JPS6242324Y2 - - Google Patents
Info
- Publication number
- JPS6242324Y2 JPS6242324Y2 JP3643479U JP3643479U JPS6242324Y2 JP S6242324 Y2 JPS6242324 Y2 JP S6242324Y2 JP 3643479 U JP3643479 U JP 3643479U JP 3643479 U JP3643479 U JP 3643479U JP S6242324 Y2 JPS6242324 Y2 JP S6242324Y2
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- measured
- air
- optical
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 47
- 238000002347 injection Methods 0.000 claims description 24
- 239000007924 injection Substances 0.000 claims description 24
- 230000007246 mechanism Effects 0.000 claims description 24
- 239000000428 dust Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 9
- 239000003921 oil Substances 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- -1 scale Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【考案の詳細な説明】
この考案は、丸棒鋼、鋼管などの製造工程中に
おいて、熱間または冷間でその直径寸法を光学的
に非接触で自動測定する光学的測寸装置の改良に
関するものである。[Detailed description of the invention] This invention relates to the improvement of an optical measuring device that automatically measures the diameter of round steel bars, steel pipes, etc. in a hot or cold manner without contact during the manufacturing process. It is.
この種の測定装置はプロセスラインの品質管理
上必要な個所においてその測定をする必要がある
ので、被測定物が加熱されている状態で測定する
ことが必要であつたり、またその測定値を次工程
の制御諸元に反映せしめなければならないため測
定時間を短くするために被測定物と測定装置とを
相対的に回転せしめながら自動送りをかけて行く
ことが必要であつたりするので一般に被測定物が
置かれている動的な苛酷な諸雰囲気条件に光学系
機構がさらされることがある。 This type of measuring device needs to perform measurements at necessary points for quality control on the process line, so it may be necessary to measure while the object being measured is heated, or the measured value may be transferred to the next step. This must be reflected in the control specifications of the process, so in order to shorten the measurement time, it may be necessary to rotate the measured object and measuring device relative to each other while automatically feeding the measuring device. Optical systems can be exposed to the dynamic and harsh atmospheric conditions in which they are placed.
被測定物がたとえば熱間圧延によつてえられる
赤熱丸棒鋼である場合、その周囲をかこむ高温の
環状空気層が停滞すると、陽炎が発生し、測光ビ
ームにゆらぎを与えることから、測定値に誤差を
生じさせたり、水蒸気や飽和水・油滴が光学系の
入口ガラス板やレンズに付着してそれを曇らせた
り、また被測定物に付着しているスケールなどの
付着物が飛散してレンズを汚したり、さらにはも
ともと空気中に含まれているじんあいや水油滴で
レンズが汚損されたりする。一方光学系機構、そ
れに接続される測定器は、たとえばその検出器と
して1個の幅が0.03mmのCCD(Charge Coupled
Device)イメジセンサーを寸法端部域のみに数
100個並列設置するような高度の精密性をもつて
いるので、そのレンズなどの汚染は、その感度の
低下、映像のひずみを来たす因を排除し検出性能
を良好な状態に保持する意味においてこれを極力
避けねばならない。 If the object to be measured is, for example, a red-hot round steel bar obtained by hot rolling, if the high-temperature annular air layer surrounding the object stagnates, haze will occur and cause the photometric beam to fluctuate, causing the measured value to change. Errors may occur, water vapor, saturated water, or oil droplets may adhere to the entrance glass plate or lens of the optical system, clouding it, or scale and other deposits on the object to be measured may scatter and cause damage to the lens. In addition, the lens can become dirty due to dust, water and oil droplets that are already present in the air. On the other hand, the optical system mechanism and the measuring instruments connected to it are, for example, CCDs (Charge Coupled
Device) Image sensor only in the end area of the dimension
Since it has a high degree of precision as 100 units are installed in parallel, contamination of the lenses, etc. is important in the sense of eliminating factors that reduce sensitivity and distort images and maintain detection performance in good condition. must be avoided as much as possible.
