JPS6242375Y2 - - Google Patents

Info

Publication number
JPS6242375Y2
JPS6242375Y2 JP1978092329U JP9232978U JPS6242375Y2 JP S6242375 Y2 JPS6242375 Y2 JP S6242375Y2 JP 1978092329 U JP1978092329 U JP 1978092329U JP 9232978 U JP9232978 U JP 9232978U JP S6242375 Y2 JPS6242375 Y2 JP S6242375Y2
Authority
JP
Japan
Prior art keywords
water
pure water
combustion gas
flow rate
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978092329U
Other languages
Japanese (ja)
Other versions
JPS559466U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978092329U priority Critical patent/JPS6242375Y2/ja
Publication of JPS559466U publication Critical patent/JPS559466U/ja
Application granted granted Critical
Publication of JPS6242375Y2 publication Critical patent/JPS6242375Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【考案の詳細な説明】 本考案は水質の全有機炭素分析計(以下TOC
計と呼ぶ。)とか全酸素要求量分析計(以下TOD
計と呼ぶ。)等において、試料水の燃焼後の排出
ガス中の固体微粒子および水溶性ガスを除去する
湿式フイルタに関するものである。
[Detailed explanation of the invention] This invention is a total organic carbon analyzer (TOC) for water quality.
It is called a meter. ) or total oxygen demand analyzer (TOD)
It is called a meter. ), etc., relates to a wet filter for removing solid particles and water-soluble gases from exhaust gas after combustion of sample water.

TOC計、TOD計は共に試料水を採取し、これ
を高温度(一般に900℃前後)で加熱し、助燃ガ
スとの混合下で試料水中の有機物を燃焼させ、
TOC計では排出ガス(以下燃焼ガスと呼ぶ。)中
の二酸化炭素の増加を定量し、TOD計では酸素
の減小を定量し、試料水中の全有機炭素
(TOC)および全酸素要求量(TOD)を求める。
Both the TOC meter and the TOD meter collect sample water, heat it at high temperatures (generally around 900℃), and burn the organic matter in the sample water while mixing with combustion supporting gas.
The TOC meter quantifies the increase in carbon dioxide in the exhaust gas (hereinafter referred to as combustion gas), and the TOD meter quantifies the decrease in oxygen. ).

上述のようにTOC計、TOD計は、共に試料水
を高温下で気化するため、試料水中に含まれる全
強熱残物(普通500〜1000ppm程度)は固体微粒
子として折出し、燃焼ガス中に混入して検出器の
指示変化および感度低下を招く。またTOC計に
於いては試料水中の無機炭素(以下ICと呼ぶ。)
をあらかじめ除去する必要があり、その手段とし
て塩酸を添加してPHを2程度に下げている。この
ため燃焼ガス中に塩化水素ガスが存在し、検出器
セルを腐食劣化させる。したがつてTOC計及び
TOD計を例えば環境監視、プロセス管理の目的
で長期間使用するときに信頼性ある測定値を得る
ためには試料水の燃焼ガス中の前記固体微粒子お
よび塩化水素ガスを高い比率(99.99%以上)で
除去し得る保守頻度の少ないフイルタが必要であ
る。
As mentioned above, both the TOC meter and the TOD meter vaporize sample water at high temperatures, so all ignition residue (usually about 500 to 1000 ppm) contained in the sample water is precipitated as solid particles and disposed of in the combustion gas. Contaminants may cause changes in the detector's readings and decrease in sensitivity. In addition, in the TOC meter, inorganic carbon (hereinafter referred to as IC) in the sample water
It is necessary to remove this in advance, and as a means to do so, hydrochloric acid is added to lower the pH to about 2. Therefore, hydrogen chloride gas is present in the combustion gas, causing corrosion and deterioration of the detector cell. Therefore, TOC meter and
In order to obtain reliable measurement values when using the TOD meter for long periods of time, for example, for environmental monitoring or process control purposes, it is necessary to maintain a high proportion (99.99% or more) of the solid particles and hydrogen chloride gas in the combustion gas of the sample water. A low-maintenance filter that can be removed is needed.

