JPS6242528B2 - - Google Patents

Info

Publication number
JPS6242528B2
JPS6242528B2 JP7943379A JP7943379A JPS6242528B2 JP S6242528 B2 JPS6242528 B2 JP S6242528B2 JP 7943379 A JP7943379 A JP 7943379A JP 7943379 A JP7943379 A JP 7943379A JP S6242528 B2 JPS6242528 B2 JP S6242528B2
Authority
JP
Japan
Prior art keywords
output
detector
beat
low
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7943379A
Other languages
Japanese (ja)
Other versions
JPS562720A (en
Inventor
Mitsuo Isobe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7943379A priority Critical patent/JPS562720A/en
Priority to US06/160,325 priority patent/US4360929A/en
Priority to GB8019693A priority patent/GB2053599B/en
Publication of JPS562720A publication Critical patent/JPS562720A/en
Publication of JPS6242528B2 publication Critical patent/JPS6242528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/34Muting amplifier when no signal is present or when only weak signals are present, or caused by the presence of noise signals, e.g. squelch systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/44Receiver circuitry for the reception of television signals according to analogue transmission standards
    • H04N5/52Automatic gain control

Description

【発明の詳細な説明】 この発明は位相同期ループを用いた振幅同期検
波装置における自動利得制御(以下この発明では
AGCと略称する)装置の構成に関し、特に位相
同期ループが非同期状態にあるときの装置の不安
定な動作を除去せんとするものである。以下テレ
ビジヨン受信機の映像中間周波(以下VIFと略称
する)回路におけるAGCを例にとつて説明す
る。
[Detailed Description of the Invention] This invention provides automatic gain control (hereinafter referred to as this invention) in an amplitude locked detection device using a phase locked loop.
The purpose of the present invention is to eliminate unstable operation of the device, especially when the phase-locked loop is out of synchronization. AGC in a video intermediate frequency (hereinafter abbreviated as VIF) circuit of a television receiver will be explained below as an example.

従来例を示した第1図では可変利得のVIF増幅
器1と、この出力と搬送波CWとが供給されてな
る同期検波器2とが縦続接続されることを示して
いる。AGC電圧発生回路(以下AGC回路と略称
する)は同期検波器2の出力信号の中の高周波成
分を除去するための第1の低域ろ波器LPF3、
AGC検波器4、直流のAGC電圧を得るための第
2の低域ろ波器5とからなり、その出力で前述の
VIF増幅器1の利得を制御することによつて同期
検波器2の入力あるいは出力の信号レベルを一定
とするものであり通常この構成が多くの受信機で
用いられている。第1の低域ろ波器3は通常の無
線受信機においては微弱な信号の受信に際して生
じる熱雑音がAGC回路の誤動作をもたらすこと
を防止するためでありテレビジヨン受信機ではそ
れに加えて同期検波器2の出力端に生じるインタ
ーキヤリア音声信号(国内においては4.5MHzビ
ート信号)によるAGC回路の誤動作をも阻止す
る機能をもつている。このような構成をもつた従
来装置においては、同期検波器2に供給された入
力信号と搬送波とが所定の位相関係(π/2radの相 対位相差)を保持し得なくなつた場合、いいかえ
ると位相同期ループが非同期状態となつた場合
に、同期検波器2の出力端に生じるビート信号が
前述した第1の低域ろ波器3によつて減衰される
ためにAGC回路はVIF増幅器1の利得を増大させ
るように動作をなす。このようなVIF増幅器の利
得の増大はビート信号の周波数が高くなる程大き
く、VIF増幅器1あるいは同期検波器2を不安定
な領域へ持ち込むことがあり、これがために低域
ろ波器3の時定数を十分大きくできない欠点があ
つた。
FIG. 1, which shows a conventional example, shows that a variable gain VIF amplifier 1 and a synchronous detector 2 to which this output and a carrier wave CW are supplied are connected in cascade. The AGC voltage generation circuit (hereinafter abbreviated as AGC circuit) includes a first low-pass filter LPF 3 for removing high frequency components in the output signal of the synchronous detector 2;
It consists of an AGC detector 4 and a second low-pass filter 5 for obtaining the DC AGC voltage.
By controlling the gain of the VIF amplifier 1, the input or output signal level of the synchronous detector 2 is made constant, and this configuration is usually used in many receivers. In a normal radio receiver, the first low-pass filter 3 is used to prevent thermal noise generated when receiving a weak signal from causing malfunction of the AGC circuit. It also has the function of preventing the AGC circuit from malfunctioning due to the intercarrier audio signal (4.5MHz beat signal in Japan) generated at the output terminal of device 2. In a conventional device with such a configuration, when the input signal supplied to the synchronous detector 2 and the carrier wave no longer maintain a predetermined phase relationship (a relative phase difference of π/2 rad), in other words, When the phase-locked loop becomes asynchronous, the beat signal generated at the output terminal of the synchronous detector 2 is attenuated by the first low-pass filter 3, so the AGC circuit is connected to the VIF amplifier 1. The operation is performed to increase the gain. Such an increase in the gain of the VIF amplifier becomes larger as the frequency of the beat signal becomes higher, and may bring the VIF amplifier 1 or the synchronous detector 2 into an unstable region, which causes the increase in the gain of the low-pass filter 3. There was a drawback that the constant could not be made large enough.

