JPS6242362Y2 - - Google Patents

Info

Publication number
JPS6242362Y2
JPS6242362Y2 JP5028280U JP5028280U JPS6242362Y2 JP S6242362 Y2 JPS6242362 Y2 JP S6242362Y2 JP 5028280 U JP5028280 U JP 5028280U JP 5028280 U JP5028280 U JP 5028280U JP S6242362 Y2 JPS6242362 Y2 JP S6242362Y2
Authority
JP
Japan
Prior art keywords
pipe
bypass
lower pipe
flow
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5028280U
Other languages
Japanese (ja)
Other versions
JPS56151975U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5028280U priority Critical patent/JPS6242362Y2/ja
Publication of JPS56151975U publication Critical patent/JPS56151975U/ja
Application granted granted Critical
Publication of JPS6242362Y2 publication Critical patent/JPS6242362Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は乳牛の自動搾乳機などの可撓性パイプ
を流れる液の流通状態を検出するに用いる流通型
電導度セルに関するものである。
[Detailed Description of the Invention] The present invention relates to a flow type conductivity cell used to detect the flow state of liquid flowing through a flexible pipe of an automatic milking machine for dairy cows.

自動搾乳機のように、大気より管路内を減圧し
て吸引する装置では、管路に設けた電極で電導度
を正確に測定するために、管路内を流れる液体に
気泡が混入しているとき、液体を大気と接して脱
泡させようとすると、大気を吸引して液の吸引が
不能となる。
In devices such as automatic milking machines that vacuum the inside of a pipe by reducing the pressure from the atmosphere, air bubbles are mixed into the liquid flowing inside the pipe in order to accurately measure conductivity using electrodes installed in the pipe. If you try to defoam the liquid by exposing it to the atmosphere, the atmosphere will be sucked in and the liquid will not be able to be sucked out.

本考案は、減圧された可撓性パイプの途中に挿
入して簡単に使用でき、液が電極と接するのを気
泡によつて妨げられることなく電導度の測定が減
圧流路内において正確に行なえる流通型電導度セ
ルを供せんとするものである。
The present invention can be easily used by being inserted into the middle of a depressurized flexible pipe, and the conductivity can be accurately measured in the depressurized flow path without air bubbles preventing the liquid from coming into contact with the electrode. The aim is to provide a flow-through type conductivity cell.

本考案はこの目的を達するために、上側のパイ
プと、上側のパイプの下端との間に間隔を置き端
面を互に対向させて配置した下側のパイプと、上
側のパイプと下側のパイプとの間を気密に囲んだ
大径部と、上側のパイプと下側の間に一端が開口
し下側のパイプの外周に沿つて形成され他端が閉
じたバイパスと、バイパスの閉じた他端と下側の
パイプ内とを連通するように設けた細孔からなる
出口と、バイパス内面に露出して設けた電極とを
具えた流通型電導度セルを構成したものである。
In order to achieve this purpose, the present invention includes an upper pipe, a lower pipe arranged with a space between the lower end of the upper pipe and the end faces facing each other, and a lower pipe arranged between the upper pipe and the lower end. a large-diameter part airtightly enclosed between the upper pipe and the lower pipe, a bypass with one end open between the upper pipe and the lower pipe, formed along the outer circumference of the lower pipe and closed at the other end, and a bypass with the other end closed. This is a flow-through type conductivity cell comprising an outlet formed by a pore provided so as to communicate between the end and the inside of the lower pipe, and an electrode provided exposed on the inner surface of the bypass.

第1図は本考案の一実施例の一部断面斜視図
で、主流路1をなすパイプの一部が切断されて上
下に間隔を置いて分離され、上側のパイプ1aの
下端から大径部1dに形成され、分離した部分1
c及び下側のパイプ1bの外周との間にバイパス
2を形成して下側のパイプの一部を囲い、大径部
1dの下端と下側のパイプ1bとの間は閉じられ
ている。バイパス2は下端で下側のパイプ1bに
内外に通ずるように設けられた細孔により出口3
で縮小され、大径部1dにはバイパス2内面に露
出して電極4が設けてある。そしてこの電導度セ
ルはパイプ1aを一つの水平線より上に、パイプ
1dを下にし、矢印で示す方向に液を流通させる
ものである。
FIG. 1 is a partially sectional perspective view of an embodiment of the present invention, in which a part of the pipe constituting the main flow path 1 is cut and separated vertically at intervals, and a large diameter section is formed from the lower end of the upper pipe 1a. 1d and separated part 1
A bypass 2 is formed between the large diameter portion 1d and the outer periphery of the lower pipe 1b to surround a part of the lower pipe, and the space between the lower end of the large diameter portion 1d and the lower pipe 1b is closed. The bypass 2 has an outlet 3 at its lower end through a small hole provided to communicate inside and outside the lower pipe 1b.
An electrode 4 is provided on the large diameter portion 1d so as to be exposed on the inner surface of the bypass 2. In this conductivity cell, the pipe 1a is placed above one horizontal line and the pipe 1d is placed below, and the liquid flows in the direction shown by the arrow.

