JPS6315811Y2 - - Google Patents

Info

Publication number
JPS6315811Y2
JPS6315811Y2 JP2589182U JP2589182U JPS6315811Y2 JP S6315811 Y2 JPS6315811 Y2 JP S6315811Y2 JP 2589182 U JP2589182 U JP 2589182U JP 2589182 U JP2589182 U JP 2589182U JP S6315811 Y2 JPS6315811 Y2 JP S6315811Y2
Authority
JP
Japan
Prior art keywords
sample
tank
measurement tank
side wall
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2589182U
Other languages
Japanese (ja)
Other versions
JPS58129144U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2589182U priority Critical patent/JPS58129144U/en
Publication of JPS58129144U publication Critical patent/JPS58129144U/en
Application granted granted Critical
Publication of JPS6315811Y2 publication Critical patent/JPS6315811Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は、表面散乱方式の濁度計に関するもの
である。
[Detailed Description of the Invention] The present invention relates to a surface scattering type turbidity meter.

第1図は、従来における表面散乱方式の濁度計
の一例を示す図で、1は測定槽、2は光源、3は
受光器、4は調整槽、5は試料流入管、6は槽間
連結管、7はオーバーフロー用流出管、8は試料
排出管、9及び10は流量調整弁であるが、試料
流入管5及び流量調整弁9を介して調整槽4に流
入した試料は、槽間連結管6及び流量調整弁10
を介して測定槽1に流入し、測定槽1の側壁上端
縁からオーバーフローして試料排出管8から流出
する。この濁度計においては試料流入管5から流
入した試料は調整槽4において気ほうが除かれ、
又、試料の流入流量が増大して圧力変化を生じた
場合にはオーバーフロー用流出管7から試料がオ
ーバーフローして圧力変動が吸収されるので測定
槽1におけるオーバーフロー面に乱れを生ずるこ
となく、したがつて光源2からの光をオーバーフ
ロー面に投射し、試料からの散乱光を受光器3で
受けることにより正確な濁度測定を行うことが出
来る。
Figure 1 is a diagram showing an example of a conventional surface scattering type turbidity meter, in which 1 is a measurement tank, 2 is a light source, 3 is a light receiver, 4 is an adjustment tank, 5 is a sample inflow pipe, and 6 is a tank gap. The connecting pipe, 7 is an overflow outflow pipe, 8 is a sample discharge pipe, and 9 and 10 are flow rate adjustment valves. Connecting pipe 6 and flow rate adjustment valve 10
The sample flows into the measurement tank 1 through the sample tank 1, overflows from the upper edge of the side wall of the measurement tank 1, and flows out from the sample discharge pipe 8. In this turbidity meter, the sample flowing from the sample inflow pipe 5 is cleared of air in the adjustment tank 4.
In addition, when the inflow flow rate of the sample increases and pressure changes occur, the sample overflows from the overflow outflow pipe 7 and the pressure fluctuation is absorbed, so that the overflow surface in the measurement tank 1 is not disturbed. Then, by projecting the light from the light source 2 onto the overflow surface and receiving the scattered light from the sample with the light receiver 3, accurate turbidity measurement can be performed.

然しながら調整槽4において試料中の気ほうを
除き、圧力変化を吸収して測定槽1におけるオー
バーフロー面に乱れを生ぜしめないようにするに
は測定槽1に比し調整槽4の容積を大ならしめる
と共に測定槽1の容積もある程度大ならしめる必
要があるので、測定時の応答速度が遅くなるのを
免れることが出来ず、応答速度を速めるには試料
の流入流量を大にする他なく、したがつて試料の
消費量が大となるので貴重な試料の濁度測定には
不適である。又、測定槽1の他に調整槽4を必要
とすることに伴つて配管及び流量調整弁の数も増
加し、更に槽間連結管6の測定槽1内への挿入端
部を下方に向けて屈曲せしめ、測定槽1内への試
料の流入圧によつて測定槽1のオーバーフロー面
に乱れを生ぜしめないように形成する必要もある
ので全体の構成が複雑大形となる欠点を有する。
However, in order to remove air in the sample in the adjustment tank 4, absorb pressure changes, and prevent disturbances on the overflow surface in the measurement tank 1, the volume of the adjustment tank 4 should be larger than that of the measurement tank 1. At the same time, it is necessary to increase the volume of the measurement tank 1 to some extent, so it is inevitable that the response speed during measurement will be slow, and the only way to increase the response speed is to increase the flow rate of the sample inflow. Therefore, the amount of sample consumed is large, making it unsuitable for measuring the turbidity of valuable samples. In addition, as the adjustment tank 4 is required in addition to the measurement tank 1, the number of piping and flow rate adjustment valves also increases, and the insertion end of the inter-tank connecting pipe 6 into the measurement tank 1 is directed downward. Since it is necessary to bend the measuring tank 1 so that the overflow surface of the measuring tank 1 is not disturbed by the inflow pressure of the sample into the measuring tank 1, the entire structure becomes complicated and large.

