム(17)に連続して送り込ま
れる。
However, if the bubble removing device (1) is installed in the middle of feeding the eluent (I4) with the liquid feeding pump (15) as shown in Figure 1 (al), bubbles may be mixed in or generated in the eluent (I4). The bubbles (I6) float up in the degassing chamber (2), are drawn into the decompression chamber (3) through the gas permeable membrane (4), and are sent to the exhaust port (
12) is discharged outside the diameter. The bubble-free eluent (14) is thus continuously fed into the column (17).

前記例では、縦溝(7)は均一の深さに設けられていた
が、これを第2図(a)の如く流出口(11)側で浅く
なるようにし、小さい気泡が気体透過膜(4)に接近し
易(してもよい。この際、浅い部分での流速増加を押さ
えるために第2図(b)の如く該部分の溝巾を広くする
とよい。また、溶離液(I70中の溶存気体の気泡化や
気泡(16)の膨張化を促進するために・第3図の如く
流入口(10)側にヒーター(I8)を設け、溶離液(
14)に不都合が生じない程度(40〜50℃程度以下
)に加温するとか、バイブレータ−(19)等で脱泡室
(2)等に振動を与えてもよい。脱泡室(2)が金属製
の場合はそれ自体を加温してもよいし、溶離液の容器を
加温してもよい。尚、加温した溶離液を好ましい温度に
までさげるための放熱器(27)や冷却器を流出口(I
 1)以降に設けると、残った溶存ガスの気泡化を防ぐ
しカラム保護の面からも好ましい。
In the above example, the vertical grooves (7) were provided at a uniform depth, but they were made to become shallower on the outlet (11) side as shown in Figure 2 (a), so that small air bubbles could penetrate the gas permeable membrane ( 4) can be easily accessed. At this time, in order to suppress the increase in flow velocity in the shallow part, it is recommended to widen the groove width in this part as shown in Fig. 2 (b). In order to promote bubble formation of the dissolved gas and expansion of the bubbles (16), a heater (I8) is provided on the inlet port (10) side as shown in Fig. 3.
14) may be heated to a level (approximately 40 to 50° C. or less) that does not cause any inconvenience, or vibration may be applied to the defoaming chamber (2) etc. using a vibrator (19) or the like. When the defoaming chamber (2) is made of metal, it may be heated either by heating itself or by heating the eluent container. In addition, a radiator (27) and a cooler for lowering the heated eluent to a desired temperature should be installed at the outlet (I).
If provided after 1), it is preferable from the viewpoint of preventing the remaining dissolved gas from becoming bubbles and protecting the column.

更に、気体透過膜(4)を流入口(10)側で高く流出
口(11)側で低くし且つ流入口(10)を流出口(1
1)よりも高い位置に設けることにより、気泡(IG)
が気体透過膜(4)に接さすに脱泡室(2)を通過する
のを有効に防ぐことができる。第3図の如く、気泡除去
装置(1)全体を流入口(10)側で高くなるように傾
けても同様の効果を生じる。
Furthermore, the gas permeable membrane (4) is made higher on the inlet (10) side and lower on the outlet (11) side, and the inlet (10) is made lower on the outlet (11) side.
1) By installing it at a higher position, air bubbles (IG)
can be effectively prevented from passing through the defoaming chamber (2) in contact with the gas permeable membrane (4). As shown in FIG. 3, the same effect can be obtained even if the entire bubble removing device (1) is tilted so that it is higher on the inlet (10) side.