この発明によるAGC回路では第2図で示すよ
うに同期検波器2の出力側に配置されたビート検
出回路6を有しこのビート検出回路の出力で
AGC回路7を構成する第1の低域ろ波器3、
AGC検波器4、第2の低域ろ波器5等のいずれ
かを単独に制御、あるいは複数を並列に制御する
構成を有している。この発明の特殊な応用では前
述したビート検出回路で得ることができるパルス
信号で直接AGC回路を制御することが可能であ
る。以下それぞれの実施例について図面にもとづ
いて説明する。
The AGC circuit according to the present invention has a beat detection circuit 6 placed on the output side of the synchronous detector 2, as shown in FIG.
a first low-pass filter 3 constituting the AGC circuit 7;
It has a configuration in which either the AGC detector 4, the second low-pass filter 5, etc. is controlled individually, or a plurality of them are controlled in parallel. In a special application of this invention, it is possible to directly control the AGC circuit with the pulse signal that can be obtained from the beat detection circuit described above. Each embodiment will be described below based on the drawings.

第3図はビート検出回路6がビート検出器8と
低域ろ波器9とによつて構成され、その出力で
AGC回路7の低域ろ波器3の入力端と出力端を
短絡するように構成したものである。ビート検出
器8は入力信号の零搬送波レベルを超える白方向
のビートを振幅分離型で検出するために基準電圧
と同期検波器の出力信号とを比較するものであり
この動作の詳細は本出願人による特開昭53―
78153号公報にも示した通りである。低域ろ波器
9はビート検波器8の出力を直流信号に変換し、
低域ろ波器3の入出力間に接続されたスイツチ
SWを開閉する。前述した位相同期ループが同期
状態にある場合、ビート検波器8は基準電圧によ
つてカツトオフされるためスイツチSWは開放状
態が保たれる。この状態ではAGC検波器4の入
力信号の中で熱雑音、インターキヤリア音声信号
などのAGC回路にとつて好ましくない全ての成
分は低域ろ波器3で除去されるので微弱な信号の
受信に際してもAGC回路7は正常に動作する。
In FIG. 3, the beat detection circuit 6 is composed of a beat detector 8 and a low-pass filter 9, and its output is
This configuration is such that the input end and output end of the low-pass filter 3 of the AGC circuit 7 are short-circuited. The beat detector 8 compares the reference voltage with the output signal of the synchronous detector in order to detect beats in the white direction that exceed the zero carrier level of the input signal in an amplitude-separated manner.The details of this operation are provided by the applicant. Unexamined Japanese Patent Publication 1973-
This is also shown in Publication No. 78153. A low-pass filter 9 converts the output of the beat detector 8 into a DC signal,
Switch connected between input and output of low-pass filter 3
Open/close SW. When the aforementioned phase-locked loop is in a synchronous state, the beat detector 8 is cut off by the reference voltage, so that the switch SW remains open. In this state, all components that are undesirable for the AGC circuit, such as thermal noise and intercarrier audio signals, are removed from the input signal of the AGC detector 4 by the low-pass filter 3, so when receiving a weak signal, The AGC circuit 7 also operates normally.