本考案は、構成が簡潔小形で、試料のオーバー
フロー面に乱れを生ずることなく正確な測定を行
い得る濁度計を実現することを目的とする。
The object of the present invention is to realize a turbidity meter that has a simple and compact configuration and can perform accurate measurements without causing disturbance on the overflow surface of the sample.

第2図は、本考案の一実施例を示す一部断面を
有する構成図、第3図は要部の横断面図で、両図
において、1は測定槽、11及び12は筒体で、
例えばそれぞれ測定槽1とほぼ同軸状に配置し、
外側の筒体11の下端縁及び上端縁がそれぞれ内
側の筒体12の下端縁及び上端縁よりも適宜上位
に在るように設けてある。内側の筒体12の下端
縁を測定槽1の底壁に密着せしめても濁度測定に
は差支えないが、測定槽1内の試料を他の試料と
置換える場合等に測定槽1の側壁と内側の筒体1
2の間における旧試料及びこの試料に混入してい
る細かい固形物等の排出を容易ならしめるために
内側の筒体12の下端縁と測定槽1の底壁との間
に適当な狭い間隙を設けるようにしてもよい。1
3は例えば薄板状又は細い棒状の支持体で、測定
槽1の内側壁と筒体11及び12間に適宜数を例
えば放射状に設け、試料の流入流出を妨げること
なく筒体11及び12を前記の位置関係に支持す
るように形成してある。支持体13を設ける代り
に筒体11及び12の各下端縁を測定槽1の底壁
に固定し、外側の筒体11の下端部の周りに比較
的高さの高い切込みを複数個筒軸方向に設けると
共に内側の筒体12の下端部の周りに比較的高さ
の低い切込みを複数個筒軸方向に設けるようにし
てもよい。2は光源、3は受光器、5は試料流入
管、9は流量調整弁、14は試料排出管で、測定
槽1の底壁のほぼ中心部に取付けてある。15は
オーバーフロー用流出管で、その上端を測定槽1
の側壁の中、外側の筒体11の上端縁と内側の筒
体12の上端縁との間の高さに対応する個所に取
付け、下端を試料排出管14に接続してある。
FIG. 2 is a partially cross-sectional configuration diagram showing an embodiment of the present invention, and FIG. 3 is a cross-sectional view of the main parts. In both figures, 1 is a measuring tank, 11 and 12 are cylinders,
For example, each is arranged approximately coaxially with the measurement tank 1,
The lower end edge and upper end edge of the outer cylindrical body 11 are provided so as to be appropriately higher than the lower end edge and the upper end edge of the inner cylindrical body 12, respectively. There is no problem in turbidity measurement even if the lower edge of the inner cylinder 12 is brought into close contact with the bottom wall of the measurement tank 1, but when replacing the sample in the measurement tank 1 with another sample, etc., the side wall of the measurement tank 1 and inner cylinder 1
2. In order to facilitate the discharge of the old sample and fine solid matter mixed in this sample, an appropriate narrow gap is provided between the lower edge of the inner cylindrical body 12 and the bottom wall of the measuring tank 1. It may also be provided. 1
Reference numeral 3 denotes, for example, thin plate-shaped or thin rod-shaped supports, and an appropriate number of them are provided, for example, radially between the inner wall of the measurement tank 1 and the cylinders 11 and 12, so that the cylinders 11 and 12 can be connected to the cylinders 11 and 12 without interfering with the inflow and outflow of the sample. It is formed so as to be supported in the positional relationship of. Instead of providing the support 13, the lower edges of the cylinders 11 and 12 are fixed to the bottom wall of the measuring tank 1, and a plurality of relatively high cuts are made around the lower end of the outer cylinder 11. In addition, a plurality of relatively low-height cuts may be provided around the lower end of the inner cylinder 12 in the cylinder axis direction. 2 is a light source, 3 is a light receiver, 5 is a sample inflow pipe, 9 is a flow rate adjustment valve, and 14 is a sample discharge pipe, which are attached to approximately the center of the bottom wall of the measurement tank 1. 15 is an overflow outflow pipe, whose upper end is connected to measurement tank 1.
It is attached to the side wall of the tube at a location corresponding to the height between the upper edge of the outer cylindrical body 11 and the upper edge of the inner cylindrical body 12, and its lower end is connected to the sample discharge tube 14.

