JPS6242467A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS6242467A
JPS6242467A JP60181984A JP18198485A JPS6242467A JP S6242467 A JPS6242467 A JP S6242467A JP 60181984 A JP60181984 A JP 60181984A JP 18198485 A JP18198485 A JP 18198485A JP S6242467 A JPS6242467 A JP S6242467A
Authority
JP
Japan
Prior art keywords
lower electrode
type layer
photoelectric conversion
conversion element
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60181984A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sato
和彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60181984A priority Critical patent/JPS6242467A/en
Publication of JPS6242467A publication Critical patent/JPS6242467A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain characteristics required for superior solar cell, by forming insulating films on the top and side faces at the peripheral part of a lower electrode so that the effect of leakage current at the peripheral part of a semiconductor film is remarkably reduced to increase an effective light-receiving area in comparison with the similar-sized substrate. CONSTITUTION:Amorphous semiconductor films 2, composed of a N-type layer 2a, non-doped layer 2b, and P-type layer 2c in the case of a pin-type element, are formed on a lower electrode 1 comprising a substrate of metal such as stainless steel, together with a transparent electrode 3 comprising a transparent electroconductive film like ITO, a metal collector pole 4, and an insulating film 5. The insulating film 5 is formed on the top and side faces at the peripheral part of the substrate 1. Because of the insulating film 5 in existence the P-type layer 2c does not come in direct contact with the lower electrode 1 even in case of its spreading, and therefore the leakage current at the end part can be remarkably suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、アモルファス太陽電池等の薄膜光電変換素
子において変換効率の高い素子を製造するための素子構
造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an element structure for manufacturing a thin film photoelectric conversion element such as an amorphous solar cell with high conversion efficiency.

〔従来の技術〕[Conventional technology]

第4図はステンレス等の金属基板上に形成した従来のア
モルファス太陽電池としての光電変換素子の断面構造図
であり、第5図はその表面図の一例である。図において
、(1)はステンレス等の金属基板でなる下部電極、(
2)はアモルファス半導体膜で、例えばpin型素子の
場合には(2a) 、 (2b) 。
FIG. 4 is a cross-sectional structural view of a photoelectric conversion element as a conventional amorphous solar cell formed on a metal substrate such as stainless steel, and FIG. 5 is an example of its surface view. In the figure, (1) is the lower electrode made of a metal substrate such as stainless steel, (
2) is an amorphous semiconductor film, for example, (2a) and (2b) in the case of a pin type element.

(2c)はそれぞれn型層、゛ノンビー1層、p型層、
(3)はI To (Induim −Tin−Oxi
de)等の透明導電膜でなる透明電極、(4)は金属集
電極である。
(2c) is an n-type layer, a non-bi layer, a p-type layer, and
(3) is I To (Induim -Tin-Oxi
(4) is a metal collecting electrode.

通常、アモルファス半導体Hf21は、プラズマCVD
法、光CVD法等によって下部電極+11の表面の全面
、もしくはマスク法により下部電極il+の周辺に約I
n程度を残して成膜される。アモルファス半導体膜(2
)の代表的な膜厚としては、n型層(2a)は200〜
500 人、ノンドープIW(2b)は4000〜10
000人、p型層(2c)は100〜300 人である
Usually, amorphous semiconductor Hf21 is produced by plasma CVD
Approximately I
The film is formed with about n remaining. Amorphous semiconductor film (2
), the n-type layer (2a) has a typical thickness of 200~
500 people, non-doped IW (2b) 4000-10
000 people, and the p-type layer (2c) has 100 to 300 people.