この考案は以上のような要求からして被測定物
環境からする測光ビームのゆらぎ、測定光学系機
構の汚染、ひいてはそれによる感度の低下、測定
値の精度の低下を防止した光学的測寸装置を提供
しようとするもので、被測定物に平行光線を照射
する第1の光学系と、被測定物に照射された平行
光線にもとづく被測定物の像を得る第2の光学系
と、被測定物の像の寸法を測定する検出器と、前
記第1の光学系と第2の光学系および検出器とを
被測定物を挟んで相対配着させ、これらを被測定
物の送り方向に対して垂直面内で回転保持する回
転架台とを備えてなる光学的測寸装置において、
被測定物と光学系機構との間に円筒状噴射空気層
を形成する空気噴射管を2重に設けてなり、その
光学系機構に近い空気噴射管には、その噴射管内
部において導入空気に含まれるじんあい、水・油
滴などを除去する空気ろ過装置を介入せしめると
ともに、その噴射ノズルを前記光学系機構に近接
して配置したことを特徴とする光学的測寸装置に
かかるものである。 In response to the above requirements, this invention was developed to create an optical dimension measuring device that prevents fluctuations in the photometric beam caused by the environment of the object to be measured, contamination of the measuring optical system mechanism, and the resulting decrease in sensitivity and accuracy of measured values. The system includes a first optical system that irradiates the object to be measured with parallel rays of light, a second optical system that obtains an image of the object based on the parallel rays irradiated to the object, and A detector for measuring the dimensions of an image of the object to be measured, the first optical system, the second optical system, and the detector are arranged relative to each other with the object to be measured interposed therebetween, and these are arranged in the feeding direction of the object to be measured. On the other hand, in an optical dimension measuring device comprising a rotating mount that rotates and holds in a vertical plane,
Two air injection tubes are provided to form a cylindrical injection air layer between the object to be measured and the optical system mechanism. This optical dimension measuring device is characterized in that an air filtration device is used to remove dust, water, oil droplets, etc. contained therein, and its injection nozzle is arranged close to the optical system mechanism. .
つぎに実施例を図によつて説明する。第1図は
この考案の光学的測寸装置の要部側断面図、第2
図は第1図の−線における断面図である。図
において1は被測定物で、この場合丸棒鋼であ
り、矢印方向に順次送りがかけられている。2は
第1の光学系機構で、内部には光源3とコリメー
タレンズ4とが設けられ、図中矢印方向に平行光
線を発射し、被測定物1を照射する。5は第2の
光学系機構でその内部には集光レンズ6とその結
像面に設置するCCD(Charge Coupled
Device)イメジセンサーからなる検出器群7が
設けられる。第2の光学系機構で被測定物の影像
の直径寸法を測定するようにされている。この実
施例の場合においては第1ならびに第2の光学系
機構はその回転架台8によつて被測定物1の周囲
を回転するようにされており被測定物の送りと相
まつてらせん状に被測定物の直径を走査し測定す
るようにされている。回転架台8の回転はそのス
プロケツトホイール9チエーン10ならびにモー
ター11によつて行われる。また図中12は玉軸
受、13はスリツプリングを示している。なおま
た図中14は冷却水を流す冷却ジヤケツトであ
る。つぎに15ならびに16は前記被測定物と、
両光学系機構との間の空間においてその空間を横
切る2重の噴射空気層(エアカーテン)を作成す
る噴射管である。先端にノズル15′,16′を有
する。この実施例の場合前記のように回転走査型
測定方式であるので各噴射管は円筒状をなしてい
る。各噴射管15,16にはそれぞれ送風ポンプ
17,18が挿入されるが、この場合外側の噴射
管16にはさらに空気ろ過装置19が挿入され
る。 Next, an example will be explained with reference to the drawings. Figure 1 is a side sectional view of the main part of the optical dimension measuring device of this invention, Figure 2
The figure is a sectional view taken along the - line in FIG. 1. In the figure, reference numeral 1 indicates an object to be measured, in this case a round steel bar, which is sequentially fed in the direction of the arrow. Reference numeral 2 denotes a first optical system mechanism, which is provided with a light source 3 and a collimator lens 4 inside, and emits parallel light beams in the direction of the arrow in the figure to illuminate the object 1 to be measured. 5 is a second optical system mechanism, inside which is a condenser lens 6 and a CCD (Charge Coupled