第2図に示した実施例は、大径部1d内にある
下側のパイプ1bの外径を大径部1dの内面と接
するように形成してパイプ1bの延長方向に端か
ら溝を設けてバイパス2を形成し、バイパス2の
横断面を主流路1の横断面の数分の1に小さくし
たものである。
In the embodiment shown in FIG. 2, the outer diameter of the lower pipe 1b within the large diameter portion 1d is formed so as to be in contact with the inner surface of the large diameter portion 1d, and a groove is provided from the end in the extending direction of the pipe 1b. A bypass 2 is formed by using the bypass 2, and the cross section of the bypass 2 is reduced to a fraction of the cross section of the main flow path 1.

測定する液の比電導度が小さく、セル定数を小
さくとりたい時は、第1図のものが有利であり、
測定する液の比電導度が大きく、セル定数を大き
くとりたい時は第2図に示したように主流路1に
対しバイパス2の横断面を主流路1に比べ小さく
する方が有利である。
When the specific conductivity of the liquid to be measured is small and you want to keep the cell constant small, the one shown in Figure 1 is advantageous.
When the specific conductivity of the liquid to be measured is large and a large cell constant is desired, it is advantageous to make the cross section of the bypass 2 smaller than that of the main channel 1, as shown in FIG.

第2図においてバイパス2は二つになつている
が、セル定数をより大きくとりたい時にバイパス
2の横断面を更に小さくするため一つにしてもよ
い。
In FIG. 2, there are two bypasses 2, but when a larger cell constant is desired, the bypass 2 may be made into one in order to further reduce the cross section.

第2図の電導度セルにおいて、第3図a,bに
示すように、バイパス2の出口に近い部分にバイ
パス2からL字型に屈曲する通路5を設けて、そ
こに出口3を設けると、液が吸引によつてセルを
通過する場合、圧の変動を緩和し、圧の変動によ
る影響を電極付近の液に与えるのを防ぐ効果があ
る。
In the conductivity cell of FIG. 2, as shown in FIGS. 3a and 3b, a passage 5 bent in an L-shape from the bypass 2 is provided near the outlet of the bypass 2, and an outlet 3 is provided there. When the liquid passes through the cell by suction, it has the effect of alleviating pressure fluctuations and preventing pressure fluctuations from affecting the liquid near the electrodes.

本案によれば、第1図ないし第3図において、
主流路1を上部より流入する液は、大部分は主流
路1を通つて下へ通過するが、一部はバイパス2
に流れる。バイパス2では主流路1への出口3が
小さくなつているので、バイパス2では流速が低
下し停滞する。このためバイパス2中に入つた気
泡や、発生した気泡は分離して上方へ逃げる。従
つてバイパス2内に露出した極4に気泡が停滞す
るのを防止できる。本考案セルでは主流路の側面
に沿い密閉されたバイパスが一つのユニツトとし
て形成されているので、減圧流路のホースの途中
に簡単に挿入し、流路内を流れる気泡を含むこと
のある液の電気電導度を正確に測定することがで
きる。
According to the present proposal, in Figures 1 to 3,
Most of the liquid flowing into the main channel 1 from above passes downward through the main channel 1, but some of it passes through the bypass 2.
flows to In the bypass 2, the outlet 3 to the main flow path 1 is smaller, so the flow velocity decreases and stagnates in the bypass 2. For this reason, bubbles that have entered the bypass 2 or generated bubbles are separated and escape upward. Therefore, it is possible to prevent air bubbles from stagnation in the pole 4 exposed in the bypass 2. Since the cell of this invention has a sealed bypass along the side of the main flow channel as one unit, it can be easily inserted into the middle of the hose of the vacuum flow channel, allowing liquids flowing through the flow channel that may contain air bubbles to be easily inserted into the hose. It is possible to accurately measure the electrical conductivity of