次に動作について説明する。アモルファス半導体膜(2
)中で吸収された光により発生した正札と電子とは、そ
れぞれアモルファス半導体膜(2)中に存在する電界に
より反対方向に分離される。pin型素子の場合、正孔
は透明電極(3)および金属集電極(4)により、電子
は下部電極(11により集められ、外部電流として取り
出される。
Next, the operation will be explained. Amorphous semiconductor film (2
) and the electrons generated by the light absorbed in the amorphous semiconductor film (2) are separated in opposite directions by the electric field present in the amorphous semiconductor film (2). In the case of a pin type element, holes are collected by a transparent electrode (3) and a metal collector electrode (4), and electrons are collected by a lower electrode (11), and are taken out as an external current.

従来の光電変換素子においては、通常の成膜法でアモル
ファス半導体膜(2)を形成した場合、アモルファス半
導体膜(2)の端部において膜厚のブレを生じることが
避けられず、端部での漏れ電流が素子全体の特性を低下
させていた。特に、プラズマCVD法においてプラズマ
が広がる条件めもとてp型層(2c)を形成した場合、
下部電極(1)とp型層(2c)との短絡もしくは漏れ
電流の増大をもたらし、これは光電変換素子のシャント
抵抗を低下させ光電変換素子の特性を著しく悪化させる
In conventional photoelectric conversion elements, when the amorphous semiconductor film (2) is formed using a normal film formation method, it is inevitable that the film thickness will vary at the edges of the amorphous semiconductor film (2), and the film thickness will vary at the edges. This leakage current degrades the characteristics of the entire device. In particular, when forming the p-type layer (2c) under the conditions for plasma spreading in the plasma CVD method,
This results in a short circuit between the lower electrode (1) and the p-type layer (2c) or an increase in leakage current, which lowers the shunt resistance of the photoelectric conversion element and significantly deteriorates the characteristics of the photoelectric conversion element.

直列抵抗の低減およびVOCの増大化の目的で、p型層
(2c)およびn型層(2a)のドーピング層としては
lo−1〜IOΩ−’ IJ −’の高い導電度を有す
る微結晶層がよく用いられるが、この場合にはさらに顕
著に端部の影響が現われる。端部での膜厚のブレを無く
すために、下部電極(1)の全面にアモルファス半導体
膜(2)の成膜を行ったとしても、下部電極(1)の側
面において同様の影響が生じる。
For the purpose of reducing series resistance and increasing VOC, a microcrystalline layer having a high conductivity of lo-1 to IOΩ-'IJ-' is used as a doping layer for the p-type layer (2c) and n-type layer (2a). is often used, but in this case the influence of the edges becomes even more noticeable. Even if the amorphous semiconductor film (2) is formed over the entire surface of the lower electrode (1) in order to eliminate fluctuations in film thickness at the edges, a similar effect will occur on the side surfaces of the lower electrode (1).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の光電変換素子は以上のように構成されているので
、マスクプロセスのみで素子を作製したときに、透明電
極(3)の広がりにより透明電極(3)とn型層(2a
)または下部電極(1)とが接触する可能性があり、こ
れを避けるために、またアモルファス半導体膜(2)の
端部による漏れTL流の影響をできるだけ低減させるた
めに、透明電極(3)をマスク法によりアモルファス半
導体膜(2)の端部よりさらに11以上も内側に形成し
、有効受光面積を犠牲にしなければならないという問題
点があった。
Since the conventional photoelectric conversion element is constructed as described above, when the element is manufactured only by a mask process, the transparent electrode (3) and the n-type layer (2a
) or the lower electrode (1), and in order to avoid this and to reduce as much as possible the influence of the leakage TL flow due to the edge of the amorphous semiconductor film (2), the transparent electrode (3) There was a problem in that the masking method was used to form the amorphous semiconductor film (2) more than 11 times further inside than the edge of the amorphous semiconductor film (2), thereby sacrificing the effective light-receiving area.