一方位相同期ループが非同期状態となると、低
域ろ波器9の出力端に生じる直流電圧はスイツチ
SWを短絡する。この状態ではもはや低域ろ波器
3はろ波作用をもたないのでAGC回路7は広帯
域化される。従つてAGC回路7はAGC検波器4
の入力信号の状態(ビートであるか否か)あるい
はビート信号の周波数に関係なくそのピークレベ
ルを一定とするように動作するので同期検波器2
あるいはVIF増幅器1が過大入力となつて装置を
不安定な領域へ持ち込むことがなくなる。上記実
施例構成では、低域ろ波器3の特性は位相同期ル
ープが非同期状態で生じるビート信号に対して何
らの配慮も不要であるのでAGC回路7を常に最
適の状態で動作させるように時定数を設定するこ
とができる。
On the other hand, when the phase-locked loop becomes asynchronous, the DC voltage generated at the output terminal of the low-pass filter 9 is switched
Short-circuit SW. In this state, the low-pass filter 3 no longer has a filtering effect, so that the AGC circuit 7 has a wide band. Therefore, AGC circuit 7 is AGC detector 4
The synchronous detector 2 operates so that the peak level is constant regardless of the state of the input signal (beat or not) or the frequency of the beat signal.
Alternatively, the VIF amplifier 1 is prevented from receiving excessive input and bringing the device into an unstable region. In the configuration of the above embodiment, the characteristics of the low-pass filter 3 do not require any consideration for the beat signal generated when the phase-locked loop is in an asynchronous state, so the AGC circuit 7 is always operated in an optimal state. Constants can be set.

第4図に示した実施例は第3図のものと同様に
ビート検出回路6がビート検出器8と低域ろ波器
9とで構成され、その出力でAGC検波器4の基
準直流電圧を制御するものである。通常の状態、
すなわち位相同期ループが同期状態にあるときは
低域ろ波器9の出力には直流電圧は発生しないの
でAGC検波器4は通常の検波作用をもつてい
る。一方、同期検波器2の出力に生じたビート信
号は低域ろ波器9によつて直流電圧に変換される
がここで第4図の実施例におけるビート検出器8
の動作開始レベルは第3図におけるものとは幾分
異なつた条件に選定される。すなわち、第3図の
実施例ではビート検出器8は同期検波器2が出力
する信号の中より零搬送波レベルを超える白方向
の信号成分の有無を検出するために零搬送波レベ
ル近傍の基準電圧を用いるのに対して、第4図の
実施例では第7図に示すように零搬送波レベルを
V0、黒方向の同期信号尖頭値レベルをV2とする
とビート検出器8の基準電圧V1は V1≦V2+2(V0−V2) に設定される。従つてビート信号の周波数が低く
低域ろ波器3による減衰を生じないような動作条
件においてはAGC検波器4は黒方向の同期信号
尖頭レベルV2を一定となすように動作をし、従
つてビート検出器8に供給されるビート信号の白
方向の同期信号尖頭値レベルはV2+2(V0
V2)となるのでビート検出器8は基準電圧と略等
しい入力のビート信号に対して実質的にはカツト
オフ状態を維持するので低域ろ波器9の出力には
AGC検波器4を制御する何らの信号は生じな
い。次にビート信号が低域ろ波器3によつて減衰
をうけるような高い周波数となつた場合には低域
ろ波器3の減衰量に対応してビート信号の振幅が
増加するためにビート検出器8はその動作を開始
する。低域ろ波器9で直流電圧に変換されたビー
ト検出器8の出力は、ビート周波数に対応じて変
化し、これは低域ろ波器3の周波数特性に正確に
対応する。一方低域ろ波器9の出力でビート信号
の振幅を減少させる方向にAGC検波器4の基準
直流電圧を変化させることにより同期検波器2の
出力のビート信号の振幅をその周波数にかかわら
ず一定とすることができる。例えば低域ろ波器3
がビート周波数において6dBの減衰度を有す
る場合、同期検波器2の入力あるいは出力レベル
を6dB減じるようにAGC検波器4の基準直流レベ
ルを変化させ、かつこの制御動作が線形動作をす
るように設定すればよい。
In the embodiment shown in FIG. 4, like the one in FIG. 3, the beat detection circuit 6 is composed of a beat detector 8 and a low-pass filter 9, and its output is used to detect the reference DC voltage of the AGC detector 4. It is something to control. normal condition,
That is, when the phase-locked loop is in a synchronous state, no DC voltage is generated at the output of the low-pass filter 9, so the AGC detector 4 has a normal detection function. On the other hand, the beat signal generated at the output of the synchronous detector 2 is converted into a DC voltage by the low-pass filter 9, where the beat detector 8 in the embodiment shown in FIG.
The activation level of is selected under somewhat different conditions than in FIG. That is, in the embodiment shown in FIG. 3, the beat detector 8 uses a reference voltage near the zero carrier level in order to detect the presence or absence of a signal component in the white direction that exceeds the zero carrier level in the signal output from the synchronous detector 2. In contrast, in the embodiment of FIG. 4, the zero carrier level is used as shown in FIG.
When V 0 and the peak level of the synchronizing signal in the black direction are V 2 , the reference voltage V 1 of the beat detector 8 is set to V 1 ≦V 2 +2 (V 0 −V 2 ). Therefore, under operating conditions where the frequency of the beat signal is low and there is no attenuation by the low-pass filter 3, the AGC detector 4 operates to keep the black synchronization signal peak level V2 constant. Therefore, the peak level of the synchronization signal in the white direction of the beat signal supplied to the beat detector 8 is V 2 +2 (V 0
V 2 ), so the beat detector 8 essentially maintains a cut-off state for the input beat signal that is approximately equal to the reference voltage, so the output of the low-pass filter 9
No signal is generated to control the AGC detector 4. Next, when the beat signal reaches a high frequency that is attenuated by the low-pass filter 3, the amplitude of the beat signal increases corresponding to the amount of attenuation by the low-pass filter 3, so the beat signal Detector 8 begins its operation. The output of the beat detector 8, which is converted into a DC voltage by the low-pass filter 9, changes in accordance with the beat frequency, which exactly corresponds to the frequency characteristics of the low-pass filter 3. On the other hand, by changing the reference DC voltage of the AGC detector 4 in the direction of decreasing the amplitude of the beat signal output from the low-pass filter 9, the amplitude of the beat signal output from the synchronous detector 2 is kept constant regardless of its frequency. It can be done. For example, low-pass filter 3
has an attenuation of 6 dB at beat frequency 1 , the reference DC level of the AGC detector 4 is changed to reduce the input or output level of the synchronous detector 2 by 6 dB, and the control operation is linear. Just set it.

