JPS6241759A - Manufacture of ferrite base permanent magnet - Google Patents

Manufacture of ferrite base permanent magnet

Info

Publication number
JPS6241759A
JPS6241759A JP18137085A JP18137085A JPS6241759A JP S6241759 A JPS6241759 A JP S6241759A JP 18137085 A JP18137085 A JP 18137085A JP 18137085 A JP18137085 A JP 18137085A JP S6241759 A JPS6241759 A JP S6241759A
Authority
JP
Japan
Prior art keywords
magnetic
weight
ferrite
permanent magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18137085A
Other languages
Japanese (ja)
Inventor
俊之 清成
義幸 菊池
小野 晴平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP18137085A priority Critical patent/JPS6241759A/en
Publication of JPS6241759A publication Critical patent/JPS6241759A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気特性に優れるフェライト系永久磁石を効率
的に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for efficiently manufacturing a ferrite permanent magnet having excellent magnetic properties.

(従来の技術) 近年、フェライト系磁性粉末をポリアミド、ポリオレフ
ィン等の樹脂と混合し、磁場中で該磁性粉末を配向させ
ながら射出成形してなるフェライト系樹脂磁石が多量に
製造されている。
(Prior Art) In recent years, a large amount of ferrite resin magnets have been manufactured by mixing ferrite magnetic powder with a resin such as polyamide or polyolefin and injection molding the mixture while orienting the magnetic powder in a magnetic field.

射出成形法による磁石の製造法は、プレス成形法による
磁石の製造法に比べて、磁性粉末を磁場の方向に配向さ
せることが容易で、しかも複雑な形状であっても高寸法
精度の磁石が効率的に量産できるという利点がある。
Compared to the press molding method, the injection molding method makes it easier to orient the magnetic powder in the direction of the magnetic field, and it is also possible to produce magnets with high dimensional accuracy even with complex shapes. It has the advantage of being able to be mass-produced efficiently.

(発明が解決しようとする問題点) しかしながら、射出成形により得られたフェライト系樹
脂磁石の磁気特性は、磁石中のフェライト系磁性粉末の
含有率に左右され、通常の場合含有率が高いほど磁気特
性は向上する傾向にあるが、含有率が高(なり過ぎると
射出成形性が低下し、しかも磁性粉末が配向しにくくな
り磁気特性も低下するため、磁気特性を高めるにも限界
があり、プレス成形等からなる従来の焼結磁石に比較し
て磁気特性が劣るという欠点がある。
(Problem to be solved by the invention) However, the magnetic properties of ferrite resin magnets obtained by injection molding depend on the content of ferrite magnetic powder in the magnet, and in general, the higher the content, the more magnetic. Although the properties tend to improve, if the content is too high (too much), the injection moldability will decrease, and the magnetic powder will also become difficult to orient, resulting in a decrease in magnetic properties, so there is a limit to how well the magnetic properties can be improved. It has the disadvantage of inferior magnetic properties compared to conventional sintered magnets made by molding.

(問題点を解決するための手段) 本発明者等は、この様な状況に鑑み鋭意研究した結果、
フェライト系樹脂磁石を脱磁した後、焼結させ、次いで
着磁せしめると、従来のフェライト系樹脂磁石に比べて
格段に磁気特性の優れるフェライト系永久磁石が、比較
的複雑な形状であっても寸法精度がよく、しかも効率的
に量産できることを見出し、本発明を完成するに至った
(Means for solving the problem) As a result of intensive research in view of the above situation, the present inventors have found that
By demagnetizing a ferrite resin magnet, sintering it, and then magnetizing it, a ferrite permanent magnet with much better magnetic properties than conventional ferrite resin magnets can be created, even if it has a relatively complex shape. It was discovered that the dimensional accuracy is good and mass production can be carried out efficiently, leading to the completion of the present invention.

すなわち本発明は、フェライト系fn性粉末と有機バイ
ンダーとを含有してなる磁性材料を、磁界を印加しなが
ら射出成形し、次いで脱磁した後、脱バインダーを行い
、しかる後焼結させ、次いで着磁せしめることを特徴と
するフェライト系永久磁石の製造方法を擾供するもので
ある。
That is, in the present invention, a magnetic material containing a ferritic fn powder and an organic binder is injection molded while applying a magnetic field, then demagnetized, the binder removed, and then sintered. The present invention provides a method for manufacturing a ferrite permanent magnet, which is characterized by magnetization.

本発明で用いるフェライト系磁性粉末としては、公知の
フェライト系磁性粉末がいずれも使用でき、特に限定さ
れないが、例えば一般式MO’ 6FezOs (式中
、MはBa、 Sr、 Ca。
As the ferrite magnetic powder used in the present invention, any known ferrite magnetic powder can be used, and is not particularly limited. For example, it has the general formula MO'6FezOs (where M is Ba, Sr, or Ca.