これに用いられている従来のフイルタの構造を
第1図および第2図に示す。第1図はキユービツ
ク1の内部に多孔質物質2を蔵したものである。
以下これを多孔質フイルタと呼ぶ。これは多孔質
孔径により燃焼ガス中の固体微粒子のうちこれを
通過し得ないものを除去すると共に多孔質面で特
定のガスを吸着除去するものである。この場合は
固体微粒子の蓄積により本来の多孔質孔径が狭め
られ、目づまりによつて圧力損失が増大する欠点
がある。
The structure of a conventional filter used for this purpose is shown in FIGS. 1 and 2. FIG. 1 shows a cube 1 in which a porous material 2 is stored.
Hereinafter, this will be referred to as a porous filter. This uses the porous pore size to remove solid particles in the combustion gas that cannot pass through, and also adsorbs and removes specific gases on the porous surface. In this case, there is a drawback that the original porous pore diameter is narrowed due to the accumulation of solid particles, and pressure loss increases due to clogging.

第2図はキユービツク1の内部に純水4を満し
た水洗式フイルタである。これは燃焼ガスを純水
中に通すことによつてガス中の固体微粒子および
水溶性ガスを除去するものである。この場合は純
水が固体微粒子および水溶性ガスによつて汚染さ
れて除去率が低下する欠点がある。例えばTOC
計の場合、固体微粒子で1日で10ppm前後、塩
化水素ガスで4×10-4N前後に汚染される。また
ガス入口6を純水中に設けるため若干の圧力損失
(水柱にて数cm程度)はさけられない。
FIG. 2 shows a water-washable filter in which the interior of a cubicle 1 is filled with pure water 4. This method removes solid particles and water-soluble gases from the combustion gas by passing it through pure water. In this case, there is a disadvantage that the pure water is contaminated with solid particles and water-soluble gas, resulting in a reduction in removal rate. For example, TOC
In the case of a meter, solid particles contaminate the area in a day at around 10 ppm, and hydrogen chloride gas contaminates around 4 x 10 -4 N in a day. Furthermore, since the gas inlet 6 is provided in pure water, a slight pressure loss (about several centimeters in the water column) cannot be avoided.

本考案の目的は、燃焼ガス中の固体微粒子及び
水溶性ガス(TOC計においては塩化水素ガス)
を99.99%以上除去すると共に圧力損失が小さく
且つ劣化の少ない合理的な湿式フイルタを提供す
るものである。
The purpose of this invention is to eliminate solid particles and water-soluble gas (hydrogen chloride gas in TOC meters) in combustion gas.
The purpose of the present invention is to provide a rational wet filter that removes 99.99% or more of oxidants and has low pressure loss and little deterioration.

本考案の構成の一例を第3図に示す。第3図お
いてキユービツク(容器)1は例えば内径20〜30
mm、長さ100〜150mmで、内容積が約30cm2〜72cm2
パイプより成り、下部側面にガス入口6を、上部
側面にガス出口7を、頭部に純水入口5を、底部
に排水口8を大気開放にした水封式トラツプ9を
持ち、キユービツク内部には5〜10メツシユの石
英砂10をガス出口7の下面迄充填している。こ
こで、石英砂10が、5メツシユより小さいと、
水封現象が生じ、また10メツシユより大きいと
充分な濾過効果が期待できない。
An example of the configuration of the present invention is shown in FIG. In Fig. 3, the cube (container) 1 has an inner diameter of 20 to 30 mm, for example.
It consists of a pipe with a length of 100 to 150 mm and an internal volume of about 30 cm 2 to 72 cm 2 , with a gas inlet 6 on the lower side, a gas outlet 7 on the upper side, a pure water inlet 5 on the head, and a pure water inlet 5 on the bottom. It has a water-sealed trap 9 with a drain port 8 open to the atmosphere, and the interior of the cubby is filled with 5 to 10 meshes of quartz sand 10 up to the bottom of the gas outlet 7. Here, if the quartz sand 10 is smaller than 5 meshes,
A water seal phenomenon occurs, and if the mesh is larger than 10 meshes, a sufficient filtration effect cannot be expected.

