JPS6242175Y2 - - Google Patents

Info

Publication number
JPS6242175Y2
JPS6242175Y2 JP10985281U JP10985281U JPS6242175Y2 JP S6242175 Y2 JPS6242175 Y2 JP S6242175Y2 JP 10985281 U JP10985281 U JP 10985281U JP 10985281 U JP10985281 U JP 10985281U JP S6242175 Y2 JPS6242175 Y2 JP S6242175Y2
Authority
JP
Japan
Prior art keywords
shaft
clutch
output shaft
input shaft
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10985281U
Other languages
Japanese (ja)
Other versions
JPS5816433U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10985281U priority Critical patent/JPS5816433U/en
Publication of JPS5816433U publication Critical patent/JPS5816433U/en
Application granted granted Critical
Publication of JPS6242175Y2 publication Critical patent/JPS6242175Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、車両減速時に車両の持つていた運
動エネルギを回収するための運動エネルギ回収装
置に適したクラツチ機構に関する。
[Detailed Description of the Invention] This invention relates to a clutch mechanism suitable for a kinetic energy recovery device for recovering kinetic energy possessed by a vehicle when the vehicle decelerates.

従来、自動車等の車両においては、エンジン等
の駆動系の一部に油圧ポンプを接続し、車両減速
時に車両の慣性力によつて上記油圧ポンプを作動
させて、車両の持つていた運動エネルギを油圧の
形でアキユームレータ内で蓄積回収するようにし
た運動エネルギ回収装置が提案されている。とこ
ろが、上記油圧ポンプを駆動系に接続する場合、
正逆転される駆動系の出力軸に単に接続するよう
にすると、車両後進時に出力軸が逆転した場合、
油圧ポンプが逆転されてしまうので極めて都合が
悪い。
Conventionally, in vehicles such as automobiles, a hydraulic pump is connected to a part of the drive system such as the engine, and when the vehicle decelerates, the hydraulic pump is operated by the inertia of the vehicle, and the kinetic energy of the vehicle is used. A kinetic energy recovery device has been proposed in which the kinetic energy is stored and recovered in an accumulator in the form of hydraulic pressure. However, when connecting the above hydraulic pump to the drive system,
If the output shaft is simply connected to the output shaft of a drive system that is reversed in the forward and reverse directions, if the output shaft is reversed when the vehicle is moving backwards,
This is extremely inconvenient because the hydraulic pump would be reversed.

そこで従来は、油圧ポンプを電磁クラツチを介
して駆動系側の出力軸に接続し、ブレーキペダル
によつてオン・オフされるスイツチまたは出力軸
の正逆転を検出するトルク検出センサからの信号
に基づいて上記電磁クラツチを断続させ、油圧ポ
ンプの逆転を防止していた。
Conventionally, a hydraulic pump is connected to the output shaft of the drive system via an electromagnetic clutch, and the switch is turned on and off by the brake pedal, or based on signals from a torque detection sensor that detects forward and reverse rotation of the output shaft. The electromagnetic clutch was then engaged to prevent the hydraulic pump from reversing.

しかしながらこのような従来装置においては、
電磁クラツチによつて油圧ポンプの断続を行なつ
ていたため、油圧ポンプを作動させる間は連続し
て電磁クラツチのソレノイドに通電しなければな
らないので電力消費量が多くなるとともに、シス
テムの構成も複雑であり、また、トルク検出セン
サを使うと高価になり、しかもセンサ、スイツチ
の誤信号により油圧ポンプが逆転されるおそれが
ある等の問題点があつた。
However, in such conventional devices,
Since the hydraulic pump was switched on and off using an electromagnetic clutch, the solenoid of the electromagnetic clutch had to be continuously energized while the hydraulic pump was operating, resulting in high power consumption and a complicated system configuration. Moreover, the use of a torque detection sensor is expensive, and there are also problems such as the possibility that the hydraulic pump may be reversed due to an erroneous signal from the sensor or switch.