次にこの発明の第3の実施例を第5図に用いて
説明する。この実施例ではビート検出回路6の出
力で低域ろ波器5を制御することを示している。
低域ろ波器5はAGC検波器4の出力を直流電圧
に変換するものであり平滑のためのコンデンサを
通常有する。ビート検出器8は第4図で説明した
のと同様の条件で基準直流電圧を設定するからこ
の応用におけるビート検出回路6の出力の直流電
圧も低域ろ波器3の周波数特性と正確に対応す
る。
Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment shows that the low-pass filter 5 is controlled by the output of the beat detection circuit 6.
The low-pass filter 5 converts the output of the AGC detector 4 into a DC voltage, and usually includes a smoothing capacitor. Since the beat detector 8 sets the reference DC voltage under the same conditions as explained in FIG. 4, the output DC voltage of the beat detection circuit 6 in this application also corresponds accurately to the frequency characteristics of the low-pass filter 3. do.

今、低域ろ波器5の出力が増大した時にVIF増
幅器1の利得が増大するいわゆるリバースAGC
を仮定すると、ビート検出回路6の出力で低域ろ
波器5の平滑コンデンサの電荷を放電する方向に
制御した場合、AGC回路7は電荷の放電を補正
するように動作の変更が行なわれる。すなわち
AGC検波器4の入力のビート信号の振幅を減少
させることによつて放電された電荷を補なうがこ
れは等価的に同期検波器の出力のビート信号を減
少することを意味する。この低域ろ波器5の制御
もまた第4図と同様に線形動作をするように設定
し、制御量を適切に選定すればビートの周波数に
関係なくその振幅を一定とすることができる。
Now, the so-called reverse AGC in which the gain of VIF amplifier 1 increases when the output of low-pass filter 5 increases
Assuming that, when the output of the beat detection circuit 6 is controlled to discharge the charge of the smoothing capacitor of the low-pass filter 5, the operation of the AGC circuit 7 is changed to correct the discharge of the charge. i.e.
The discharged charge is compensated for by reducing the amplitude of the beat signal at the input of the AGC detector 4, which equivalently means reducing the beat signal at the output of the synchronous detector. The control of the low-pass filter 5 is also set to perform linear operation as in FIG. 4, and by appropriately selecting the control amount, the amplitude can be made constant regardless of the frequency of the beat.

この第5図の実施例においてはビート検出回路
6が低域ろ波器9を含んでいるが第6図のように
ビート検出器8の出力で直接制御することもでき
る。この場合ビート検出器8の出力がパルス信号
となるからこの信号を用いた場合の上記平滑コン
デンサの放電動作は間欠的に行なわれる。従つて
その積分値が第5図の実施例と同じくなるように
設定することにより第5図と同様にビート信号の
振幅をその周波数にかかわらず一定とすることが
できる。
In the embodiment shown in FIG. 5, the beat detection circuit 6 includes a low-pass filter 9, but it can also be directly controlled by the output of the beat detector 8 as shown in FIG. In this case, since the output of the beat detector 8 becomes a pulse signal, when this signal is used, the discharging operation of the smoothing capacitor is performed intermittently. Therefore, by setting the integral value to be the same as in the embodiment shown in FIG. 5, the amplitude of the beat signal can be made constant regardless of its frequency as in FIG. 5.