次に本考案の作用を説明する。ガス入口6より
固体微粒子および水溶性ガスを含む燃焼ガスがキ
ユービツク1に入る。キユービツク1内の石英砂
10の表面は純水入口5より連続的に滴下供給
(0.05〜1c.c./min)される純水におおわれてお
り燃焼ガス中の固体微粒子および水溶性ガスはこ
の気液接触面(500〜1000cm2、キユービツク単位
体積当りの気液接触面積は40cm-1)で純水(正確
にはガス出口7付近でのみ純水といえる。)中に
溶け込む。燃焼ガスはガス出口7に近づくに従い
次第に浄化されガス出口7付近では純水入口5よ
り新に供給される純水に接して完全に浄化され
る。使用済の純水(TOC計の場合固体微粒子で
10ppm塩化水素ガスで4×10-4N程度に汚れてい
る。)はトラツプ9に溜り自然排水される。
Next, the operation of the present invention will be explained. Combustion gas containing solid particles and water-soluble gas enters the cubicle 1 through the gas inlet 6. The surface of the quartz sand 10 in the cube 1 is covered with pure water that is continuously supplied dropwise (0.05 to 1 c.c./min) from the pure water inlet 5, and solid particles and water-soluble gases in the combustion gas are covered with this water. It dissolves in pure water (accurately, it can be said that it is pure water only near the gas outlet 7) at the gas-liquid contact surface (500 to 1000 cm 2 , the gas-liquid contact area per cubic unit volume is 40 cm −1 ). The combustion gas is gradually purified as it approaches the gas outlet 7, and in the vicinity of the gas outlet 7 it comes into contact with pure water newly supplied from the pure water inlet 5 and is completely purified. Used pure water (solid particles in the case of TOC meter)
It is contaminated with 10ppm hydrogen chloride gas to about 4×10 -4 N. ) collects in trap 9 and is naturally drained.

ここで、純水入口5からキユービツク1内に供
給される純水の流量は、燃焼ガスの浄化機能上重
要な意味を持つものであり、この燃焼ガスの基に
なる試料水燃焼装置への試料水の供給量と関連し
て設定する。すなわち、純水の供給量が燃焼ガス
に比べて多すぎるとキユービツク1内は水封状態
となり、圧力損失の増大等が生じ、充分な浄化作
用は生じない。また、燃焼ガスに比べて少なすぎ
ると粒状の充填物10の表面から純水が蒸発して
しまい、浄化作用は生じず、またすぐに目づまり
を生じてしまう。これらの関係からキユービツク
1内に供給される純水の流量は、燃焼ガスの量、
すなわち、その基となる試料水の量と一定の関係
を成すことが解る。具体的には上記純水の供給と
試料水の供給量とは、後述する数値的関係で表わ
すようにほぼ等しく設定する。
Here, the flow rate of pure water supplied into the KUBIC 1 from the pure water inlet 5 has an important meaning in terms of the purification function of the combustion gas, and the flow rate of the pure water supplied into the KUBIC 1 from the pure water inlet 5 has an important meaning in terms of the purification function of the combustion gas. Set in relation to water supply amount. That is, if the amount of pure water supplied is too large compared to the amount of combustion gas, the interior of the cubicle 1 becomes water-sealed, resulting in an increase in pressure loss, etc., and a sufficient purification effect does not occur. On the other hand, if the amount is too small compared to the combustion gas, pure water will evaporate from the surface of the granular filler 10, and no purification effect will occur, and clogging will occur immediately. Based on these relationships, the flow rate of pure water supplied into KUBIC 1 is determined by the amount of combustion gas,
In other words, it can be seen that there is a certain relationship with the amount of sample water that is the basis of it. Specifically, the amount of pure water supplied and the amount of sample water supplied are set to be approximately equal, as expressed by the numerical relationship described later.

すなわち、純水の供給量は前述のように0.05〜
1c.c./minなので、試料水の流量としてこれとほ
ぼ等しい値0.2〜1c.c./minに設定する。そし
て、これを約200倍の流量である50〜200c.c./min
で供給されている助燃ガスと共に燃焼させる。こ
の結果生じた燃焼ガスに対しては前述の5〜10メ
ツシユの石英砂等による充填物10を内容積約30
〜72cm2のキユービツク1内に充填したフイルター
を用い、これに前述した如く0.05〜1c.c./minの
流量で純水を滴下する。
In other words, the amount of pure water supplied is 0.05 ~
Since it is 1 c.c./min, the flow rate of the sample water is set to a value approximately equal to this, 0.2 to 1 c.c./min. This is then increased to 50 to 200c.c./min, which is about 200 times the flow rate.
combust with auxiliary gas supplied by For the combustion gas generated as a result, filler 10 of the aforementioned 5 to 10 meshes of quartz sand etc. is filled with an internal volume of about 30 m
Using a filter filled in a cube 1 of ~72 cm 2 , pure water is dropped into the filter at a flow rate of 0.05 to 1 c.c./min as described above.