この考案は上記のような従来の問題点に着目し
てなされたもので、動力の入力軸と被駆動軸とを
はすば歯車を介して連結し、かつ前記入力軸また
は前記被駆動軸の一方を、前記入力軸の動力伝達
方向に応じて前記はすば歯車間に発生するスラス
ト力によつて軸方向に移動可能な軸とすると共
に、前記軸方向に移動可能な軸の延長上に、前記
スラスト力により接続、遮断するクラツチを介し
て出力軸を配設し、前記軸方向に移動可能な軸の
移動により前記クラツチを接続、遮断させ、適宜
出力軸に動力を伝達させるようにして、電磁クラ
ツチを用いることなく駆動系の出力軸の逆回転時
における運動エネルギ回収装置の油圧ポンプへの
動力の伝達を防止できるようにして、上記問題点
を解決することを目的とする。
This idea was made by focusing on the above-mentioned conventional problems, and it connects the power input shaft and the driven shaft via a helical gear, and One of the shafts is a shaft movable in the axial direction by a thrust force generated between the helical gears according to the power transmission direction of the input shaft, and the other shaft is an extension of the shaft movable in the axial direction. , an output shaft is disposed via a clutch that is connected and disconnected by the thrust force, and the clutch is connected and disconnected by movement of the shaft movable in the axial direction, and power is transmitted to the output shaft as appropriate. An object of the present invention is to solve the above problems by making it possible to prevent power from being transmitted to a hydraulic pump of a kinetic energy recovery device when the output shaft of a drive system rotates in reverse without using an electromagnetic clutch.

以下図面に基づいてこの考案を説明する。 This invention will be explained below based on the drawings.

第1図は本考案に係るクラツチ機構が適用され
る運動エネルギ回収装置の一例を示すもので、1
が車両の駆動系でこの駆動系1により回転される
出力軸2にクラツチ3が取り付けられ、このクラ
ツチ3を介して油圧ポンプ4が駆動系1に断続可
能に接続されている。油圧ポンプ4は電磁切換弁
5を介してリザーブタンク6およびアキユームレ
ータ7に、それぞれ管路8a,8bおよび管路8
c,8dによつて連結されている。図に示す電磁
切換弁5はエネルギ回収時の状態を示す。
FIG. 1 shows an example of a kinetic energy recovery device to which the clutch mechanism according to the present invention is applied.
is a drive system of a vehicle, and a clutch 3 is attached to an output shaft 2 rotated by the drive system 1, and a hydraulic pump 4 is connected to the drive system 1 via the clutch 3 in an intermittent manner. The hydraulic pump 4 is connected to the reserve tank 6 and the accumulator 7 via the electromagnetic switching valve 5 through conduits 8a, 8b and conduit 8, respectively.
c, 8d. The electromagnetic switching valve 5 shown in the figure shows the state at the time of energy recovery.