Pbを表す)で示されるフェライト系磁性粉末が挙げら
れる。
Examples include ferrite-based magnetic powders represented by (representing Pb).

なかでも平均粒子径0.05〜5μmのもが好ましく、
特に0.2〜2μmのものが好ましい。また、磁気特性
に優れる点でJ−記一般式中のMがBa、 SrOもの
が好ましい。
Among them, those having an average particle diameter of 0.05 to 5 μm are preferable,
Particularly preferred is a thickness of 0.2 to 2 μm. Moreover, it is preferable that M in the general formula J- is Ba or SrO in terms of excellent magnetic properties.

本発明で用いる有機バインダーとしては、樹脂磁石用バ
インダーとし2て公知の熱可塑性樹脂、熱硬化性樹脂等
が挙げられ、特に限定されないが、例えばポリスチレン
、スチレン−アクリルニトリル共重合体、スチレンーア
クリルニ1リルーブタジエン共重合体等のスチレン系樹
脂;ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸
ビニル、塩化ビニル−酢酸ビニル共重合体、エチレン−
酢酸ビニル共重き体等のビニル系樹脂;塩化ビニリデン
等のビニリデン系樹脂;ポリメチル(メタ)アクリレー
ト、ポリエチルメタクリレート、ポリ−n−ブチル(メ
タ)アクリレート、メタクリレート−アクリレート共重
合体、エチレン−メチルアクリレート共重合体、エチレ
ン−エチルアクリレート共重合体等のポリアクリル酸系
樹脂;ポリエチレン、ポリプロピレン等のオレフィン系
樹脂;不飽和ポリエステル系樹脂、フlノール系樹脂、
アミノ系樹脂1、エポキシ系樹脂、ジアリルフタレート
系樹脂、熱硬化型アクリル樹脂、ウレタン系樹脂などが
あり、それぞれ単独あるいは二種以上混合して使用する
Examples of the organic binder used in the present invention include thermoplastic resins and thermosetting resins that are known as binders for resin magnets, and are not particularly limited, such as polystyrene, styrene-acrylic nitrile copolymer, styrene-acrylic Styrenic resins such as di-butadiene copolymer; polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, ethylene-
Vinyl resins such as vinyl acetate copolymer; vinylidene resins such as vinylidene chloride; polymethyl (meth)acrylate, polyethyl methacrylate, poly-n-butyl (meth)acrylate, methacrylate-acrylate copolymer, ethylene-methyl acrylate Polyacrylic acid resins such as copolymers and ethylene-ethyl acrylate copolymers; Olefin resins such as polyethylene and polypropylene; Unsaturated polyester resins, furanol resins,
There are amino resins 1, epoxy resins, diallyl phthalate resins, thermosetting acrylic resins, urethane resins, etc., and each can be used alone or in combination of two or more.

本発明で用いるフェライト系磁性粉末と有機バインダー
とからなる混合物には、本発明の目的を逸脱しない範囲
で分散性、滑性、可撓性、離型性、溶融粘度の調整、気
孔形性等の特性効果を有する各種の添加剤を含有するこ
とができる。
The mixture consisting of the ferrite magnetic powder and the organic binder used in the present invention has properties such as dispersibility, lubricity, flexibility, mold releasability, adjustment of melt viscosity, pore shape, etc. without departing from the purpose of the present invention. It can contain various additives that have the following characteristic effects.

かかる添加剤としては、例えばパラフィンワックス、マ
イクロクリスタリンワックス、流動パラフィン、ポリエ
チレンワックス、ボリブロビレンヮンクス、低分子量ポ
リスチレン等のワックス;ステアリン酸、ラウリン酸、
ミリスチン酸、ヒドロキシステアリン酸、硬化油等の脂
肪酸;脂肪酸アミド、脂肪酸ケトン、脂肪族アルコール
、多価アルコールの部分エステル;植物油、軽油等の油
脂類;グリセリン、エチレングリコール、イソプロピル
アルコール、セロソルブアセテート、パークロルエチレ
ン等の溶剤類;フタル酸エステル、アジピン酸エステル
、高級脂肪fd!エステル、リン酸エステル、ポリエス
テル系可塑剤等の可塑剤類;ジメチルポリシロキサンな
どが挙げられ、1種又は2種以上混合して用いられる。
Examples of such additives include waxes such as paraffin wax, microcrystalline wax, liquid paraffin, polyethylene wax, polypropylene wax, and low molecular weight polystyrene; stearic acid, lauric acid,
Fatty acids such as myristic acid, hydroxystearic acid, and hydrogenated oils; partial esters of fatty acid amides, fatty acid ketones, fatty alcohols, and polyhydric alcohols; fats and oils such as vegetable oils and light oils; glycerin, ethylene glycol, isopropyl alcohol, cellosolve acetate, and park Solvents such as chloroethylene; phthalate esters, adipate esters, higher fats fd! Plasticizers such as esters, phosphoric acid esters, and polyester plasticizers; dimethylpolysiloxane, etc., may be used singly or in combination of two or more.