このように設定すると、充填物10による気液
接触面積は500〜1000cm2となり、キユービツク1
の純水供給口5から滴下された純水は、粒状の充
填物10の表面をおだやかに被覆し、燃焼ガス流
の流量変化や、充填物10の一時的な閉塞等の外
乱を生じることなく、燃焼ガス中に含まれる固体
微粒子や水溶性ガスを除去する定常状態を得るこ
とができる。
With this setting, the gas-liquid contact area due to the filling 10 will be 500 to 1000 cm2 , and the
The pure water dripped from the pure water supply port 5 gently covers the surface of the granular filler 10, without causing any disturbance such as a change in the flow rate of the combustion gas flow or temporary blockage of the filler 10. , it is possible to obtain a steady state in which solid particles and water-soluble gases contained in the combustion gas are removed.

本考案をTOC計に用いた一実施例を第4図に
基ずいて説明する。試料水はポンプ11により採
取され(50〜200c.c./min)、IC除去槽12に送ら
れる。ここでポンプ13により4N塩酸が添加さ
れ(0.2〜1c.c./min)、試料PHを2に保ちパージ
ガス導入管14に導入される空気または窒素ガス
により試料中のICが除去される。次に試料水は
ポンプ15により試料燃焼装置16に送られる。
この試料水燃焼装置16に供給される試料水の流
量は、前述のように、キユービツク1内に純水入
口5から連続的に滴下供給される純水の流量と関
連して設定する。すなわち、純水の流量は前述の
如く0.05〜1c.c./minなので、試料水の流量とし
ては、これとほぼ等しい値0.2〜1c.c./minに設
定する。試料燃焼装置16は900℃前後に保たれ
ており一定量の助燃ガスが助燃ガス導入管17よ
り供給されている(50〜200c.c./min)。また燃焼
装置内には酸化触媒を蔵している。したがつて試
料中のTOCは完全に燃焼し二酸化炭素に変換さ
れる。(このとき燃焼ガス中の二酸化炭素濃度は
100〜800ppmとなる。) 一方試料中に溶けていた塩類は主に塩化物とな
り(発生量2〜4×10-4g/min)固体微粒子と
してその90%以上は試料燃焼装置16内に蓄積さ
れるが、他は燃焼ガス中に混在する(2〜4×
10-7g/cm2)。又試料に添加された4N塩酸は一部
試料水中の塩基と化合して塩化物を生成するが、
残りは塩化水素ガスとなり燃焼ガス中に
2000ppm程度存在する。燃焼ガス中にはこれら
の他に過剰の水蒸気も存在する。二酸化炭素は検
出器として用いられる赤外分析計18に送られ、
TOCの定量に使用されるが、固体微粒子および
塩化水素ガスは赤外分析計18の指示変化、感度
低下等をもたらし有害であり、可能な限り除去さ
れねばならない。
An embodiment in which the present invention is applied to a TOC meter will be explained based on FIG. 4. Sample water is collected by a pump 11 (50 to 200 c.c./min) and sent to an IC removal tank 12. Here, 4N hydrochloric acid is added by the pump 13 (0.2 to 1 c.c./min), and the sample pH is kept at 2, and IC in the sample is removed by air or nitrogen gas introduced into the purge gas introduction pipe 14. Next, the sample water is sent to the sample combustion device 16 by the pump 15.
The flow rate of the sample water supplied to the sample water combustion device 16 is set in relation to the flow rate of pure water that is continuously dripped into the kub 1 from the pure water inlet 5, as described above. That is, since the flow rate of pure water is 0.05 to 1 c.c./min as described above, the flow rate of sample water is set to a value approximately equal to this, 0.2 to 1 c.c./min. The sample combustion device 16 is maintained at around 900° C., and a certain amount of auxiliary combustion gas is supplied from the auxiliary gas introduction pipe 17 (50 to 200 c.c./min). The combustion device also contains an oxidation catalyst. Therefore, TOC in the sample is completely burned and converted to carbon dioxide. (At this time, the carbon dioxide concentration in the combustion gas is
It will be 100-800ppm. ) On the other hand, the salts dissolved in the sample mainly become chlorides (generation rate: 2 to 4 x 10 -4 g/min), and more than 90% of them are accumulated in the sample combustion device 16 as solid particles, but the rest are Mixed in combustion gas (2 to 4
10 -7 g/cm 2 ). Also, some of the 4N hydrochloric acid added to the sample combines with the base in the sample water to produce chloride.
The rest becomes hydrogen chloride gas and enters the combustion gas.
Approximately 2000ppm exists. In addition to these, excess water vapor is also present in the combustion gas. The carbon dioxide is sent to an infrared analyzer 18 used as a detector,
Although used for the determination of TOC, solid fine particles and hydrogen chloride gas are harmful because they cause changes in the indication of the infrared analyzer 18, a decrease in sensitivity, etc., and must be removed as much as possible.