なおバイパス2を通過する液は主流路1を通過
する液より流速が遅くなるので、応答の遅れは生
ずるが、電導度の変化も測定できる。
Note that since the flow rate of the liquid passing through the bypass 2 is slower than that of the liquid passing through the main channel 1, a delay in response occurs, but changes in electrical conductivity can also be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案による流通型電導度セルの第一
実施例の一部断面斜視図、第2図aは同じく第二
実施例の第1図と同様の図、第2図bは第2図a
の縦断面図、第3図aは同じく第三実施例の、同
図bは第四実施例の第1図と同様の図である。 1……主流路、2……バイパス、3……出口、
4……極、5……屈曲する通路、1a……上側の
パイプ、1b……下側のパイプ、1c……分離し
た部分、1d……大径部。
FIG. 1 is a partially sectional perspective view of a first embodiment of a flow-through conductivity cell according to the present invention, FIG. 2a is a similar view to FIG. 1 of the second embodiment, and FIG. Diagram a
FIG. 3A is also a longitudinal sectional view of the third embodiment, and FIG. 3B is a view similar to FIG. 1 of the fourth embodiment. 1...Main flow path, 2...Bypass, 3...Outlet,
4...Pole, 5...Bending passage, 1a...Upper pipe, 1b...Lower pipe, 1c...Separated portion, 1d...Large diameter portion.

Claims (1)

【実用新案登録請求の範囲】 (1) 上側のパイプと、上側のパイプの下端との間
に間隔を置き端面を互に対向させて配置した下
側のパイプと、上側のパイプと下側のパイプと
の間を気密に囲んだ大径部と、上側のパイプと
下側のパイプの間に一端が開口し下側のパイプ
の外周に沿つて形成され他端が閉じたバイパス
と、バイパスの閉じた他端と下側のパイプ内と
を連通するように設けた細孔からなる出口と、
バイパス内面に露出して設けた電極とを具えた
流通型電導度セル。 (2) バイパスが出口に近い部分で屈曲して設けら
れている実用新案登録請求の範囲(1)項に記載の
流通型電導度セル。
[Claims for Utility Model Registration] (1) An upper pipe and a lower pipe arranged with a space between them and the lower end of the upper pipe with their end faces facing each other; A large-diameter part that is airtightly surrounded by the pipe, a bypass that is open at one end between the upper pipe and the lower pipe, is formed along the outer circumference of the lower pipe, and is closed at the other end; an outlet consisting of a pore provided to communicate between the other closed end and the inside of the lower pipe;
A flow-through conductivity cell comprising an electrode exposed on the inner surface of the bypass. (2) The flow-through conductivity cell according to claim (1) of the utility model registration claim, in which the bypass is bent at a portion near the outlet.
JP5028280U 1980-04-14 1980-04-14 Expired JPS6242362Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5028280U JPS6242362Y2 (en) 1980-04-14 1980-04-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5028280U JPS6242362Y2 (en) 1980-04-14 1980-04-14

Publications (2)

Publication Number Publication Date
JPS56151975U JPS56151975U (en) 1981-11-13
JPS6242362Y2 true JPS6242362Y2 (en) 1987-10-30

Family

ID=29645226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5028280U Expired JPS6242362Y2 (en) 1980-04-14 1980-04-14

Country Status (1)

Country Link
JP (1) JPS6242362Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035661B2 (en) * 2009-12-22 2015-05-19 Ge Healthcare Bio-Sciences Ab Conductivity sensor assembly

Also Published As

Publication number Publication date
JPS56151975U (en) 1981-11-13

Similar Documents

Publication Publication Date Title
NL7700018A (en) FLOAT VALVE WITH VERTICALLY ADJUSTABLE OUTLET PIPE.
JPS6242362Y2 (en)
GB1395672A (en) Electrode assembly
EP1906726B1 (en) A measuring device for milk flow
JPS5914761Y2 (en) Composite electrode for flow-type ion measurement
JPS6130205Y2 (en)
US804894A (en) Burette.
US3374161A (en) External coulometric generator
JPH074515Y2 (en) Aquarium electrode rod mounting unit
JPS5916829Y2 (en) Electrode device for measuring pH etc.
JPS6122670Y2 (en)
JPS5854527U (en) flow meter calibration device
CN212514384U (en) Device for measuring pH value and oxidation-reduction potential value
JPS6331000Y2 (en)
JPH0551405U (en) Defoaming device for water quality measurement system
JPH0725661Y2 (en) Gas analyzer sampling device
JPH0421127Y2 (en)
JPH06249735A (en) Fluid sensor
CN105716187A (en) Air humidifying equipment
FR2341841A1 (en) Drop-by-drop flowmeter for administering fluid to patient - has inlet tube with level gauge over apertured disc surrounded by drip collection chamber
SU697629A1 (en) Drying-moistening system
JPS6315811Y2 (en)
JPS5856931U (en) flow meter calibration device
JPH0346367Y2 (en)
JPS5841484Y2 (en) Non-bleeding reference electrode