試料流入管5及び流量調整弁9を介して測定槽
1内に流入した試料は、第2図に矢印を以て示し
たように測定槽1の側壁と外側の筒体11の間、
外側の筒体11と内側の筒体12の間及び内側の
筒体12の内部を上下に向きを変えて流れ、試料
排出管14から流出するので、測定槽1の側壁と
外側の筒体11の間を下向きに流れる間に試料に
含まれる気ほうの大部分が上昇除去され、又、測
定槽1内の液面の高さはオーバーフロー用流出管
15の上端を取付けた高さ、即ち外側の筒体11
の上端縁と内側の筒体12の上端縁の間に保たれ
るので、試料が外側の筒体11の上端縁を乗越え
て外側の筒体11内に流入することなく、更に試
料の流入流量が増加して圧力変化を生じた場合に
は測定槽1の側壁と外側の筒体11の間における
試料がオーバーフロー用流出管15から流出する
量が増加して圧力変化を吸収するが、この場合、
外側の筒体11の内側における試料の液面から直
接流出管15にオーバーフローすることもないの
で、外側の筒体11の内側における試料の液面に
乱れを生ずることなく、したがつてこの液面に光
源2からの光を投射し、散乱光を受光器3に入射
せしめることにより濁度測定を正確に行うことが
出来る。
The sample that has flowed into the measurement tank 1 through the sample inflow pipe 5 and the flow rate adjustment valve 9 flows between the side wall of the measurement tank 1 and the outer cylindrical body 11, as shown by the arrow in FIG.
The flow changes direction up and down between the outer cylinder 11 and the inner cylinder 12 and inside the inner cylinder 12, and flows out from the sample discharge pipe 14, so that the side wall of the measurement tank 1 and the outer cylinder 11 Most of the air contained in the sample rises and is removed while flowing downward between the chambers, and the height of the liquid level in the measuring tank 1 is the height at which the upper end of the overflow outflow pipe 15 is attached, that is, the outer side. cylinder body 11
Since the sample is maintained between the upper edge of the inner cylinder 12 and the upper edge of the inner cylinder 12, the sample does not flow over the upper edge of the outer cylinder 11 into the outer cylinder 11, and the inflow flow rate of the sample is further reduced. When the pressure changes due to an increase in the pressure, the amount of sample between the side wall of the measurement tank 1 and the outer cylinder 11 flowing out from the overflow pipe 15 increases and absorbs the pressure change. ,
Since the liquid level of the sample inside the outer cylinder 11 does not directly overflow into the outflow pipe 15, the liquid level of the sample inside the outer cylinder 11 is not disturbed, and therefore this liquid level By projecting the light from the light source 2 onto the surface and letting the scattered light enter the light receiver 3, turbidity measurement can be performed accurately.

第3図には測定槽1、筒体11及び12の各断
面形状を円形に形成した場合を例示したが、任意
の断面形状、例えば方形に形成しても本考案を実
施することが出来る。
Although FIG. 3 shows an example in which the measurement tank 1 and the cylinders 11 and 12 have circular cross-sectional shapes, the present invention can be practiced even if they are formed in any cross-sectional shape, for example, rectangular.