これら1種又は2種以上の添加剤の使用割合は、有機バ
インダー100fi1部に対して通常0〜300重量部
、好ましくは2〜100重量部の範囲である。
The proportion of one or more of these additives used is generally 0 to 300 parts by weight, preferably 2 to 100 parts by weight, per 1 part of 100fi of the organic binder.

本発明で用いる磁性材料は、上記した如きフェライト系
磁性材料と有機バインダーと必要により添加される添加
剤とを混合して得られる。混合方法としては、公知の方
法がいずれも適用でき、特に限定されないが、なかでも
加熱式の真空押出機、真空混合攪拌機、ニーダ、ロール
、高速ミキサー、−軸又は多軸の混練機などにより混合
するのが好ましい。
The magnetic material used in the present invention is obtained by mixing the above-described ferrite-based magnetic material, an organic binder, and optionally added additives. As the mixing method, any known method can be applied, and there is no particular limitation, but among them, mixing can be performed using a heating vacuum extruder, vacuum mixing agitator, kneader, roll, high-speed mixer, or a -shaft or multi-shaft kneader. It is preferable to do so.

磁性材料中のフェライト系磁性粉末の含有割合は、通常
45〜70容曾%の範囲であり、なかでも磁性材料の成
形性および得られる磁石の磁気特性が優れ、脱バインダ
一時の変形、ふくれおよび焼結時の収縮不足等が防止で
き、寸法精度、磁気特性に特に優れた磁石が得られる点
で50〜65容量%が好ましい。
The content of ferrite-based magnetic powder in the magnetic material is usually in the range of 45 to 70% by volume, and the moldability of the magnetic material and the magnetic properties of the resulting magnet are excellent, and there is no temporary deformation, blistering, or swelling during binder removal. The content is preferably 50 to 65% by volume since insufficient shrinkage during sintering can be prevented and a magnet with particularly excellent dimensional accuracy and magnetic properties can be obtained.

この様にして得られた磁性材料は、その軟化点以上に加
熱して少なくとも1000エルステツド(Oe)以上、
好ましくは4000〜20000エルステツドの直流磁
界を印加しながら射出成形機、好ましくはインラインス
クリュ一式射出成形機により射出成形して、高寸法精度
、均一配合の成形品とし、次いで金型内又は金型外で直
流の反転磁界、直流パルスの減衰反復磁界をかけること
により脱磁を行う。
The magnetic material obtained in this way is heated above its softening point to at least 1000 oersted (Oe) or more.
The injection molding is performed using an injection molding machine, preferably an in-line screw set injection molding machine, while applying a DC magnetic field of preferably 4,000 to 20,000 oersteds to produce a molded product with high dimensional accuracy and uniform composition, and then molded in or outside the mold. Demagnetization is performed by applying a DC reversal magnetic field and a DC pulse attenuating repetitive magnetic field.

脱磁の有無は脱バインダ一工程では重要なポイントであ
り、成形品に残留磁気がある場合、脱バインダ一工程で
混合物の温度が軟化点以上になると配向している磁性粉
末粒子間に磁力による反発が生じ、成形品の変形、亀裂
、割れ等が生じ、満足な脱バインダー品、焼結晶が得ら
れない。
The presence or absence of demagnetization is an important point in the first step of demagnetizing the binder.If there is residual magnetism in the molded product, when the temperature of the mixture reaches the softening point or higher in the first step of removing the binder, magnetic force will be generated between the oriented magnetic powder particles. Repulsion occurs, causing deformation, cracking, cracking, etc. of the molded product, making it impossible to obtain a satisfactory binder-free product or fired crystal.

この現象を防止する為には、成形品の残留磁束密度Br
を100ガウス(Gauss )以下、好ましくは10
ガウス以下にしなければならない。
In order to prevent this phenomenon, the residual magnetic flux density Br of the molded product must be
100 Gauss or less, preferably 10
Must be less than Gauss.

上記の如く脱磁された成形品は、次いで脱バインダーし
た後、焼結される。脱バインダーは、成形品の厚さ、使
用する有機バインダーに適した昇温速度で行われる。一
般に常温から1〜b できる温度(300〜600’C)まで昇温することで
遂行される。この間有機物の熱分解の程度に合わせて昇
温速度を多段階に変化させることも可能である。
The molded article demagnetized as described above is then sintered after removing the binder. Binder removal is performed at a temperature increase rate appropriate for the thickness of the molded article and the organic binder used. Generally, this is carried out by raising the temperature from room temperature to a temperature of 1 to 600°C (300 to 600'C). During this time, it is also possible to change the temperature increase rate in multiple stages depending on the degree of thermal decomposition of the organic matter.