この発明は上記のような問題点を解消するためになされ
たもので、アモルファス半導体膜の周辺部での漏れ電流
の影響を著しく低減し、同一サイズの基板に対して有効
受光面積を広げ、良好な太陽電池としての特性が得られ
る光電変換素子を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it significantly reduces the influence of leakage current at the periphery of an amorphous semiconductor film, expands the effective light-receiving area for a substrate of the same size, and improves performance. The purpose of the present invention is to obtain a photoelectric conversion element that can obtain characteristics as a solar cell.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る光電変換素子は、下部電極の周辺部の表
面および側面に絶縁膜を形成し、下部電極の周辺部にお
いて透明電極と下部電極とが直接接触することが無いよ
うにしたものである。
In the photoelectric conversion element according to the present invention, an insulating film is formed on the surface and side surfaces of the peripheral part of the lower electrode, so that the transparent electrode and the lower electrode do not come into direct contact in the peripheral part of the lower electrode. .

〔作用〕[Effect]

この発明における光電変換素子は、下部電極の周辺部に
絶縁膜を備えることにより、アモルファス半導体膜の端
部での漏れ電流を著しく減少させるとともに、透明電極
と下部電極とが接触することが有り得ないので透明電極
を基板サイズまで広げることを可能とし、有効受光面積
を増大させることにより変換効率の高い素子特性を得る
ことができる。
In the photoelectric conversion element of the present invention, by providing an insulating film around the lower electrode, leakage current at the edge of the amorphous semiconductor film is significantly reduced, and contact between the transparent electrode and the lower electrode is impossible. Therefore, it is possible to expand the transparent electrode to the size of the substrate, and by increasing the effective light-receiving area, it is possible to obtain device characteristics with high conversion efficiency.

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、(11はステンレス等の金属基板でな
る下部電極、(2)はアモルファス半導体膜で、pin
型素子の場合、(2a) 、 (2b) 、 (2c)
はそれぞれn型層、ノンドープ層、p型層、(3)はI
TO等の透明導電膜でなる透明電極、(4)は金属集電
極、(5)は絶縁膜である。絶縁膜(5)は基板(1)
の周辺部の表面および側面に形成されている。この絶縁
膜(5)によりp型層(2c)がたとえ広がったとして
も下部電極(1)に直接接触することは無く、端部での
漏れ電流は著しく抑えられる。
In FIG. 1, (11 is a lower electrode made of a metal substrate such as stainless steel, (2) is an amorphous semiconductor film, and pin
For type elements, (2a), (2b), (2c)
are an n-type layer, a non-doped layer, a p-type layer, and (3) is an I layer, respectively.
A transparent electrode made of a transparent conductive film such as TO, (4) a metal collector electrode, and (5) an insulating film. The insulating film (5) is the substrate (1)
It is formed on the surface and sides of the periphery. Due to this insulating film (5), even if the p-type layer (2c) spreads, it will not come into direct contact with the lower electrode (1), and leakage current at the ends can be significantly suppressed.