本考案者の試作例によれば、測定槽1、筒体1
1及び12の各断面形状を円形に形成し、測定槽
1の内径を200mm、側壁の高さを80ないし100mm、
外側の筒体11の直径を120mm、内側の筒体12
の直径を60mmに選ぶことにより外側の筒体11の
内側における液面を極めて滑らかにすることが出
来、又、第1図に示した従来装置における試料の
流入流量のほぼ1/3の流入流量で従来装置と同様
の応答速度を得ることが出来た。
According to the inventor's prototype example, measuring tank 1, cylinder 1
1 and 12 are circular in cross section, the inner diameter of measurement tank 1 is 200 mm, the height of the side wall is 80 to 100 mm,
The diameter of the outer cylinder 11 is 120 mm, and the inner cylinder 12 is
By selecting the diameter of 60 mm, the liquid level inside the outer cylinder 11 can be made extremely smooth, and the inflow flow rate of the sample is approximately 1/3 of that in the conventional apparatus shown in Fig. 1. We were able to obtain the same response speed as the conventional device.

側壁の上端縁から試料をオーバーフローせしめ
るように構成した測定槽を用いる場合には第4図
に要部断面図を示すように、測定槽1内に筒体1
6を設け、その上端縁の高さを測定槽1の側壁の
上端縁よりも適宜高く位置せしめると共に測定槽
1の側壁と筒体16の間に対応する測定槽1の底
壁に試料流入管5を取付けるように構成すれば、
流入試料中の気ほうの大部分は筒体16の内側に
入ることなく測定槽1の側壁と筒体16の間を上
昇して大気中に放出され、試料の流入流量の増加
による圧力変動は測定槽1の側壁上端縁からのオ
ーバーフローにより吸収されるが、試料のオーバ
ーフローによる液面の乱れは筒体16により遮断
されるので、筒体16内の液面を滑らかに保つこ
とが可能となる。尚、第4図において17はオー
バーフロー液の受け溝、18は試料排出管であ
る。
When using a measurement tank configured to allow the sample to overflow from the upper edge of the side wall, a cylindrical body 1 is placed inside the measurement tank 1, as shown in a sectional view of the main part in FIG.
6, and its upper edge is positioned appropriately higher than the upper edge of the side wall of the measuring tank 1, and a sample inflow pipe is installed on the bottom wall of the measuring tank 1 corresponding to between the side wall of the measuring tank 1 and the cylindrical body 16. If you configure it so that 5 is installed,
Most of the air in the inflowing sample does not enter the inside of the cylinder 16 and rises between the side wall of the measurement tank 1 and the cylinder 16 and is released into the atmosphere, and the pressure fluctuation due to the increase in the flow rate of the sample Although it is absorbed by the overflow from the upper edge of the side wall of the measurement tank 1, the turbulence of the liquid level due to the overflow of the sample is blocked by the cylinder 16, so it is possible to keep the liquid level inside the cylinder 16 smooth. . In FIG. 4, 17 is a receiving groove for overflow liquid, and 18 is a sample discharge tube.