焼結は各磁性粉末に適した公知慣用の方法で通常115
0”0〜1300℃に0.5〜3時間焼結炉で保持する
ことで達せられる。
Sintering is usually done by a known and commonly used method suitable for each magnetic powder.
0'' is achieved by holding in a sintering furnace at 0-1300°C for 0.5-3 hours.

焼結された磁石は、次いで着磁されて本発明の永久磁石
が得られる0通常着磁は得られた各磁石の磁気特性に合
わせて任意の着磁方向にその磁石が持つ保磁力以上の磁
界を加えることで行われる。
The sintered magnet is then magnetized to obtain the permanent magnet of the present invention. Normally, magnetization is performed by applying a magnet with a coercive force greater than or equal to the coercive force of the magnet in any magnetization direction according to the magnetic properties of each obtained magnet. This is done by applying a magnetic field.

(発明の効果) 本発明の製造方法によれば、磁性材料を磁界を印加しな
がら射出成形により所望の形状に賦形するため、磁性粉
末を配合させることが容易で、しかも複雑な形状であっ
ても高寸法精度で量産でき、次いで脱磁、脱バインダー
、焼結した後着磁するため従来のフェライト系樹脂磁石
に比して格段に磁気特性の研れるフェライト系永久磁石
が容易に得られる。
(Effects of the Invention) According to the manufacturing method of the present invention, since the magnetic material is formed into a desired shape by injection molding while applying a magnetic field, it is easy to blend the magnetic powder, and moreover, it is possible to form a magnetic material into a desired shape by injection molding while applying a magnetic field. It can be mass-produced with high dimensional accuracy even when using magnets, and is then magnetized after demagnetization, debinding, and sintering, making it easy to obtain ferrite permanent magnets with significantly improved magnetic properties compared to conventional ferrite resin magnets. .

(実施例) 以下に実施例、比較例を示して本発明を具体的に説明す
る。
(Example) The present invention will be specifically described below with reference to Examples and Comparative Examples.

実施例1 平均粒径0,5μmのストロンチウムフェライト粉末8
8重量%、n−ブチルメタクリレート7.5重量%、ポ
リスチレン2重量%、ジオクチルフタレート】、3重量
%、ステアリン酸カルシウム1.2重量%を加圧型双腕
式ニーダ−で均一に加熱混練したあと粗粉砕し、ストロ
ンチウムフェライト粉末を61.5容量%含む均一な成
形用磁性材料とした。
Example 1 Strontium ferrite powder 8 with an average particle size of 0.5 μm
8% by weight, 7.5% by weight of n-butyl methacrylate, 2% by weight of polystyrene, 3% by weight of dioctyl phthalate, and 1.2% by weight of calcium stearate were uniformly heated and kneaded in a pressurized double-arm kneader, and then coarsely kneaded. This was ground to obtain a uniform magnetic material for molding containing 61.5% by volume of strontium ferrite powder.

これをインラインスクリュ一式の射出成形機を用い、7
000エルステツドの単一方向磁界内で成形温度160
℃、射出圧力600〜8001ur/cd、金型温度4
0℃の条件で成形して、直径25+n、高さ10mの円
柱状成形体を得た。
Using an injection molding machine with a set of inline screws,
Molding temperature 160 in a unidirectional magnetic field of 000 oersted
℃, injection pressure 600-8001ur/cd, mold temperature 4
It was molded at 0°C to obtain a cylindrical molded body with a diameter of 25+n and a height of 10 m.

この円柱状成形体を直流パルス減衰反復磁界により脱磁
(残留磁束密度2ガウス)した後、室温から80℃まで
を毎時40℃で昇温し、次いで80℃から500℃まで
を毎時5℃で昇温して有機質成分を除去せしめてから、
1150℃で焼結し、しかる後、円柱の上下方向に60
00エルステツドの磁界を印加して着磁し、外観良好な
磁気異方性のストロンチウムフェライト永久磁石を得た
After demagnetizing this cylindrical compact using a DC pulse-attenuating repetitive magnetic field (residual magnetic flux density 2 Gauss), the temperature was raised from room temperature to 80°C at a rate of 40°C per hour, and then from 80°C to 500°C at a rate of 5°C per hour. After increasing the temperature to remove organic components,
Sintered at 1150℃, then 60℃ in the vertical direction of the cylinder.
A strontium ferrite permanent magnet with good appearance and magnetic anisotropy was obtained by applying a magnetic field of 0.00 oersted to obtain a magnetically anisotropic strontium ferrite permanent magnet.