次に燃焼ガスは冷却管19を通り空冷又は水冷
された燃焼ガス中の水蒸気が凝結除去される。こ
の際、固体微粒子(2〜4×10-7g/cm2)の90%
以上および塩化水素ガスの99%程度が水分と共に
トラツプ20に溜り燃焼ガス中から除去される。
トラツプ20を通過した燃焼ガス中にはなお有害
な固体微粒子(2〜4×10-8g/cm2)および塩化
水素ガス(20ppm)が含まれており、これらは
本考案の湿式フイルタ21で完全に除去される
(固体微粒子で2〜4×10-10g/cm2以下、塩化水
素ガス2×10-1ppm以下)。湿式フイルタ21を
通過した燃焼ガスの組成は助燃ガスバツクグラン
ド、TOC燃焼によつて生じた100〜800ppmの二
酸化炭素および2〜3%の水蒸気である。水蒸気
は電子クーラ22で0.8%以下に除湿される。こ
の程度の水蒸気は赤外分析計18に悪影響を与え
ないので燃焼ガス中の二酸化炭素が正しく測定さ
れ、標準試料(フタール酸水素カリ水溶液)に対
する指示値との比較により試料水のTOC濃度が
正確に定量される。
Next, the combustion gas passes through a cooling pipe 19, and water vapor in the air-cooled or water-cooled combustion gas is condensed and removed. At this time, 90% of the solid fine particles (2 to 4 x 10 -7 g/cm 2 )
Approximately 99% of the above and hydrogen chloride gas accumulates in the trap 20 together with moisture and is removed from the combustion gas.
The combustion gas that has passed through the trap 20 still contains harmful solid particles (2 to 4 x 10 -8 g/cm 2 ) and hydrogen chloride gas (20 ppm), which are removed by the wet filter 21 of the present invention. It is completely removed (2 to 4×10 −10 g/cm 2 or less for solid particles, and 2×10 −1 ppm or less for hydrogen chloride gas). The composition of the combustion gas that has passed through the wet filter 21 is an auxiliary gas background, 100 to 800 ppm of carbon dioxide produced by TOC combustion, and 2 to 3% water vapor. The water vapor is dehumidified to 0.8% or less in the electronic cooler 22. This amount of water vapor does not have a negative effect on the infrared analyzer 18, so carbon dioxide in the combustion gas can be measured correctly, and the TOC concentration in the sample water can be accurately determined by comparing it with the indicated value for the standard sample (potassium hydrogen phthalate aqueous solution). is quantified.

また固体微粒子および塩化水素ガスは99.99%
程度除去されており、赤外分析計18に入る燃焼
ガス中の固体微粒子は2〜4×10-10g/cm2
度、塩化水素ガスは2×10-1ppm程度でTOC計
の1年以上の連続使用に対して何等の悪影響も受
けない。
Also, solid particles and hydrogen chloride gas are 99.99%
Solid particles in the combustion gas entering the infrared analyzer 18 are about 2 to 4 x 10 -10 g/cm 2 , and hydrogen chloride gas is about 2 x 10 -1 ppm, which is about 2 x 10 -1 ppm in the TOC analyzer 1 year. There is no adverse effect on continuous use.