さらに、本実施例の光電変換素子では、アモルファス半
導体膜(2)の成膜領域および透明電極(3)の領域を
基板fllの全域に広げることができる。第2図はその
場合の周辺E部の拡大断面図である。下部電極+11の
端部からlの長さだけ内側に絶縁膜(5)で覆われてい
るとし、この領域をI、それより内部の有効領域を口と
する。ノンドープ層(2b)が挿入されているために、
端部においてもp型層(2c)または透明電極(3)と
n型層(2a)とが接触する可能性は少ないが、仮に透
明電極(3)がn型JiJ(2a)と接し、これを通し
ての個れ電流が存在するときに、有効領域■における素
子特性を少なくとも低下させることのない十分条件とし
てのlの長さを求めてみる。領域■で発生した電流はす
べて点線で示した径路を流れ漏れ電流となるとすると、
透明電極(3)上のA点とB点とはほとんど同電位であ
るので、上記十分条件としてはB点での電位(A点の電
位)が0点の電位に比べて少なくとも素子の動作電圧゛
より高ければよいという条件になる。n型層(2a)と
して導電度が1Ω−’ (J −’の微結晶層を300
人の薄膜で用いたときに素子の動作電圧を約0.5■と
し、領域Pでの短絡電流をJ、co+A/cIIlとす
ると、上記条件は次式で示される。
Furthermore, in the photoelectric conversion element of this example, the film formation region of the amorphous semiconductor film (2) and the region of the transparent electrode (3) can be expanded over the entire substrate fl1. FIG. 2 is an enlarged sectional view of the peripheral portion E in that case. It is assumed that the inside of the lower electrode +11 is covered by a length l from the end thereof with an insulating film (5), and this area is called I, and the effective area inside it is called mouth. Because the non-doped layer (2b) is inserted,
There is little possibility that the p-type layer (2c) or the transparent electrode (3) and the n-type layer (2a) will come into contact with each other at the end, but if the transparent electrode (3) comes into contact with the n-type JiJ (2a) and this Let us find the length of l as a sufficient condition that at least the device characteristics in the effective region (2) are not degraded when there is an individual current through the channel. Assuming that all the current generated in region ■ flows through the path shown by the dotted line and becomes a leakage current,
Since points A and B on the transparent electrode (3) are almost at the same potential, the above sufficient condition is that the potential at point B (potential at point A) is at least as low as the operating voltage of the element compared to the potential at point 0. The condition is that it should be higher than ゛. As the n-type layer (2a), a microcrystalline layer with a conductivity of 1Ω-'(J-'
Assuming that the operating voltage of the element when used in a human thin film is approximately 0.5 square meters, and the short circuit current in region P is J, co+A/cIIl, the above conditions are expressed by the following equation.

10’/3 ・1” XJsc≧0.5   −−・・
・+1!この条件式fllから、例えばJscが5mA
/−のときにlは1.7 XIQ−’cm以上、JIC
が10mA/cdのときにlは1.2 XIQ−”am
以上であればよいことが導かれる。したがって、Joが
5mA/−の場合でもβとして0.2龍確保しておけば
、たとえ透明電極(3)とn型層(2a)とが接しても
有効領域■の特性に悪影響を及ぼすことはない。
10'/3 ・1" XJsc≧0.5 ---
・+1! From this conditional expression fll, for example, Jsc is 5mA
/-, l is 1.7 XIQ-'cm or more, JIC
When is 10mA/cd, l is 1.2 XIQ-”am
Anything above this will lead to something good. Therefore, even if Jo is 5 mA/-, if β is set at 0.2, even if the transparent electrode (3) and the n-type layer (2a) are in contact, the characteristics of the effective area (2) will be adversely affected. There isn't.

このように、本発明の光電変換素子では、従来、周辺か
ら約1〜2龍も内側にしか有効領域を確保できなかった
ものが、はとんど全面に有効領域を広げることができ、
アモルファス半導体膜(2)および透明電極(3)がい
ずれも形成時にマスクを必要としないため、製造工程も
簡略化できるというメリットがある。
In this way, with the photoelectric conversion element of the present invention, the effective area can be expanded to almost the entire surface, whereas in the past, the effective area could only be secured about 1 to 2 degrees inside from the periphery.
Since neither the amorphous semiconductor film (2) nor the transparent electrode (3) requires a mask during formation, there is an advantage that the manufacturing process can be simplified.

絶縁膜(5)としては、例えばSin!膜、S i 3
 N a膜等を下部電極!11上に形成するか、あらか
じめポリイミド等の高分子フィルムが下部電極(1)上
に形成されたものを用いればよい。絶縁膜(5)は、ピ
ンホールが無く、しかも素子の開放端電圧の数倍の耐電
圧を有することが望ましい、したがって、絶縁膜(5)
の膜厚としては100人〜l/Jm程度がよい。
As the insulating film (5), for example, Sin! Membrane, S i 3
Na film etc. as the lower electrode! Alternatively, a polymer film such as polyimide may be formed on the lower electrode (1) in advance. It is desirable that the insulating film (5) has no pinholes and has a withstand voltage several times the open circuit voltage of the element. Therefore, the insulating film (5)
The film thickness is preferably about 100 to 1/Jm.