得られた磁石の磁気特性は残留磁束密度Br=3900
ガウス、保磁力Hc=2500エルステッド、最大エネ
ルギー積(BH)wax −3,4メガガウス・エルス
テッド(MG・Oe)と優れるものであった。
The magnetic properties of the obtained magnet are as follows: residual magnetic flux density Br=3900
Gauss, coercive force Hc = 2500 Oersteds, maximum energy product (BH) wax -3.4 mega Gauss Oersteds (MG Oe), which were excellent.

実施例2 平均粒径1゜0μmのストロンチウムフェライト粉末9
0重量%、アクリル共重合体(n−ブチルメタクリレー
ト/メチルメタクリレート/スチレン/ブチルアクリレ
ート=40/30/20/10の重量比からなり、重量
平均分子量20000 )5.5重量%、エチレン−エ
チルアクリレート(エチルアクリレート含123重量%
、重量平均分子M60000)2.0重量%、ジオクチ
ルアジペート1.5重量%、ステアリン酸1.0重量%
を二軸押出機を用い加熱混練し、ペレット形状としてス
トロンチウムフェライト粉末を64.5容量%含む均一
な成形用磁性材料とした。これをインラインスクリュ一
式の射出成形機を用い10000エルステツドの単一方
向磁界内で成形温度170℃、射出圧力800〜100
0に+r/−1金型温変35℃の条件で成形して、直径
25酊、高さ101mの円柱状成形体を得た。
Example 2 Strontium ferrite powder 9 with an average particle size of 1°0 μm
0% by weight, acrylic copolymer (consisting of a weight ratio of n-butyl methacrylate/methyl methacrylate/styrene/butyl acrylate = 40/30/20/10, weight average molecular weight 20000) 5.5% by weight, ethylene-ethyl acrylate (Contains ethyl acrylate: 123% by weight)
, weight average molecular weight M60000) 2.0% by weight, dioctyl adipate 1.5% by weight, stearic acid 1.0% by weight
The mixture was heated and kneaded using a twin-screw extruder to form pellets into a uniform moldable magnetic material containing 64.5% by volume of strontium ferrite powder. This is molded using an injection molding machine with a set of inline screws in a unidirectional magnetic field of 10,000 oersted at a molding temperature of 170°C and an injection pressure of 800 to 100°C.
A cylindrical molded body having a diameter of 25 m and a height of 101 m was obtained by molding under the conditions of +r/-1 mold temperature change of 35°C.

この円柱状成形体を直流パルス減衰反復磁界により脱磁
(残留磁束密度5ガウス)した後、室温から80℃まで
を毎時50℃で昇温し、80℃から400℃までを毎時
12℃で昇温しで有機物成分を除去せしめてから、12
00℃で焼結し、しかる後、円柱の上下方向に6000
エルステツドの磁界を印加して着磁し、外観良好な磁気
異方性のストロンチウムフェライト永久磁石を得た。
After demagnetizing this cylindrical compact using a DC pulse-attenuating repetitive magnetic field (residual magnetic flux density of 5 Gauss), the temperature was raised at a rate of 50°C per hour from room temperature to 80°C, and then at a rate of 12°C per hour from 80°C to 400°C. After heating to remove organic components,
Sintered at 00℃, then 6000℃ in the vertical direction of the cylinder.
A strontium ferrite permanent magnet with good external appearance and magnetic anisotropy was obtained by applying an Oersted magnetic field and magnetizing it.

得られた磁石の磁気特性は残留磁束密度Br−3800
ガウス、保磁力1(c=2700エルステッド、最大エ
ネルギー積(BH)max= 3.3メガガウス・エル
ステッドと優れろものであった。
The magnetic properties of the obtained magnet were as follows: residual magnetic flux density Br-3800
Gauss, coercive force 1 (c = 2700 oersteds, maximum energy product (BH) max = 3.3 megagauss oersteds, which were excellent.

実施例3 平均粒径1,4μmのバリウムフェライト粉末90重量
%、ポリエチレン4.0重量%、パラフィンワックス4
.0重量%、ジブチルフタレート1.0重量%、ステア
リン酸アミド1.0重量%を加圧型双腕式ニーダーで均
一に加熱混練したあと粗粉砕して、バリウムフェライト
粉末を60.5容量%含む均一な成形用磁性材料とした
。これをインラインスクリュ一式の射出成形機を用い8
000エルステツドの単一方向磁界内で成形温度140
℃、射出圧力600〜800kg/−1金型温度30℃
の条件で成形して、直径25mm、高さ100の円柱状
成形体を得た。
Example 3 90% by weight of barium ferrite powder with an average particle size of 1.4 μm, 4.0% by weight of polyethylene, 4% by weight of paraffin wax
.. 0% by weight of dibutyl phthalate, 1.0% by weight of dibutyl phthalate, and 1.0% by weight of stearic acid amide were uniformly heated and kneaded in a pressurized double-arm kneader, and then coarsely ground to obtain a homogeneous product containing 60.5% by volume of barium ferrite powder. This is a magnetic material for molding. This is made using an injection molding machine with a set of inline screws.
Molding temperature 140 in a unidirectional magnetic field of 000 oersted
℃, injection pressure 600-800kg/-1 mold temperature 30℃
A cylindrical molded body having a diameter of 25 mm and a height of 100 mm was obtained by molding under the following conditions.