また第3図において、キユービツク1内に充填
した石英砂10の代りにアルミナボールとかプラ
スチツクチツプ等を使用しても同様の結果が得ら
れる。また第3図ではトラツプ9は水封式で排水
口を大気開放形としているが、例えばトラツプ内
に上限及び下限レベル計を設け凝縮水を適時排出
しても同様の結果が得られる。また純水入口5よ
り供給する純水はTOC,TOD測定に支障のない
程度のものでよく、TOCの場合にはIC0.5ppm程
度以下の水が要求され、TODの場合には溶存酸
素飽和状態の水道水でよい。
Further, in FIG. 3, similar results can be obtained by using alumina balls, plastic chips, etc. in place of the quartz sand 10 filled in the cube 1. Further, in FIG. 3, the trap 9 is of a water-sealed type with a drain port open to the atmosphere, but the same result can be obtained even if, for example, upper and lower limit level gauges are provided in the trap and the condensed water is discharged in a timely manner. In addition, the pure water supplied from the pure water inlet 5 may be of a level that does not interfere with TOC and TOD measurements; in the case of TOC, water with an IC of about 0.5 ppm or less is required, and in the case of TOD, it is required to be in a state of dissolved oxygen saturation. Tap water is fine.

以上記載の通り本考案によれば、試料水をその
流量と所定の関係に設定された流量の助燃ガスと
共に燃焼させた後の燃焼ガスが流通する容器内に
5〜10メツシユの粒状の充填物を内部における気
液接触面積が500〜1000cm2となるように充填し、
これに純水を供給して燃焼ガスに含まれる固体微
粒子や水溶性ガスを除去するものであり、さらに
前記純水の充填物への供給量を、燃焼ガスとして
燃焼させる試料水の流量とほぼ等しく設定したの
で、燃料ガス流の流量変化や、充填物の一時的な
閉塞等の外乱を生じることなく、前記物質に対す
る高い除去効率を得ることができる。
As described above, according to the present invention, a granular filling of 5 to 10 meshes is placed in a container through which the combustion gas flows after the sample water is combusted together with the auxiliary gas at a flow rate set in a predetermined relationship with the sample water flow rate. filled so that the air-liquid contact area inside is 500 to 1000 cm2 ,
Pure water is supplied to this to remove solid particles and water-soluble gases contained in the combustion gas, and the amount of pure water supplied to the filler is approximately equal to the flow rate of the sample water that is combusted as combustion gas. Since they are set equally, high removal efficiency for the substance can be obtained without causing disturbances such as changes in the flow rate of the fuel gas flow or temporary blockage of the filling material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多孔質フイルタの構成図、第2
図は従来の水洗式フイルタの構成図、第3図は本
考案による湿式フイルタの構成図、第4図は本考
案の湿式フイルタを組込んだTOC計の系統図で
ある。 1……キユービツク(容量)、2……多孔質物
質、4……純水、5……純水入口、6……ガス入
口、7……ガス出口、8……水出口、9,20…
…トラツプ、10……石英砂、11,13,15
……ポンプ、12……無機炭素除去槽、14……
パージガス導入管、16……試料燃焼装置、17
……助燃ガス導入管、18……赤外分析計、19
……冷却管、21……湿式フイルタ、22……電
子クーラ。
Figure 1 is a configuration diagram of a conventional porous filter, Figure 2
Figure 3 is a block diagram of a conventional water-washable filter, Figure 3 is a block diagram of a wet filter according to the present invention, and Figure 4 is a system diagram of a TOC meter incorporating the wet filter according to the present invention. 1... Cubic (capacity), 2... Porous material, 4... Pure water, 5... Pure water inlet, 6... Gas inlet, 7... Gas outlet, 8... Water outlet, 9, 20...
...Trap, 10...Quartz sand, 11, 13, 15
... Pump, 12 ... Inorganic carbon removal tank, 14 ...
Purge gas introduction pipe, 16...Sample combustion device, 17
... Combustion auxiliary gas introduction pipe, 18 ... Infrared analyzer, 19
...Cooling pipe, 21...Wet filter, 22...Electronic cooler.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水質を分析するために、試料水を試料水燃焼装
置に所定流量にて供給し、この試料水中の有機物
を試料水に対し約200倍の流量で供給される助燃
ガスと共に燃焼させ、その燃焼ガスを分析計に送
る途中で燃焼ガス中の固体微粒子および水溶性ガ
スを除去するフイルターにおいて、下部に燃焼ガ
ス入口および排水口を設け上部に燃焼ガス出口お
よび純水入口を設けた筒状の容器と、この容器内
にその燃焼ガス入口および排水口がふさがれかつ
燃焼ガス出口および純水入口が開放するように充
填した5〜10メツシユの粒状の充填物と、前記容
器の排水口に連通して容器内からの排水を貯溜し
た後排水するトラツプとを備え、前記容器内の充
填物による気液接触面を500〜1000cm2とし、かつ
純水入口から供給される純水の流量を0.05〜1
c.c./minとし、前記試料水燃焼装置に供給される
試料水の流量を上記純水の流量とほぼ等しい値に
設定したことを特徴とする湿式フイルタ。
In order to analyze water quality, sample water is supplied to a sample water combustion device at a predetermined flow rate, and the organic matter in this sample water is combusted together with a combustion assisting gas that is supplied at a flow rate approximately 200 times that of the sample water. A filter that removes solid particulates and water-soluble gases from combustion gas on the way to an analyzer is a cylindrical container with a combustion gas inlet and drain port at the bottom and a combustion gas outlet and pure water inlet at the top. , a granular filling of 5 to 10 meshes is filled in the container so that the combustion gas inlet and drain port are blocked and the combustion gas outlet and pure water inlet are open, and the container is in communication with the drain port of the container. The trap is equipped with a trap that stores and drains waste water from inside the container, the air-liquid contact surface due to the filling in the container is 500 to 1000 cm2 , and the flow rate of pure water supplied from the pure water inlet is 0.05 to 1.
cc/min, and the flow rate of the sample water supplied to the sample water combustion device is set to a value substantially equal to the flow rate of the pure water.
JP1978092329U 1978-07-06 1978-07-06 Expired JPS6242375Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978092329U JPS6242375Y2 (en) 1978-07-06 1978-07-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978092329U JPS6242375Y2 (en) 1978-07-06 1978-07-06