Device) A detector group 7 consisting of an image sensor is provided. The second optical system mechanism is adapted to measure the diameter dimension of the image of the object to be measured. In the case of this embodiment, the first and second optical system mechanisms are configured to rotate around the object to be measured 1 by means of the rotating mount 8, and as the object to be measured is fed, the first and second optical system mechanisms rotate in a spiral manner. The diameter of the object to be measured is scanned and measured. Rotation of the rotating frame 8 is effected by its sprocket wheel 9 chain 10 and motor 11. Further, in the figure, 12 indicates a ball bearing, and 13 indicates a slip ring. Furthermore, numeral 14 in the figure is a cooling jacket through which cooling water flows. Next, 15 and 16 are the objects to be measured,
This is an injection tube that creates a double injection air layer (air curtain) across the space in the space between both optical system mechanisms. It has nozzles 15' and 16' at its tip. In this embodiment, as described above, since the measurement method is of the rotational scanning type, each injection pipe has a cylindrical shape. Air blowing pumps 17 and 18 are inserted into each of the injection pipes 15 and 16, respectively, and in this case, an air filtration device 19 is further inserted into the outer injection pipe 16.
空気ろ過装置19は、被測定物の測定環境条件
の如何によつて空気乾燥機を挿入する場合、ガラ
ス繊維マツトのようなじんあいフイルターを挿入
する場合などがあり、またそのろ過、清浄化程度
にしたがつてその装備程度に差違をもたせること
ができる。 The air filtration device 19 may include an air dryer or a dust filter such as glass fiber mat depending on the measurement environment conditions of the object to be measured. Therefore, the degree of equipment can be differentiated.
この噴射空気層はそれによつて被測定物と光学
系機構との間において、とくに被測定物が赤熱状
態にある場合その近傍に停滞する高温空気層を吹
きとばすとともに両者間の空気の交流を遮断し、
じんあい、スケール、水油滴などの光学系機構へ
の飛散を防止する。しかしかりにこの噴射空気層
を一重のみ設ける場合には十分な空気交流遮断効
果を得るためには、送風ポンプの容量、送風速
度、ならびに空気ろ過装置装備の重装備を必要と
し、設備経済性に欠けるところがあるが、この考
案においては噴射空気層を二重層とし、空気ろ過
装置はその光学系機構側部の層の噴射管内のみに
装備して設備経済的に空気交流遮断効果の向上を
はかつたものである。内側の被測定物に近い噴射
空気層で、被測定物の近傍に前記した高温空気層
が停滞する場合には、この空気層が被測定物から
放散されるじんあい、スケール、水・油滴ととも
に吹きとばされ、その光学機構側への移行が遮断
せられることになり、またその噴射空気層自体に
含まれており、外部への拡散傾向にある導入じん
あい、水・油滴などは今度は外側の光学系機構に
近い噴射空気層によつて光学系機構への移行が遮
断される。この外側の噴射空気層にはその噴射管
16内に空気ろ過装置19が設けられているので
その空気層自体から、光学系機構側へ拡散するじ
んあい、水・油滴はほとんどなくなるのである。 This injected air layer thereby blows away the high-temperature air layer that stagnates in the vicinity of the object to be measured and the optical system mechanism, especially when the object to be measured is in a red-hot state, and also blocks the exchange of air between the two. death,
Prevents dust, scale, water and oil droplets from scattering onto the optical system mechanism. However, if only one layer of injected air is provided, in order to obtain a sufficient air exchange blocking effect, it is necessary to increase the capacity of the blower pump, the blower speed, and heavy equipment such as air filtration equipment, which lacks equipment economy. However, in this design, the injection air layer is a double layer, and the air filtration device is installed only in the injection pipe of the layer on the side of the optical system mechanism, thereby improving the air exchange blocking effect economically. It is something. If the above-mentioned high-temperature air layer stagnates near the object to be measured in the inner injection air layer close to the object to be measured, this air layer will absorb dust, scale, water, and oil droplets emitted from the object to be measured. In addition, the introduced dust, water, oil droplets, etc. that are contained in the jetted air layer itself and tend to diffuse to the outside are blown away and their transfer to the optical mechanism side is blocked. The transition to the optical system is now blocked by the blast air layer close to the outer optical system. Since this outer injection air layer is provided with an air filtration device 19 within its injection tube 16, almost no dust, water, or oil droplets diffuse from the air layer itself toward the optical system mechanism.