この円柱状成形体を直流パルス減衰反復磁界により金型
内で脱磁(残留磁束密度15ガウス)した後、室温から
500℃まで毎時8℃で昇温し有81買成分を除去せし
めてから、1200℃で焼結し、しかる後、円柱の上下
方向に6000エルステツドの磁界を印加して着磁し、
外観良好な磁気異方性のバリウムフェライト永久磁石を
得た。
After demagnetizing this cylindrical molded body in a mold using a DC pulse-attenuated repetitive magnetic field (residual magnetic flux density: 15 Gauss), the temperature was raised from room temperature to 500°C at a rate of 8°C per hour to remove residual components. Sintered at 1200°C, then magnetized by applying a magnetic field of 6000 oersted in the vertical direction of the cylinder,
A barium ferrite permanent magnet with good appearance and magnetic anisotropy was obtained.

得られた磁石の磁気特性は残留磁束密度Br=3700
ガウス、保磁力tlc=2000エルステッド、最大エ
ネルギー積(Bll)max = 3.0メガガウス・
エルステッドと優れるものであった。
The magnetic properties of the obtained magnet are as follows: residual magnetic flux density Br=3700
Gauss, coercive force tlc = 2000 oersted, maximum energy product (Bll) max = 3.0 megagauss
It was as good as Ørsted.

実施例4 平均粒径0.8μmのストロンチウムフェライト85重
H%、不飽和ポリエステル(プロピレングリコール/イ
ソフタル酸/フマル酸−1,0/ 0.5 / 0.5
なるモル比の組成で常法により脱水縮合し、1.4−ナ
フトキノン500ppI11を添加した樹脂)12重量
%、パラフィンワックス1.8重量%、ステアリン酸鉛
1.0重量%、ジクミルパーオキサイド0.2重量%を
加圧型双腕式ニーダ−で均一に加熱混練したあと粗粉砕
し、ストロンチウムフェライト粉末を58.0容量%含
む均一な成形用磁性材料とした。これをインラインスク
リュ一式の射出成形機を用い、100000eの単一方
向磁界内で成形温度95℃、射出圧力800〜1000
kg/cffl、金型温度25℃の条件で成形して、直
径20m、高さ8Mの円柱状成形体を得た。
Example 4 Strontium ferrite 85% by weight with an average particle size of 0.8 μm, unsaturated polyester (propylene glycol/isophthalic acid/fumaric acid-1,0/0.5/0.5
A resin prepared by dehydration and condensation using a conventional method with a molar ratio of .2% by weight was uniformly heated and kneaded in a pressurized double-arm kneader and then coarsely ground to obtain a uniform magnetic material for molding containing 58.0% by volume of strontium ferrite powder. This was molded using an injection molding machine with a set of inline screws in a unidirectional magnetic field of 100,000 e at a molding temperature of 95°C and an injection pressure of 800 to 1,000.
kg/cffl and a mold temperature of 25°C to obtain a cylindrical molded body with a diameter of 20 m and a height of 8 m.

この円柱状成形体を直流パルス減衰反復磁界により脱磁
(残留磁束密度30ガウス)した後、室温から500℃
まで毎時10℃で昇温し有機質成分を除去せしめてから
、1200℃で焼結し、しかる後円柱の上下方向に60
00エルステツドの磁界を印加して着磁し、外観良好な
磁気異方性のストロンチウムフェライト永久磁石を得た
This cylindrical molded body was demagnetized by a DC pulse-attenuated repetitive magnetic field (residual magnetic flux density 30 Gauss), and then heated from room temperature to 500°C.
The temperature was raised at a rate of 10°C per hour to remove organic components, and then sintered at 1200°C.
A strontium ferrite permanent magnet with good appearance and magnetic anisotropy was obtained by applying a magnetic field of 0.00 oersted to obtain a magnetically anisotropic strontium ferrite permanent magnet.