次に、第4図及び第5図は前記別間様脱泡室(2)が液
路の一部をなすように構成された気泡除去装置(1)の
他の例を示す。第4図は、パイプ(2のの上側面の一部
を切除し、該部分を気体透過膜(4)で覆い、その上部
に減圧室(3)を形成する封止体(21)を気密に固着
したものである。この気泡除去装置(1)は、該パイプ
(20)をチューブ(I3)の中間に挿入するだけで取
り付けができ場所も取らない利点がある。第5図の気泡
除去装置(11は、同じくパイプ(20)の内部を気体
透過膜(4)で部分したもので、該気体透過膜(4)は
枠体(22)で支持されパイプ(20)内の嵌入IR(
23)・(23)に嵌込み固定される。
Next, FIGS. 4 and 5 show another example of a bubble removing device (1) configured such that the separate chamber-like defoaming chamber (2) forms a part of a liquid path. Figure 4 shows that a part of the upper side of the pipe (2) is cut out, the part is covered with a gas permeable membrane (4), and the sealing body (21) that forms a reduced pressure chamber (3) on the upper part is airtight. This bubble remover (1) has the advantage that it can be installed by simply inserting the pipe (20) into the middle of the tube (I3) and does not take up much space. The device (11) is also a pipe (20) with a gas permeable membrane (4) in its interior, and the gas permeable membrane (4) is supported by a frame (22) and inserted into the pipe (20).
23) and (23) are fitted and fixed.

以上は、脱泡室(2)が液路の一部をなし溶離液(14
>中の気泡を連続的に除去するものであるが、第6図の
如く脱泡室(2)が液路よりも大きな容量を有する液体
溜の場合も同様に気泡を除去する効果を有する。この場
合、流入口(10)は脱泡室(2)の上部側。
In the above, the degassing chamber (2) forms part of the liquid path and the eluent (14
Although the air bubbles in the degassing chamber (2) are a liquid reservoir having a larger capacity than the liquid path as shown in FIG. 6, the same effect of removing air bubbles is obtained. In this case, the inlet (10) is on the upper side of the defoaming chamber (2).

流出口(11)は下部側に設ける必要がある。かくする
と、流入口(10)から脱泡室(2)に送り込まれる溶
離液(+船中の気泡(16)・・・は、脱泡室(2)内
で直ちに上昇し、気体透過膜(4)に至って吸引除去さ
れ、流出口(+ 1)からは気泡(16)のない溶離液
(14)が送りだされる。また図示の気泡除去装置(1
1は、気体透過膜(4)を脱泡室(2)となる容体と減
圧室(3)となる蓋体間で挟着しただけのもので作り易
く安価に得られる利点がある。ただ、脱泡室(2)に送
り込まれた液体は流入順に流出するとは限らないので、
/8離液等同種の液体を連続送液する場合の脱泡に向く
The outlet (11) needs to be provided on the lower side. In this way, the eluent (+ air bubbles (16) in the ship) sent into the degassing chamber (2) from the inlet (10) immediately rises in the degassing chamber (2) and passes through the gas permeable membrane ( 4), the eluent (14) without air bubbles (16) is sent out from the outlet (+1).
1 has the advantage that it is easy to make and can be obtained at low cost by simply sandwiching the gas permeable membrane (4) between a container serving as a defoaming chamber (2) and a lid serving as a decompression chamber (3). However, the liquid sent to the defoaming chamber (2) does not necessarily flow out in the order in which it flows in.
/8 Suitable for defoaming when the same type of liquid is continuously pumped, such as syneresis.

第7図は、第1図に示す気泡除去装置(1)をフローセ
ル(2優を用いた比色分析装置に組み込んだ例を示す。
FIG. 7 shows an example in which the bubble removing device (1) shown in FIG. 1 is incorporated into a colorimetric analysis device using a flow cell (2-layer).

この場合、多数(図では1個)の液体試料(25)を洗
浄液(26)と交互に吸引してフローセル(24)に送
り込むので、特に吸引時に気泡(16)を吸い込み易い
。また前述の如く液体試料(24)中には気泡や溶存気
体が多いので、気泡発生の危険性が高い。しかして、送
液ポンプ(15)の直前等に気泡、除去装置(1)を組
み込むことにより、これらの気泡(1G)を除いた試料
液が送液ポンプ(15)に送られ、ポンプのトラブルや
気泡による測定誤差は完全に防がれる。
In this case, since a large number (one in the figure) of liquid samples (25) are alternately suctioned with the cleaning liquid (26) and sent to the flow cell (24), air bubbles (16) are particularly likely to be sucked in during suction. Furthermore, as described above, since there are many bubbles and dissolved gases in the liquid sample (24), there is a high risk of bubble generation. By incorporating a bubble removing device (1) immediately before the liquid sending pump (15), the sample liquid from which these air bubbles (1G) have been removed is sent to the liquid sending pump (15), thereby preventing pump troubles. Measurement errors due to air bubbles are completely prevented.