以上のようにビート検出回路の出力でAGC電
圧発生回路を制御するように構成した本発明によ
るAGC装置では、位相同期ループの同期、非同
期状態に関係なく実質的に同期検波器の入力信号
レベルを一定とすることができるため装置の動作
を常に安定な領域に保つことが可能である。した
がつて低域ろ波器の性能を高めることができ、
AGC検波器への供給信号の中から好ましくない
全ての雑音、信号成分を十分に除去することがで
きるのでAGC装置の性能をより高めることもで
きるなど大きな効果を奏するものである。
As described above, in the AGC device according to the present invention configured to control the AGC voltage generation circuit with the output of the beat detection circuit, the input signal level of the synchronous detector can be substantially controlled regardless of whether the phase-locked loop is synchronous or asynchronous. Since it can be kept constant, it is possible to always keep the operation of the device in a stable range. Therefore, the performance of the low-pass filter can be improved,
Since all undesirable noise and signal components can be sufficiently removed from the signal supplied to the AGC detector, the performance of the AGC device can be further improved, which has great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のAGC装置を示すブロツク図、
第2図は本発明によるAGC装置の基本構成を示
すブロツク図、第3図、第4図、第5図、第6図
はそれぞれ本発明の一実施例を示すブロツク図、
第7図は第4図に示した実施例の動作説明のため
の波形図である。 1…VIF増幅器、2…同期検波器、3…低域ろ
波器、4…AGC検波器、5…低域ろ波器、6…
ビート検出回路、7…AGC回路、8…ビート検
出器、9…低域ろ波器。
Figure 1 is a block diagram showing a conventional AGC device.
FIG. 2 is a block diagram showing the basic configuration of an AGC device according to the present invention, and FIGS. 3, 4, 5, and 6 are block diagrams showing one embodiment of the present invention, respectively.
FIG. 7 is a waveform diagram for explaining the operation of the embodiment shown in FIG. 4. 1...VIF amplifier, 2...synchronous detector, 3...low-pass filter, 4...AGC detector, 5...low-pass filter, 6...
Beat detection circuit, 7...AGC circuit, 8...beat detector, 9...low-pass filter.

Claims (1)