得られた磁石の磁気特性は残留磁束密度Br=3900
ガウス、保磁力Hc=3000エルステッド、最大エネ
ルギー積(BH)max= 3.5メガガウス・エルス
テッドと優れるものであった。
The magnetic properties of the obtained magnet are as follows: residual magnetic flux density Br=3900
Gauss, coercive force Hc = 3000 Oersteds, and maximum energy product (BH) max = 3.5 mega Gauss Oersteds.

比較例1 平均粒径1.0μmのストロンチウムフェライト粉末8
8mt%、6−ナイロン11.5重量%、ステアリン酸
カルシウム0.5重量%を一軸押出機を用い加熱混練し
たあとベレット形状に賦形し、ストロンチウムフェライ
ト粉末を61.5容量%含む均一な成形用磁性材料とし
た。これをインラインスクリュ一式の射出成形機を用い
、10000エルステドの単一方向磁界内で成形温度2
90℃、射出圧力800〜1000kg/4、金型温度
100℃の条件で成形して、直径20u、高さ8鶴の円
柱状ストロンチウムフェライト永久樹脂磁石を得た。
Comparative Example 1 Strontium ferrite powder 8 with an average particle size of 1.0 μm
8mt%, 11.5% by weight of 6-nylon, and 0.5% by weight of calcium stearate were heated and kneaded using a single-screw extruder, and then shaped into a pellet shape, for uniform molding containing 61.5% by volume of strontium ferrite powder. Made of magnetic material. This was molded using an injection molding machine with a set of inline screws in a unidirectional magnetic field of 10,000 oersted at a molding temperature of 2.
Molding was carried out under the conditions of 90°C, injection pressure of 800 to 1000 kg/4, and mold temperature of 100°C to obtain a cylindrical strontium ferrite permanent resin magnet with a diameter of 20 u and a height of 8 cranes.

得られた磁石の磁気特性は残留磁束密度Br=2750
ガウス、保磁力Hc=2300エルステッド、最大エネ
ルギー積(BH)max−1,8メガガウス・エルステ
ッドであり、本発明の永久磁石に比較して磁気特性の低
いものであった。
The magnetic properties of the obtained magnet are as follows: residual magnetic flux density Br=2750
Gauss, coercive force Hc = 2300 Oersteds, maximum energy product (BH) max -1.8 megagauss Oersteds, and the magnetic properties were lower than that of the permanent magnet of the present invention.

比較例2 平均粒径1,2μmのバリウムフェライト粉末88重量
%、6−ナイロン11.5重量%、ステアリン酸カルシ
ウム0.5重量%を加圧型双腕式ニーグーで加熱混練し
たあと粗粉砕し、バリウムフェライト粉末を60.5容
量%含む均一な成形用磁性材料とした。これをインライ
ンスクリエ一式射出成形機を用い、10000エルステ
ツド(Oe)の単一方向磁界内で成形温度290℃、射
出圧力800〜1000 kg/−2金型部度100℃
の条件で成形して、直径25鶴、高さIonの円柱状バ
リウムフェライト永久樹脂磁石を得た。
Comparative Example 2 88% by weight of barium ferrite powder with an average particle size of 1.2 μm, 11.5% by weight of 6-nylon, and 0.5% by weight of calcium stearate were heated and kneaded in a pressurized double-arm Nigu, and then coarsely pulverized to form barium ferrite powder. A uniform magnetic material for molding containing 60.5% by volume of ferrite powder was prepared. This was molded using an in-line scrier injection molding machine in a unidirectional magnetic field of 10,000 oersted (Oe) at a molding temperature of 290°C and an injection pressure of 800 to 1,000 kg/-2 at a mold temperature of 100°C.
A cylindrical barium ferrite permanent resin magnet having a diameter of 25 mm and a height of 1 ion was obtained by molding under the following conditions.

得られた磁石の磁気特性は残留磁束密度Br−2100
ガウス、保磁力Hc=1450エルステッド、最大エネ
ルギー積CBH)max= 1.0メガガウス・エルス
テッドであり、本発明の永久磁石に比較して磁気特性の
低いものであった。
The magnetic properties of the obtained magnet were as follows: residual magnetic flux density Br-2100
Gauss, coercive force Hc = 1450 Oersteds, maximum energy product CBH) max = 1.0 megagauss Oersteds, and the magnetic properties were lower than that of the permanent magnet of the present invention.