〔効果〕〔effect〕

以上詳述したように、本発明の気泡除去装置は液体の流
入口と流出口を備えた脱泡室の上部に、気体透過膜を介
して減圧室を設け、該減圧室に排気ポンプ或いは真空ポ
ンプに連結される排気口を設けたものである。そして、
成泡室内に連続して送られてくる溶離液や液体試料中の
気泡を上昇させて気体透過膜に接触させ、減圧室内に吸
引して系外に排出除去するものである。
As described above in detail, the bubble removal device of the present invention includes a degassing chamber provided with a liquid inlet and an outlet, and a decompression chamber provided through a gas permeable membrane in the upper part of the degassing chamber, which is provided with an exhaust pump or a vacuum. It is equipped with an exhaust port connected to a pump. and,
The bubbles in the eluent or liquid sample that are continuously fed into the bubble-forming chamber are raised, brought into contact with a gas permeable membrane, and are sucked into a vacuum chamber and discharged out of the system.

従って、小型・軽量な気泡除去装置が得られるので液体
クロマトグラフ分析に組み込んでも場所を取らず、装置
全体のコンパクト化が図れる。また少量の液体試料の脱
泡が簡単に行えるので、従来気泡除去装置を組み込むこ
とが殆ど行われなかった小型の自動比色分析計や散乱光
度計にも組み込め、光学的測定の精度向上に資すること
ができる。しかも構造が極めて簡単で故障もなく安価に
得られる利点がある。
Therefore, since a small and lightweight air bubble removal device is obtained, it does not take up much space even when incorporated into liquid chromatography analysis, and the entire device can be made more compact. In addition, since it is easy to degas a small amount of liquid sample, it can be incorporated into small automatic colorimetric analyzers and scattering photometers, which were rarely equipped with air bubble removal devices in the past, contributing to improving the accuracy of optical measurements. be able to. Moreover, it has the advantage of being extremely simple in structure, free from failure, and inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図fatは本発明に係る気泡除去装置の一例を示す
縦断面したものを組み込んだ液体クロマトグラフ分析装
置の概略ブソロノク図、第1図(ト))は同図(alの
気泡除去装置の断面した部分斜視図、第2図は脱泡室を
構成する縦溝の変形例を示しくa)は断面図、(b)は
平面図、第3図は第1図に示す気泡除去装置の変形例を
示す断面図、第4図は気泡除去装置の他の例を示しくa
)は分解斜視図、(b)は横断面図、第5図及び第6図
は更に異なる他の例を示し第5図は斜視図第6図は断面
図、第7図は本発明装置を比色分析計に組み込んだ状態
のブロック図である。 l・・・・・・気泡除去装置 2・・・・・・脱泡室 3・・・・・・減圧室 4・・・・・・気体透過膜 10・・・・・・流入口 11・・・・・・流出口 12・・・・・・排気口 13・・・・・・チューブ 14・・・・・・溶離液 15・・・・・・送液ポンプ 16・・・・・・気泡 17・・・・・・カラム 20・・・・・・パイプ 24・・・・・・フローセル 25・・・・・・液体試料 26・・・・・・洗浄液 ・し −1」 第1図 (b) 第2図 (a)
Figure 1 (fat) is a schematic diagram of a liquid chromatograph analyzer incorporating a vertical section showing an example of the bubble removal device according to the present invention, and Figure 1 (g) is a schematic diagram of a liquid chromatography analyzer incorporating a vertical section showing an example of the bubble removal device according to the present invention. FIG. 2 is a cross-sectional partial perspective view, and FIG. 2 shows a modification of the vertical grooves constituting the defoaming chamber.A) is a sectional view, FIG. 3B is a plan view, and FIG. A sectional view showing a modified example, FIG. 4 shows another example of the bubble removing device.a
) is an exploded perspective view, (b) is a cross-sectional view, FIGS. 5 and 6 are further different examples, and FIG. 5 is a perspective view, FIG. 6 is a sectional view, and FIG. FIG. 2 is a block diagram of the colorimetric analyzer installed. l...Bubble removal device 2...Degassing chamber 3...Decompression chamber 4...Gas permeable membrane 10...Inflow port 11. ... Outlet port 12 ... Exhaust port 13 ... Tube 14 ... Eluent 15 ... Liquid pump 16 ... Bubbles 17...Column 20...Pipe 24...Flow cell 25...Liquid sample 26...Washing liquid -1" Figure 1 (b) Figure 2 (a)