第2図は本考案に係るクラツチ機構の一実施例
を示す概略構成図で、エンジン側の車両の駆動系
によつて回転される動力の入力軸21にはねじれ
角を有する歯が形成されたはすば歯車9aが固着
され、また、上記入力軸21と平行に配設され駆
動輪側の車両の駆動系に接続された被駆動軸22
にも同様のはすば歯車9bが固着されており、上
記はすば歯車9aと9bとはその一方が軸方向に
移動可能に係合されている。一方、上記被駆動軸
22の延長上には、前記油圧ポンプ4の回転軸た
る出力軸23が配設され、被駆動軸22と出力軸
23とはクラツチ3を介して接続されている。第
4図は第2図の構成の具体的な実施例を示すもの
で、入力軸21はギヤケース11内にボールベア
リング12a,12bによつて回転自在に支承さ
れている。出力軸23はボールベアリング13
a,13bによつてギヤケース11前壁の筒部1
1aに支承され、被駆動軸22は後端がボールベ
アリング14によつてそのアウタレール14aが
ギヤケース11の穴11b内を摺動可能にギヤケ
ース11に支承され、前端は出力軸23内に同軸
的に取り付けられたニードルベアリング15によ
つて軸方向の移動を許容されて支承されている。
そして、入力軸21と被駆動軸22とは、はすば
歯車9a,9bにより連結されているとともに、
被駆動軸22の前端部と出力軸23の後端部との
間には多板クラツチ3が介装されている。なお、
ここでははすば歯車9aのねじれ方向は左で、は
すば歯車9bのねじれ方向は右とする。
FIG. 2 is a schematic configuration diagram showing an embodiment of the clutch mechanism according to the present invention, in which teeth having a helix angle are formed on the input shaft 21 of the power rotated by the drive system of the vehicle on the engine side. A driven shaft 22 to which a helical gear 9a is fixed, and which is arranged parallel to the input shaft 21 and connected to the drive system of the vehicle on the drive wheel side.
A similar helical gear 9b is fixed to the helical gear 9b, and one of the helical gears 9a and 9b is engaged so as to be movable in the axial direction. On the other hand, an output shaft 23 which is a rotating shaft of the hydraulic pump 4 is disposed on an extension of the driven shaft 22, and the driven shaft 22 and the output shaft 23 are connected via the clutch 3. FIG. 4 shows a specific embodiment of the configuration shown in FIG. 2, in which the input shaft 21 is rotatably supported within the gear case 11 by ball bearings 12a and 12b. The output shaft 23 is a ball bearing 13
cylindrical portion 1 of the front wall of gear case 11 by a and 13b.
1a, the driven shaft 22 has its rear end supported by a ball bearing 14 in the gear case 11 so that its outer rail 14a can slide within the hole 11b of the gear case 11, and its front end coaxially within the output shaft 23. It is supported and allowed to move in the axial direction by an attached needle bearing 15.
The input shaft 21 and the driven shaft 22 are connected by helical gears 9a and 9b, and
A multi-plate clutch 3 is interposed between the front end of the driven shaft 22 and the rear end of the output shaft 23. In addition,
Here, it is assumed that the helical gear 9a twists in the left direction, and the helical gear 9b twists in the right direction.

次に作用を説明する。 Next, the action will be explained.

先ず駆動系1により入力軸21が右回転される
と、はすば歯車9a,9bを介して動力が被駆動
軸22へ伝達される。このとき、はすば歯車9
a,9bのねじれ角の作用により、歯車9aを図
の左方へ、また歯車9bを図の右方へ押圧するス
ラスト力が発生する。そのため、歯車9bおよび
被駆動軸22が右方へ若干移動して多板クラツチ
3に〓間が生じ、クラツチ3が遮断状態となり出
力軸23へは動力が伝達されない。
First, when the input shaft 21 is rotated clockwise by the drive system 1, power is transmitted to the driven shaft 22 via the helical gears 9a and 9b. At this time, helical gear 9
The action of the helix angles of a and 9b generates a thrust force that pushes gear 9a to the left in the figure and gear 9b to the right in the figure. Therefore, the gear 9b and the driven shaft 22 move slightly to the right, creating a gap in the multi-plate clutch 3, causing the clutch 3 to be in a disconnected state and no power being transmitted to the output shaft 23.

一方、入力軸21が左回転されると、動力(ト
ルク)伝達方向が逆になるのではすば歯車9a,
9b間に逆方向のスラスト力が発生して、被駆動
軸22が左方へ移動されてクラツチ3が接続され
る。すると、入力軸21の回転力は出力軸23に
伝達され、油圧ポンプ4が回転されることにな
る。さらにクラツチ3の締結力は、伝達力に比例
したスラスト力であるため、駆動輪側の車両の駆
動系への伝達力に応じて油圧ポンプ4の駆動力も
分配されるので車両の走行状態に対しクラツチの
断接は、応答良く行われる。
On the other hand, when the input shaft 21 is rotated to the left, the power (torque) transmission direction is reversed, so the helical gear 9a,
A thrust force in the opposite direction is generated between 9b and 9b, and the driven shaft 22 is moved to the left, and the clutch 3 is connected. Then, the rotational force of the input shaft 21 is transmitted to the output shaft 23, and the hydraulic pump 4 is rotated. Furthermore, since the tightening force of the clutch 3 is a thrust force that is proportional to the transmission force, the driving force of the hydraulic pump 4 is distributed according to the transmission force to the drive system of the vehicle on the drive wheel side, so it depends on the driving condition of the vehicle. The clutch engages and disengages with good response.