第3図は本発明の他の実施例の充電変換素子を示してい
る。第1図に示した実施例の光電変換素子においては、
絶縁膜(5)はアモルファス半導体膜(2)の成膜前の
下部電極(1)の周辺および側面に形成されているが、
アモルファス半導体膜(2)の成膜後、透明電極(3)
の形成前に周辺および側面を絶縁膜(5)で覆った本実
施例の光!変換素子においても、はとんど同様の効果が
得られる。
FIG. 3 shows a charging conversion element according to another embodiment of the present invention. In the photoelectric conversion element of the example shown in FIG.
The insulating film (5) is formed around and on the side of the lower electrode (1) before the amorphous semiconductor film (2) is formed.
After forming the amorphous semiconductor film (2), the transparent electrode (3)
The light of this example whose periphery and side surfaces were covered with an insulating film (5) before the formation of the light! Almost the same effect can be obtained with the conversion element.

なお、上記各実施例では、アモルファス半導体膜として
下部電極側から順にn型層、ノンドープ層、p型層を形
成した光電変換素子について示したが、下部電極側から
p型層、ノンドープ層、n型層を形成した光電変換素子
についても、さらにシツットキー接合、ヘテロ接合を用
いた素子についても全く同じ構造が適用できる。
In each of the above embodiments, a photoelectric conversion element was shown in which an n-type layer, a non-doped layer, and a p-type layer were formed in order from the lower electrode side as an amorphous semiconductor film. Exactly the same structure can be applied to a photoelectric conversion element in which a mold layer is formed, and also to an element using a Schittky junction or a heterojunction.

また、アモルファス半導体膜としては、現在アモルファ
スStが最も広く用いられているが、アモルファスSi
C,アモルファスSiN、アモルファス5iGe、 ア
モルファスSign等の合金を用いる場合にも同様の効
果を奏する。
Furthermore, although amorphous St is currently most widely used as an amorphous semiconductor film, amorphous Si
Similar effects can be obtained when using alloys such as C, amorphous SiN, amorphous 5iGe, and amorphous Sign.

さらに、上記各実施例では単層素子の場合について説明
したが、単層素子を積層した多層構造素子の場合も同様
の効果を奏することは明らかである。
Further, in each of the above embodiments, the case of a single layer element has been described, but it is clear that the same effect can be achieved in the case of a multilayer structure element in which single layer elements are laminated.