Claims (1)

【特許請求の範囲】 1、液体の流入口と流出口を備えた脱泡室の上部に、気
体透過膜を介して減圧室を設け、該減圧室に排気ポンプ
或いは真空ポンプに連結される排気口を設けてなる気泡
除去装置。 2、脱泡室は、液路の一部を構成するものである特許請
求の範囲第1項記載の気泡除去装置。 3、溝を刻設した2枚の板状体を、気体透過膜を介して
上下に重ね合わせて一体化し、上側の溝を減圧室、下側
の溝を脱泡室とするものである特許請求の範囲第1項記
載の気泡除去装置。 4、上側面の一部を切除したパイプ或いはチューブの部
分を脱泡室とし、該開かれた部分の上部に気体透過膜を
介して減圧室を形成する封止体を固着してなる特許請求
の範囲第1項記載の気泡除去装置。 5、気体透過膜は流入口側を高くし、且つ流入口を流出
口よりも高い位置に配設してなる特許請求の範囲第1項
記載の気泡除去装置。 6、脱泡室は、液路よりも大なる容量を有する液体溜か
らなり、その上部側に流入口、その下部側に流出口を設
けてなる特許請求の範囲第1項記載の気泡除去装置。
[Claims] 1. A decompression chamber is provided in the upper part of a degassing chamber equipped with a liquid inlet and an outlet through a gas permeable membrane, and an exhaust pump connected to an exhaust pump or a vacuum pump is provided in the decompression chamber. Air bubble removal device with a port. 2. The bubble removal device according to claim 1, wherein the bubble removal chamber constitutes a part of the liquid path. 3. A patent in which two plate-shaped bodies with grooves cut into them are stacked one on top of the other with a gas permeable membrane in between, and the upper groove is used as a decompression chamber and the lower groove is used as a degassing chamber. A bubble removing device according to claim 1. 4. A patent claim in which a portion of a pipe or tube with a part of the upper surface cut out is used as a defoaming chamber, and a sealing body that forms a decompression chamber is fixed to the upper part of the opened portion via a gas permeable membrane. The air bubble removal device according to item 1. 5. The air bubble removal device according to claim 1, wherein the gas permeable membrane has an inlet side elevated, and the inlet is disposed at a higher position than the outlet. 6. The air bubble removal device according to claim 1, wherein the defoaming chamber is composed of a liquid reservoir having a larger capacity than the liquid path, and has an inlet at its upper side and an outlet at its lower side. .
JP18345985A 1985-08-20 1985-08-20 Defoamer Pending JPS6242708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18345985A JPS6242708A (en) 1985-08-20 1985-08-20 Defoamer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18345985A JPS6242708A (en) 1985-08-20 1985-08-20 Defoamer

Publications (1)

Publication Number Publication Date
JPS6242708A true JPS6242708A (en) 1987-02-24

Family

ID=16136146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18345985A Pending JPS6242708A (en) 1985-08-20 1985-08-20 Defoamer

Country Status (1)