Publications (2)

Publication Number Publication Date
JPS559466U JPS559466U (en) 1980-01-22
JPS6242375Y2 true JPS6242375Y2 (en) 1987-10-30

Family

ID=29022402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978092329U Expired JPS6242375Y2 (en) 1978-07-06 1978-07-06

Country Status (1)

Country Link
JP (1) JPS6242375Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225360A (en) * 1975-08-18 1977-02-25 Toyo Umpanki Co Ltd Apparatus for automatically attaching or detaching fluid pressure cond uit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225360A (en) * 1975-08-18 1977-02-25 Toyo Umpanki Co Ltd Apparatus for automatically attaching or detaching fluid pressure cond uit

Also Published As

Publication number Publication date
JPS559466U (en) 1980-01-22

Similar Documents

Publication Publication Date Title
Lancia et al. Adsorption of mercuric chloride vapours from incinerator flue gases on calcium hydroxide particles
JP2006215035A (en) System and method for measuring and/or analysis of particle in gas stream
CN103197341B (en) Methyl iodide gas sampling system applicable to high pressure steam pipeline environment
US20120148466A1 (en) Carbon dioxide absorbent
JP5243595B2 (en) Improved alkanolamine for CO2 removal from gas streams
JPS6242375Y2 (en)
KR20140147826A (en) Process and device for treating volatile organic compound
JPH033906B2 (en)
CN217092789U (en) Ammonia removal and dehydration device
JP2599979B2 (en) Iodine measuring device
CN109917074A (en) The experimental method and its device of sulfur dioxide and moisture trapping in a kind of simulated flue gas
CN208787194U (en) The processing unit of landfill leachate leaching flying ash
EP4110508A1 (en) Fluidized bed for industrial hygiene applications
CN219143816U (en) Fluorine-containing tail gas purification device
JPH0926384A (en) Method and device for sampling combustion exhaust gas
JP7366189B1 (en) Total organic carbon measuring method and total organic carbon measuring device
JPH07113605B2 (en) Gas analyzer
KR102324638B1 (en) Apparatus and method for purifying the exhaust gas of blast furnace thickener
JPH0424120B2 (en)
JP2003232770A (en) Filter for removing hydrogen sulfide for gas sensor
CN117771867A (en) Flue gas purifying method
JP2000329721A (en) Means for detecting harmful substance
JP3064175B2 (en) Pretreatment device
JP2000074878A (en) Carbon monoxide measuring apparatus
JP2926510B2 (en) Ammonia concentration measurement device