なお、上記実施例では前述したように軸方向に
移動する被駆動軸22をボールベアリング14と
ニードルベアリング15とによつて支承している
が、クラツチ3の断続のために必要な移動量は
0.2mm程度であるので、前述したような摺動可能
な支持によつても充分な耐久性が確保できる。
In the above embodiment, the driven shaft 22, which moves in the axial direction, is supported by the ball bearing 14 and the needle bearing 15, as described above, but the amount of movement required to engage and engage the clutch 3 is
Since it is approximately 0.2 mm, sufficient durability can be ensured even with the above-mentioned slidable support.

第3図は本考案の他の実施例の概略構成を示す
もので、入力軸21の延長上に出力軸23を配設
し、入力軸21と出力軸23との間にクラツチ3
を介装してある。このように構成しても入力軸2
1と被駆動軸22間のはすば歯車9a,9bのね
じれ角の作用によつて、入力軸21が右回転、左
回転に応じて左右に移動され、クラツチ3が断続
される。
FIG. 3 shows a schematic configuration of another embodiment of the present invention, in which an output shaft 23 is disposed on an extension of the input shaft 21, and a clutch 3 is connected between the input shaft 21 and the output shaft 23.
is interposed. Even with this configuration, the input shaft 2
Due to the action of the helical gears 9a and 9b between the input shaft 1 and the driven shaft 22, the input shaft 21 is moved left and right according to the clockwise and counterclockwise rotations, and the clutch 3 is engaged and engaged.

なお、第2図および第3図の実施例では、入力
軸21と被駆動軸22とを互いに平行に配設した
が、上記の作用により実質的に同様の効果が得ら
れれば、入力軸21と被駆動軸22とは厳密に平
行でなくてもよい。
In the embodiments shown in FIGS. 2 and 3, the input shaft 21 and the driven shaft 22 are arranged parallel to each other. and the driven shaft 22 may not be strictly parallel.

以上説明したごとくこの考案は、動力の入力軸
と被駆動軸とをはすば歯車を介して連結し、かつ
前記入力軸または前記被駆動軸の一方を、前記入
力軸の動力伝達方向に応じて前記はすば歯車間に
発生するスラスト力によつて軸方向に移動可能な
軸とすると共に、前記軸方向に移動可能な軸の延
長上に、前記スラスト力により接続、遮断するク
ラツチを介して出力軸を配設し、前記入力軸の回
転方向に応じて前記はすば歯車間に発生するスラ
スト力によつて前記入力軸または前記被駆動軸の
一方を移動せしめて前記クラツチを接続、遮断さ
せ、適宜前記出力軸に動力を伝達させるように構
成したので、電磁クラツチ等他の動力を用いるこ
となく駆動系の出力軸の逆回転時に運動エネルギ
回収装置の油圧ポンプ等の被駆動側への動力の伝
達を確実に防止できるようになり、これによつ
て、構成が簡単かつ安価となり、また、伝達する
トルクに応じた力をそのままクラツチの締結力と
して用いるのでクラツチの断続の応答性も良好と
なるとともに、クラツチの断続に他の動力を必要
としないためエネルギの節減を図ることができる
等の効果を奏する。
As explained above, this invention connects a power input shaft and a driven shaft via a helical gear, and connects either the input shaft or the driven shaft according to the power transmission direction of the input shaft. The shaft is movable in the axial direction by the thrust force generated between the helical gears, and a clutch is connected and disconnected by the thrust force on the extension of the shaft movable in the axial direction. disposing an output shaft, and connecting the clutch by moving one of the input shaft or the driven shaft by a thrust force generated between the helical gears depending on the rotational direction of the input shaft; Since the structure is configured to shut off the power and transmit power to the output shaft as appropriate, when the output shaft of the drive system rotates in reverse, the power is transmitted to the driven side of the hydraulic pump of the kinetic energy recovery device, etc., without using other power such as an electromagnetic clutch. This makes it possible to reliably prevent the transmission of power, which makes the configuration simple and inexpensive, and because the force corresponding to the transmitted torque is directly used as the tightening force of the clutch, the responsiveness of clutch engagement and engagement is also improved. In addition to this, the clutch does not require any other power to engage and engage the clutch, so energy can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係るクラツチ機構が適用され
る運動エネルギ回収装置の一例を示す油圧回路
図、第2図は本考案に係るクラツチ機構の一実施
例を示す概略構成図、第3図は他の実施例を示す
概略構成図、第4図は第2図に示す構成の具体的
な実施例を示す断面側面図である。 1……駆動系、2……駆動系の出力軸、3……
クラツチ、9a,9b……はすば歯車、21……
入力軸、22……被駆動軸、23……出力軸。
Fig. 1 is a hydraulic circuit diagram showing an example of a kinetic energy recovery device to which the clutch mechanism according to the present invention is applied, Fig. 2 is a schematic configuration diagram showing an example of the clutch mechanism according to the present invention, and Fig. 3 is a A schematic configuration diagram showing another embodiment, and FIG. 4 is a cross-sectional side view showing a specific embodiment of the configuration shown in FIG. 2. 1... Drive system, 2... Output shaft of drive system, 3...
Clutch, 9a, 9b... Helical gear, 21...
Input shaft, 22...driven shaft, 23...output shaft.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 動力の入力軸と被駆動軸とをはすば歯車を介し
て連結し、かつ前記入力軸または前記被駆動軸の
一方を、前記入力軸の動力伝達方向に応じて前記
はすば歯車間に発生するスラスト力によつて軸方
向に移動可能な軸とすると共に、前記軸方向に移
動可能な軸の延長上に、前記スラスト力により接
続、遮断するクラツチを介して出力軸を配設し、
前記軸方向に移動可能な軸の移動により前記クラ
ツチを接続、遮断させ、適宜出力軸に動力を伝達
させるように構成したことを特徴とするクラツチ
機構。
A power input shaft and a driven shaft are connected via a helical gear, and either the input shaft or the driven shaft is connected between the helical gears depending on the power transmission direction of the input shaft. A shaft is movable in the axial direction by the generated thrust force, and an output shaft is disposed on an extension of the shaft movable in the axial direction via a clutch that is connected and disconnected by the thrust force,
A clutch mechanism characterized in that the clutch is connected and disconnected by movement of the shaft movable in the axial direction, and power is appropriately transmitted to the output shaft.
JP10985281U 1981-07-24 1981-07-24 clutch mechanism Granted JPS5816433U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10985281U JPS5816433U (en) 1981-07-24 1981-07-24 clutch mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10985281U JPS5816433U (en) 1981-07-24 1981-07-24 clutch mechanism