以上の説明から明らかなように、本案濁度計は
従来の濁度計に比し液槽の数及び配管数等が少
く、試料流入管の端部を測定槽内に挿入して下方
に屈曲せしめる等の処理も不要で、測定槽も容積
の小なるもので足りるから全体の構成が簡潔小形
で、又、試料の流入流量が小なる場合でも測定時
の応答速度が速かで、したがつて貴重な試料の濁
度測定等に好適なもので、その効果甚だ大であ
る。
As is clear from the above explanation, the proposed turbidity meter has fewer liquid tanks and piping than conventional turbidity meters, and the end of the sample inflow tube is inserted into the measurement tank and bent downward. There is no need for any processing such as tightening, and only a small measuring tank is required, so the overall structure is simple and compact, and the response speed during measurement is fast even when the inflow flow rate of the sample is small. It is suitable for measuring the turbidity of precious samples, and its effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の濁度計の一例を示す図、第2
図ないし第4図は、本考案の一実施例を示す図
で、 1……測定槽、2……光源、3……受光器、4
……調整槽、5……試料流入管、6……槽間連結
管、7及び15……オーバーフロー用流出管、
8,14及び18……試料排出管、9及び10…
…流量調整弁、11,12及び16……筒体、1
3……支持体、17……オーバーフロー液の受け
溝である。
Figure 1 shows an example of a conventional turbidity meter, and Figure 2 shows an example of a conventional turbidity meter.
4 to 4 are diagrams showing an embodiment of the present invention, 1...Measurement tank, 2...Light source, 3...Light receiver, 4
...Adjustment tank, 5...Sample inflow pipe, 6...Inter-tank connection pipe, 7 and 15...Overflow outflow pipe,
8, 14 and 18...sample discharge tube, 9 and 10...
...Flow rate adjustment valve, 11, 12 and 16... Cylindrical body, 1
3...Support, 17...Receiving groove for overflow liquid.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 測定槽内に設けた内側筒体と、下端縁及び上端
縁をそれぞれ前記内側筒体の下端縁及び上端縁に
対して上位に保つて前記測定槽の側壁と前記内側
筒体との間に介在せしめた外側筒体と、前記測定
槽の側壁に取付けた試料流入管と、前記測定槽の
底壁の中、前記内側筒体の中心軸にほぼ対応する
個所に取付けた試料排出管と、前記測定槽の側壁
の中、前記外側筒体の上端縁と前記内側筒体の上
端縁との間の高さに対応する個所に取付けたオー
バーフロー用流出管と、前記外側筒体内の液面に
光を投射する光源と、試料からの散乱光の受光器
とより成ることを特徴とする濁度計。
An inner cylindrical body provided in the measurement tank is interposed between the side wall of the measurement tank and the inner cylindrical body, with the lower end edge and the upper end edge being respectively kept above the lower end edge and the upper end edge of the inner cylindrical body. a sample inlet pipe attached to the side wall of the measurement tank; a sample discharge pipe attached to the bottom wall of the measurement tank at a location substantially corresponding to the central axis of the inner cylinder; An overflow outflow pipe is installed in the side wall of the measurement tank at a location corresponding to the height between the upper edge of the outer cylinder and the upper edge of the inner cylinder, and a A turbidity meter comprising a light source that projects light and a receiver that receives scattered light from a sample.
JP2589182U 1982-02-25 1982-02-25 Turbidity meter Granted JPS58129144U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2589182U JPS58129144U (en) 1982-02-25 1982-02-25 Turbidity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2589182U JPS58129144U (en) 1982-02-25 1982-02-25 Turbidity meter

Publications (2)

Publication Number Publication Date
JPS58129144U JPS58129144U (en) 1983-09-01
JPS6315811Y2 true JPS6315811Y2 (en) 1988-05-06

Family

ID=30037847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2589182U Granted JPS58129144U (en) 1982-02-25 1982-02-25 Turbidity meter

Country Status (1)

Country Link
JP (1) JPS58129144U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058513A1 (en) * 2008-11-20 2010-05-27 新日本製鐵株式会社 Device for detecting oil film on discharged water

Also Published As

Publication number Publication date
JPS58129144U (en) 1983-09-01

Similar Documents

Publication Publication Date Title
JPS6315811Y2 (en)
US5723093A (en) Apparatus for the continuous sampling and analysis of a liquid effluent
JPS6315814Y2 (en)
US5413005A (en) Sample collector for fog-containing wastewater
US3048039A (en) Mercury saver and oil trap for orifice meters
US3740157A (en) Flow cuvette
RU2352915C1 (en) Installation for mixture sampling from pipeline
JPH048371Y2 (en)
JPS5826370Y2 (en) Defoaming flow divider
US3563085A (en) Liquid meter counter
CN212586178U (en) Wireless online density concentration measuring device
JPH0551405U (en) Defoaming device for water quality measurement system
CN220288736U (en) Liquid level sensor
CN217732730U (en) Adsorption equipment for aquatic organic component
CN217084562U (en) Device for quickly testing air release amount of pressure air dissolving system
CN208984144U (en) The molten outgassing efficiency detection device of dissolved air water
US2604784A (en) Flowmeter
JPH08285810A (en) Measuring apparatus of water quality
SU714211A1 (en) Liquid sampler
CN208847725U (en) A kind of water storage system for the test of sediment pollution accumulating effect
CN209182082U (en) A kind of environmental monitoring water quality sampling device
CN207767283U (en) A kind of fry rearing basin
JPH07174100A (en) Siphon having horizontal reseevoir
SU932247A1 (en) Device for automatic batching of coagulant solution
JPS6331754Y2 (en)