【特許請求の範囲】 1 位相同期ループを用いた振幅同期検波器と、
該振幅同期検波器の出力レベルを所定値に保持す
るためのAGC電圧発生回路と、前記振幅同期検
波器の出力側に配置され前記振幅同期検波器の検
波極性とは実質的に異なる検出極性を有するとと
もに前記AGC電圧発生回路を制御するビート検
出回路とを備え、前記AGC電圧発生回路は前記
振幅同期検波器の出力が供給される第1の低域ろ
波器と、その出力を入力とするAGC検波器、さ
らにその検波出力が印加される第2の低域ろ波器
とを有することを特徴とするAGC装置。 2 前記ビート検出回路は、振幅同期検波器の出
力に結合されたビート検出器と該ビート検出器の
出力側に配置された第3の低域ろ波器とを有し、
該第3の低域ろ波器の制御出力が前記第1の低域
ろ波器の信号通過帯域を広帯域となすことを特徴
とする特許請求の範囲第1項記載のAGC装置。 3 前記ビート検出回路は、振幅同期検波器の出
力に結合されたビート検出器と該ビート検出器の
出力側に配置された第3の低域ろ波器とを有し、
前記第3の低域ろ波器の出力で前記AGC検波器
の基準直流電圧を制御し、前記振幅同期検波器の
出力信号レベルを減ずることを特徴とする特許請
求の範囲第1項記載のAGC装置。 4 前記ビート検出回路は、振幅同期検波器の出
力に結合されたビート検出器と該検出器の出力側
に配置された第3の低域ろ波器とを有し、前記第
3の低域ろ波器の出力で前記第2の低域ろ波器の
出力直流電圧を制御し、前記振幅同期検波器の出
力信号レベルを減ずることを特徴とする特許請求
の範囲第1項記載のAGC装置。 5 前記ビート検出回路は振幅同期検波器の出力
端に結合されたビート検出器で構成され、前記ビ
ト検出器の出力で前記第2の低域ろ波器の出力直
流電圧を制御することを特徴とする特許請求の範
囲第1項記載のAGC装置。
[Claims] 1. An amplitude locked detector using a phase locked loop;
an AGC voltage generation circuit for maintaining the output level of the amplitude synchronous detector at a predetermined value; and an AGC voltage generation circuit arranged on the output side of the amplitude synchronous detector, which has a detection polarity substantially different from the detection polarity of the amplitude synchronous detector. and a beat detection circuit for controlling the AGC voltage generation circuit, the AGC voltage generation circuit having a first low-pass filter to which the output of the amplitude synchronous detector is supplied, and the output thereof as input. An AGC device comprising an AGC detector and a second low-pass filter to which the detected output is applied. 2. The beat detection circuit includes a beat detector coupled to the output of an amplitude synchronous detector and a third low-pass filter disposed on the output side of the beat detector,
2. The AGC device according to claim 1, wherein the control output of the third low-pass filter makes the signal pass band of the first low-pass filter wide. 3. The beat detection circuit includes a beat detector coupled to the output of an amplitude synchronous detector and a third low-pass filter disposed on the output side of the beat detector,
The AGC according to claim 1, wherein the reference DC voltage of the AGC detector is controlled by the output of the third low-pass filter, and the output signal level of the amplitude synchronous detector is reduced. Device. 4. The beat detection circuit includes a beat detector coupled to the output of the amplitude synchronous detector and a third low-pass filter disposed on the output side of the detector, and the third low-pass filter The AGC device according to claim 1, wherein the output DC voltage of the second low-pass filter is controlled by the output of the filter to reduce the output signal level of the amplitude synchronous detector. . 5. The beat detection circuit is comprised of a beat detector coupled to an output end of an amplitude synchronous detector, and the output DC voltage of the second low-pass filter is controlled by the output of the beat detector. An AGC device according to claim 1.
JP7943379A 1979-06-22 1979-06-22 Agc unit Granted JPS562720A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7943379A JPS562720A (en) 1979-06-22 1979-06-22 Agc unit
US06/160,325 US4360929A (en) 1979-06-22 1980-06-17 Automatic gain control circuit
GB8019693A GB2053599B (en) 1979-06-22 1980-06-17 Automatic gain control circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7943379A JPS562720A (en) 1979-06-22 1979-06-22 Agc unit

Publications (2)

Publication Number Publication Date
JPS562720A JPS562720A (en) 1981-01-13
JPS6242528B2 true JPS6242528B2 (en) 1987-09-09

Family

ID=13689737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7943379A Granted JPS562720A (en) 1979-06-22 1979-06-22 Agc unit

Country Status (1)

Country Link
JP (1) JPS562720A (en)

Also Published As

Publication number Publication date
JPS562720A (en) 1981-01-13

Similar Documents

Publication Publication Date Title
CS268511B2 (en) Circuit for automatic control of gain at device for signal processing
KR900002955B1 (en) Auto control circuit of filter circuit's time constant
US5564093A (en) Frequency modulation receiving apparatus having two intermediate-frequency band pass filters
RU2140705C1 (en) Stage of amplifier with controlled amplification, amplifier with controlled amplification, t v receiver
US4053933A (en) Adaptive phase locked loop filter for television tuning
US5457500A (en) Color TV receiver using quadrature-phase synchronous detector for supplying signal to chrominance circuitry
RU2124276C1 (en) Device integrating detector and frequency- selective filter
EP0281175B1 (en) Clamping circuit for a television transmission system
US4172239A (en) Signal attenuator
JPH0730824A (en) Digital broadcast receiver
US6094229A (en) IF signal processing circuit for video signal and sound system form in one integrated circuit
JPS6242528B2 (en)
US4237490A (en) Signal overload prevention circuit
US4271535A (en) Noise eliminating system
GB2090499A (en) Sync separator
US5563538A (en) Control circuit for clock multiplier
US4605908A (en) Disable circuit for a phase locked loop discriminator circuit
McGinn An advanced IF amplifier and AFT system suitable for HDTV
KR100241764B1 (en) Automatic gain cintroller using hdtv
JPS62293Y2 (en)
EP0398351B1 (en) Apparatus for detecting broadcast FM satellite waves
KR100276472B1 (en) Method for controlling automatic gain in hdtv
JPS6259951B2 (en)
JP2894112B2 (en) Phase synchronous receiving circuit
EP0901292B1 (en) Video processing circuit