この実施例では回転型光学的測寸装置の例をと
つたため、噴射管15,16は円筒型であり、そ
れによつて形成される噴射空気層も円筒形である
が、静止形の場合においては噴射空気層は平面的
であつてよい。 In this embodiment, since a rotating optical size measuring device is used, the injection tubes 15 and 16 are cylindrical, and the injection air layer formed thereby is also cylindrical. However, in the case of a stationary type, The injected air layer may be planar.
以上のようにこの考案は構成されているのでこ
の光学的測寸装置においては、被測定物がたとえ
ば熱間圧延によつてえられる赤熱丸棒鋼である場
合その周囲をかこむ高温の環状空気層を二重噴射
空気層の内側のものによつて被測定物から放散さ
れるじんあい、スケールとともに吹きとばし、高
温空気層の停滞による陽炎の発生により測光ビー
ムに生ずるゆらぎを抑止することによつて測定値
に誤差が入りこまないようにしうるとともに、空
気ろ過装置を介して浄化された空気を噴射する外
側のものによつて前記した内側の噴射空気層自体
に含まれる外方へ拡散し、光学系機構を汚染する
おそれのあるじんあい、水、油滴などの光学系機
構への移行をしや断できる。そして、光学系機構
に近い空気噴射管のノズルを光学系機構に近接し
て配置したことによつて上記しや断を完全に行な
うことができる。このように本考案によれば、つ
ねに良好な状態で光学系機構を作動せしめること
ができ、被測定物環境からする感度の低下、測定
値の精度の低下を、設備経済的に、かつ極めて効
率良く防止することができる設備の簡素化をはか
ることができた有用な効果を奏するものである。 Since this device is constructed as described above, in this optical dimension measuring device, when the object to be measured is, for example, a red-hot round steel bar obtained by hot rolling, a high-temperature annular air layer surrounding the object is used. Measures by blowing away dust and scale emitted from the object to be measured by the inner layer of the double injection air layer, and suppressing fluctuations that occur in the photometric beam due to heat haze caused by stagnation of the high-temperature air layer. It is possible to prevent errors from entering into the values, and the outer jet of purified air through the air filtration device diffuses the air contained in the inner jet air layer itself to the outside, and the optical system It is possible to prevent dust, water, oil droplets, etc. from migrating to the optical system mechanism, which could contaminate the mechanism. Further, by arranging the nozzle of the air injection tube close to the optical system mechanism, the above-mentioned cutting can be performed completely. In this way, according to the present invention, the optical system mechanism can always be operated in good condition, and the reduction in sensitivity and accuracy of measured values caused by the environment of the object to be measured can be avoided economically and extremely efficiently. This has the useful effect of simplifying equipment that can prevent such problems.
第1図はこの考案の光学的測寸装置の要部側断
面図、第2図は第1図の−線における断面を
示す図である。
1……被測定物、2……第1の光学系機構、5
……第2の光学系機構、7……検出器群、8……
回転架台、15……測定物に近い側の噴射空気層
をつくる空気噴射管、16……光学系機構に近い
側の噴射空気層をつくる空気噴射管、17,18
……送風ポンプ、19……空気ろ過装置。
FIG. 1 is a sectional side view of a main part of the optical dimension measuring device of this invention, and FIG. 2 is a cross-sectional view taken along the line -- in FIG. 1...Object to be measured, 2...First optical system mechanism, 5
...Second optical system mechanism, 7...Detector group, 8...
Rotating stand, 15...Air injection tube that creates an injection air layer on the side closer to the measurement object, 16...Air injection tube that creates an injection air layer on the side closer to the optical system mechanism, 17, 18
...Blower pump, 19...Air filtration device.