また、上記各実施例では、下部電極として金属基板を用
いたものを示したが、下部電極としては非金属基板上に
金属膜を形成したものを用いてもよい。
Further, in each of the above embodiments, a metal substrate is used as the lower electrode, but a metal film formed on a non-metallic substrate may be used as the lower electrode.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、下部電極の周辺部の
わずかの領域に絶縁膜を設けるように構成したので、端
部での漏れ電流を著しく低減でき、有効面積を基板サイ
ズまで限りなく近づけることが可能となって出力の高い
光電変換素子が得られる効果がある。
As described above, according to the present invention, since the insulating film is provided in a small area around the lower electrode, the leakage current at the edge can be significantly reduced, and the effective area can be extended to the size of the substrate. This has the effect of making it possible to bring the photoelectric conversion element close to each other, resulting in a photoelectric conversion element with high output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による光電変換素子の断面
図、第2図は第1図に示した光電変換素子の要部拡大断
面図、第3図は本発明の他の実施例による光電変換素子
の断面図、第4図は従来の光電変換素子の断面構造図、
第5図は第4図に示した光電変換素子の表面図である。 (11は下部電極、(2)はアモルファス半導体膜、(
2a)はn型層、(2b)はノンドープ層、(2c)は
p型層、(3)は透明電極、(4)は金属集電極、(5
)は絶縁膜。 なお、図中、同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view of a photoelectric conversion element according to an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of a main part of the photoelectric conversion element shown in FIG. 1, and FIG. 3 is a cross-sectional view of a photoelectric conversion element according to another embodiment of the present invention. A cross-sectional diagram of a photoelectric conversion element, FIG. 4 is a cross-sectional structural diagram of a conventional photoelectric conversion element,
FIG. 5 is a surface view of the photoelectric conversion element shown in FIG. 4. (11 is the lower electrode, (2) is the amorphous semiconductor film, (
2a) is an n-type layer, (2b) is a non-doped layer, (2c) is a p-type layer, (3) is a transparent electrode, (4) is a metal collector electrode, (5)
) is an insulating film. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 金属基板もしくは基板上に形成された金属膜を下部電極
とする光電変換素子において、上記下部電極の周辺およ
び側面を覆う絶縁膜を備えることを特徴とする光電変換
素子。
A photoelectric conversion element having a metal substrate or a metal film formed on the substrate as a lower electrode, the photoelectric conversion element comprising an insulating film covering the periphery and side surfaces of the lower electrode.
JP60181984A 1985-08-19 1985-08-19 Photoelectric conversion element Pending JPS6242467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60181984A JPS6242467A (en) 1985-08-19 1985-08-19 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60181984A JPS6242467A (en) 1985-08-19 1985-08-19 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS6242467A true JPS6242467A (en) 1987-02-24

Family

ID=16110288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60181984A Pending JPS6242467A (en) 1985-08-19 1985-08-19 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS6242467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101925A1 (en) * 2008-02-12 2009-08-20 Tokyo Electron Limited Solar cell wherein solar photovoltaic thin film is directly formed on base
JP2009260310A (en) * 2008-03-28 2009-11-05 Semiconductor Energy Lab Co Ltd Method for manufacturing photoelectric conversion device, and photoelectric conversion device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101925A1 (en) * 2008-02-12 2009-08-20 Tokyo Electron Limited Solar cell wherein solar photovoltaic thin film is directly formed on base
US8841545B2 (en) 2008-02-12 2014-09-23 Tohoku University Solar cell wherein solar photovolatic thin film is directly formed on base
JP2009260310A (en) * 2008-03-28 2009-11-05 Semiconductor Energy Lab Co Ltd Method for manufacturing photoelectric conversion device, and photoelectric conversion device
US9029184B2 (en) 2008-03-28 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4281208A (en) Photovoltaic device and method of manufacturing thereof
US4330680A (en) Integrated series-connected solar cell
EP0289579B1 (en) Solar cell having improved front surface metallization
US3982964A (en) Dotted contact fine geometry solar cell
JPS61104678A (en) Amorphous solar cell
JPS61222181A (en) Manufacture of current collector grid and material therefor
JPH10117004A (en) Converging type solar battery element
JP2754100B2 (en) Solar cell manufacturing method
US4252573A (en) Collector grid for CdS/CuS photovoltaic cells
JPH01205472A (en) Solar battery cell
JPS6242467A (en) Photoelectric conversion element
JP2003224289A (en) Solar cell, method for connecting solar cell, and solar cell module
JP4121603B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, AND ITS CONNECTING METHOD
JPH0613639A (en) Photovoltaic device
JP2018006659A (en) Solar cell module and manufacturing method thereof
CN219419041U (en) Solar cell and battery
JPS61268072A (en) Thin-film photoelectric conversion element
JP3331268B2 (en) Solar cell element and method of manufacturing the same
JPH01140676A (en) Semi-transparent solar cell
JPH0484466A (en) Diode
JPH01206671A (en) Solar cell
JPH06177408A (en) Thin film solar battery and its manufacture
JPS6314873B2 (en)
JPS63240079A (en) Condensing solar cell
JP2815941B2 (en) Photovoltaic device