Publications (2)

Publication Number Publication Date
JPS5816433U JPS5816433U (en) 1983-02-01
JPS6242175Y2 true JPS6242175Y2 (en) 1987-10-29

Family

ID=29904214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10985281U Granted JPS5816433U (en) 1981-07-24 1981-07-24 clutch mechanism

Country Status (1)

Country Link
JP (1) JPS5816433U (en)

Also Published As

Publication number Publication date
JPS5816433U (en) 1983-02-01

Similar Documents

Publication Publication Date Title
US4241804A (en) Servo steering system for motor vehicles
US4621702A (en) Four-wheel steering apparatus of a vehicle
US4895236A (en) Actuator for the frictional engaging device
US6802794B2 (en) Single actuator lost motion shift assembly
US20080264714A1 (en) Variable gear ratio steering apparatus
US4410071A (en) Vehicle transmission
JP2001513730A (en) Control method of auxiliary output drive unit in automatic transmission
JPH0154227B2 (en)
JPS6225566Y2 (en)
US5623851A (en) Transmission for electric vehicle
JPS6242175Y2 (en)
US6978860B2 (en) Method and system for electric power steering
JP2879018B2 (en) Drive unit for motor vehicle
JP2653965B2 (en) Electric power steering device
JPS6141670A (en) Motor-driven power steering gear
KR102551863B1 (en) Actuator for automatic driving system handling a driver
JP2537313Y2 (en) Rear wheel steering system for four-wheel steering vehicles
JP3144847B2 (en) Rotation transmission device
JPS6311016Y2 (en)
JPH0112984Y2 (en)
JP3049130B2 (en) Vehicle driving force transmission device
JPS6313102Y2 (en)
JPS63251367A (en) Electromotive power steering device
JPH0139228Y2 (en)
KR100440322B1 (en) Electric Power steering system having low speed restitution control function