Claims (1)
と、被測定物に照射された平行光線にもとづく被
測定物の像を得る第2の光学系と、被測定物の像
の寸法を測定する検出器と、前記第1の光学系と
第2の光学系および検出器とを被測定物を挟んで
相対配置させ、これらを被測定物の送り方向に対
して垂直面内で回転保持する回転架台とを備えて
なる光学的測寸装置において、被測定物と光学系
機構との間に円筒状噴射空気層を形成する空気噴
射管を2重に設けてなり、その光学系機構に近い
空気噴射管には、その噴射管内部において導入空
気に含まれるじんあい、水・油滴などを除去する
空気ろ過装置を介入せしめるとともに、その噴射
ノズルを前記光学系機構に近接して配置したこと
を特徴とする光学的測寸装置。 A first optical system that irradiates the object to be measured with parallel rays of light, a second optical system that obtains an image of the object based on the parallel rays irradiated to the object to be measured, and a second optical system that measures the dimensions of the image of the object to be measured. The first optical system, the second optical system, and the detector are arranged relative to each other with the object to be measured interposed therebetween, and these are rotated and held in a plane perpendicular to the feeding direction of the object to be measured. In an optical dimension measuring device equipped with a rotating stand, a double air jet tube is provided to form a cylindrical jet air layer between the object to be measured and the optical system mechanism, and a The air injection pipe is provided with an air filtration device that removes dust, water, oil droplets, etc. contained in the introduced air inside the injection pipe, and the injection nozzle is arranged close to the optical system mechanism. An optical measuring device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3643479U JPS6242324Y2 (en) | 1979-03-19 | 1979-03-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3643479U JPS6242324Y2 (en) | 1979-03-19 | 1979-03-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55135904U JPS55135904U (en) | 1980-09-27 |
JPS6242324Y2 true JPS6242324Y2 (en) | 1987-10-30 |
Family
ID=28897589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3643479U Expired JPS6242324Y2 (en) | 1979-03-19 | 1979-03-19 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6242324Y2 (en) |
-
1979
- 1979-03-19 JP JP3643479U patent/JPS6242324Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS55135904U (en) | 1980-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2376586C2 (en) | System for imaging elongated bar (versions) | |
US4276480A (en) | Sensor position independent material property determination using radiant energy | |
US7623226B2 (en) | Optical method and device for detecting surface and structural defects of a travelling hot product | |
KR101287644B1 (en) | Method and apparatus for inspecting a container sidewall contour | |
JPH04274732A (en) | Method and apparatus for guiding light | |
KR960008272A (en) | Optical inspection of vessel finish dimension parameters | |
US4087184A (en) | Method and apparatus for inspecting liquids in transparent containers | |
JP3011397B2 (en) | Inspection method and device for transparent container | |
NZ272587A (en) | System for measuring the temperature profile along an extension arm located near a bank of boiler tubes and thus determining deposit build-up on the tubes | |
JPS6242324Y2 (en) | ||
CA1127888A (en) | Inspection of the interior of an enclosure | |
JP5146181B2 (en) | Device for setting the position of the starting point in the circumferential direction in oil well pipe thread shape all-round measurement | |
JPS6025521Y2 (en) | Anti-haze device for optical measurement equipment for high-temperature objects to be measured | |
JPH0337135B2 (en) | ||
JP3075273U (en) | Cylinder inner surface inspection device | |
JPH01163602A (en) | External diameter measuring instrument for rod-shaped body | |
JPS5918647B2 (en) | How do you know how to use light and light? | |
JPS5776424A (en) | Measuring apparatus of temperature distribution of infrared ray | |
JPS6313444Y2 (en) | ||
US3466452A (en) | Optical apparatus for inspecting the faceplate-to-funnel seal area of a tv tube | |
JPS6221041A (en) | Optical measuring apparatus | |
JPS63247624A (en) | Optical measuring instrument | |
JPH0774729B2 (en) | Inner surface shape detection method of inner surface deformed pipe | |
JPH061169B2 (en) | Method for detecting running state of strip in furnace | |
JPH05126760A (en) | Optical flaw detecting apparatus |