Country Link
JP (1) JPS6242708A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265879A (en) * 1988-04-19 1989-10-23 Rikagaku Kenkyusho Deaeration-defoaming unit for bioreactor
US5693122A (en) * 1994-12-23 1997-12-02 Hewlett Packard Company Basic structure for a liquid chromatography degasser
JPH11137907A (en) * 1997-11-11 1999-05-25 Moore Kk Deaerator
US6033475A (en) * 1994-12-27 2000-03-07 Tokyo Electron Limited Resist processing apparatus
US6402810B1 (en) * 1997-04-23 2002-06-11 Daimlerchrysler Ag Method for dehydrating and/or degassing hydraulic fluids, device for carrying out said method and use of said device
US6596058B2 (en) * 2001-07-16 2003-07-22 Systec, Inc. Film degassing system
JP2005211720A (en) * 2004-01-27 2005-08-11 Gunze Ltd Defoaming device
US7022157B2 (en) * 2003-11-12 2006-04-04 Agilent Technologies, Inc. Devices and methods for performing array based assays
KR100983102B1 (en) 2010-03-30 2010-09-20 전주대학교 산학협력단 Apparatus and method for measurement of hydrofluoric acid in cleaning solutions
JP2012215450A (en) * 2011-03-31 2012-11-08 Sekisui Medical Co Ltd Air bubble removal device
JP2015012839A (en) * 2013-07-05 2015-01-22 日立化成株式会社 Cell-catching system, and operational method of cell-catching system
JP2017181110A (en) * 2016-03-28 2017-10-05 積水メディカル株式会社 Deaerator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01265879A (en) * 1988-04-19 1989-10-23 Rikagaku Kenkyusho Deaeration-defoaming unit for bioreactor
US5693122A (en) * 1994-12-23 1997-12-02 Hewlett Packard Company Basic structure for a liquid chromatography degasser
US6033475A (en) * 1994-12-27 2000-03-07 Tokyo Electron Limited Resist processing apparatus
US6402810B1 (en) * 1997-04-23 2002-06-11 Daimlerchrysler Ag Method for dehydrating and/or degassing hydraulic fluids, device for carrying out said method and use of said device
JPH11137907A (en) * 1997-11-11 1999-05-25 Moore Kk Deaerator
US6596058B2 (en) * 2001-07-16 2003-07-22 Systec, Inc. Film degassing system
US7022157B2 (en) * 2003-11-12 2006-04-04 Agilent Technologies, Inc. Devices and methods for performing array based assays
JP2005211720A (en) * 2004-01-27 2005-08-11 Gunze Ltd Defoaming device
KR100983102B1 (en) 2010-03-30 2010-09-20 전주대학교 산학협력단 Apparatus and method for measurement of hydrofluoric acid in cleaning solutions
JP2012215450A (en) * 2011-03-31 2012-11-08 Sekisui Medical Co Ltd Air bubble removal device
JP2015012839A (en) * 2013-07-05 2015-01-22 日立化成株式会社 Cell-catching system, and operational method of cell-catching system
JP2017181110A (en) * 2016-03-28 2017-10-05 積水メディカル株式会社 Deaerator

Similar Documents

Publication Publication Date Title
JP3199781B2 (en) Apparatus for detecting a band having a predetermined operating direction in a separation medium
EP0973031B1 (en) Apparatus for degassing liquids
US5528923A (en) Gas amount and solubility investigation apparatus
US5739036A (en) Method for analysis
US4108602A (en) Sample changing chemical analysis method and apparatus
JPS6242708A (en) Defoamer
EP0336483B1 (en) A process and device for the separation of a body fluid from particulate materials in said fluid and testing kit for said separation and analysis of the body fluid.
US5672319A (en) Device for analyzing a fluid medium
JP4593451B2 (en) Microreactor system and liquid feeding method
US5942694A (en) Pressure detector for chemical analyzers
JPS6356499B2 (en)
US4301118A (en) Protein concentrator
US6296685B1 (en) Device and method for sampling in liquid phases using a diffusion body and an analyte-binding phase
US4952516A (en) Self-venting diagnostic test device
EP0157160A1 (en) Electrolytic conductivity detector
Kubáň Gas diffusion/permeation flow injection analysis. Part I. Principles and instrumentation
US4374656A (en) Apparatus for solvent degassing and solvent supply in liquid chromatographs
US5979219A (en) Probe for measuring volatile components in an aqueous solution
JPS63151307A (en) Degassing treatment apparatus
US3475128A (en) Fluid processing apparatus and methods
CA1037119A (en) Electrochemical analysis system
RU2303477C2 (en) Device for separating phases of two-phase mixture
JPH0248003Y2 (en)
CN108717008B (en) Water quality detection device and detection method
Kuldvee et al. Nonconventional samplers in capillary electrophoresis