Claims (1)

【特許請求の範囲】[Claims] フェライト系磁性粉末と有機バインダーとを含有してな
る磁性材料を、磁界を印加しながら射出成形し、次いで
脱磁した後、脱バインダーを行い、しかる後焼結させ、
次いで着磁せしめることを特徴とするフェライト系永久
磁石の製造方法。
A magnetic material containing a ferrite magnetic powder and an organic binder is injection molded while applying a magnetic field, then demagnetized, the binder is removed, and then sintered,
A method for manufacturing a ferrite permanent magnet, which comprises then magnetizing it.
JP18137085A 1985-08-19 1985-08-19 Manufacture of ferrite base permanent magnet Pending JPS6241759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18137085A JPS6241759A (en) 1985-08-19 1985-08-19 Manufacture of ferrite base permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18137085A JPS6241759A (en) 1985-08-19 1985-08-19 Manufacture of ferrite base permanent magnet

Publications (1)

Publication Number Publication Date
JPS6241759A true JPS6241759A (en) 1987-02-23

Family

ID=16099537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18137085A Pending JPS6241759A (en) 1985-08-19 1985-08-19 Manufacture of ferrite base permanent magnet

Country Status (1)

Country Link
JP (1) JPS6241759A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246272A (en) * 2008-03-31 2009-10-22 Tdk Corp Sintered magnet producing method
JP2010238977A (en) * 2009-03-31 2010-10-21 Tdk Corp Method and apparatus for manufacturing ferrite magnet
WO2011115128A1 (en) * 2010-03-19 2011-09-22 Tdk株式会社 Manufacturing method for ferrite sintered magnet, magnetic powder, kneaded product and molded article
WO2013005476A1 (en) * 2011-07-01 2013-01-10 Tdk株式会社 Composition for injection molding and method for producing same
US8765860B2 (en) 2011-09-26 2014-07-01 Tdk Corporation Injection molding composition and producing method thereof
JP2014122145A (en) * 2012-12-21 2014-07-03 Tdk Corp Method for manufacturing sintered body
CN111995384A (en) * 2020-07-28 2020-11-27 浙江工业大学 Preparation method of high-solid-content high-performance injection-molded nickel-zinc ferrite particles and sintered magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246272A (en) * 2008-03-31 2009-10-22 Tdk Corp Sintered magnet producing method
US8033314B2 (en) 2008-03-31 2011-10-11 Tdk Corporation Method for producing sintered magnet
JP2010238977A (en) * 2009-03-31 2010-10-21 Tdk Corp Method and apparatus for manufacturing ferrite magnet
WO2011115128A1 (en) * 2010-03-19 2011-09-22 Tdk株式会社 Manufacturing method for ferrite sintered magnet, magnetic powder, kneaded product and molded article
JP2011216857A (en) * 2010-03-19 2011-10-27 Tdk Corp Method for manufacturing ferrite sintered magnet, magnetic powder, kneaded product, and mold
WO2013005476A1 (en) * 2011-07-01 2013-01-10 Tdk株式会社 Composition for injection molding and method for producing same
US9305689B2 (en) 2011-07-01 2016-04-05 Tdk Corporation Injection molding composition and producing method thereof
US8765860B2 (en) 2011-09-26 2014-07-01 Tdk Corporation Injection molding composition and producing method thereof
JP2014122145A (en) * 2012-12-21 2014-07-03 Tdk Corp Method for manufacturing sintered body
CN111995384A (en) * 2020-07-28 2020-11-27 浙江工业大学 Preparation method of high-solid-content high-performance injection-molded nickel-zinc ferrite particles and sintered magnet

Similar Documents

Publication Publication Date Title
EP2983178B1 (en) Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
US8986568B2 (en) Sintered magnet and method for producing the sintered magnet
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
AU617620B2 (en) Composition for producing bonded magnet
JPS6241759A (en) Manufacture of ferrite base permanent magnet
US4063970A (en) Method of making permanent magnets
JP2002175907A (en) Strontium ferrite particles and powder for bonded magnet, and bonded magnet using the particles and power
US4702852A (en) Multipolarly magnetized magnet
US4321222A (en) Method of manufacturing plastic-bonded anisotropic permanent magnets
JP4379568B2 (en) Magnetoplumbite type ferrite particle powder for bonded magnet, method for producing the same, and bonded magnet using the magnetoplumbite type ferrite particle powder
JPS61220315A (en) Manufacture of magnetic molded body
JP4961068B2 (en) Strontium ferrite particle powder for bonded magnet and bonded magnet using the strontium ferrite particle powder
JP3220793B2 (en) Injection molded magnet using samarium-iron-nitrogen based anisotropic particles
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JP3208739B2 (en) Manufacturing method of ferrite particle powder material for bonded magnet
JP2006179617A (en) Permanent magnet and manufacturing method thereof
JP2585443B2 (en) Manufacturing method of resin-bonded permanent magnet molding
JP2904278B2 (en) Ferrite particle powder for bonded magnet
JPH04230005A (en) Anisotropical synthetic resin magnet
JP2001006913A (en) Rotor
JPH06295816A (en) Bond magnetic forming material
JPH05299254A (en) Rotary transformer
JPS6212105A (en) Magnet roll
JPH07106113A (en) Ferrite powder for bond magnet, and its manufacture