JPS6241653B2 - - Google Patents

Info

Publication number
JPS6241653B2
JPS6241653B2 JP56055019A JP5501981A JPS6241653B2 JP S6241653 B2 JPS6241653 B2 JP S6241653B2 JP 56055019 A JP56055019 A JP 56055019A JP 5501981 A JP5501981 A JP 5501981A JP S6241653 B2 JPS6241653 B2 JP S6241653B2
Authority
JP
Japan
Prior art keywords
orthotitanate
ethylene
autoclave
butene
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56055019A
Other languages
Japanese (ja)
Other versions
JPS57169430A (en
Inventor
Tadashi Asanuma
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56055019A priority Critical patent/JPS57169430A/en
Publication of JPS57169430A publication Critical patent/JPS57169430A/en
Publication of JPS6241653B2 publication Critical patent/JPS6241653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は改良されたエチレンの2量化方法に関
する。詳しくはオルソチタン酸エステルと有機ア
ルミニウム化合物からなる触媒を用いて、エチレ
ンを2量化するに際して予めオルソチタン酸エス
テルに特定の処理を行うことにより、オルソチタ
ン酸エステル当り極めて高活性でエチレンを2量
化する方法である。 ブテン−1は、ポリブテン−1の製造原料、或
はエチレンの低圧法重合によつてポリエチレンを
製造する際のコモノマーとして、さらには他のα
−オレフイン特にはプロピレンとの共重合の際の
モノマーとして重要なモノマーであり、特に近来
はポリオレフインの特殊化からブテン−1の消費
量が増大している。現在のところブテン−1の供
給源としては、ナフサからエチレンを製造する際
に副生する炭素数4の留分からブテン−1を分離
する方法が行われているが、炭素数4の留分から
ブテン−1を分離することは、各成分の沸点差が
少ないこともあり困難で、分離に特別の方法を用
いるためコストが高くなつている。 一方、エチレンを2量化することによつてブテ
ン−1を製造する方法についてはすでに多くの研
究がなされており、特公昭32−5067号において
は、触媒としてトリアルキルアルミニウムとオル
ソチタン酸エステルを用いてエチレンを2量化す
る方法が示されているが、オルソチタン酸エステ
ル当りのブテン−1の取れ高は極めて小さい。こ
のオルソチタン酸エステルとトリアルキルアルミ
ニウムからなる触媒の改良方法として、特公昭47
−1445号、特公昭49−2084号では特殊なオルソチ
タン酸エステルを用いる方法、又は特別な添加剤
を用いる方法が開示されており、又、特開昭52−
113903号ではオルソチタン酸エステル及び/又は
トリアルキルアルミニウムをエチレンを共存させ
た水素で処理することによりオルソチタン酸エス
テル当りのブテン−1の取れ高が大幅に向上する
とされているが、なお不充分である。 本発明者らは、種々の検討を行つた結果、基本
的にはオルソチタン酸エステルと有機アルミニウ
ム化合物からなる触媒を用いながら予めオルソチ
タン酸エステルに特定の処理をしておくことで極
めて大きい取れ高でブテン−1を選択的に製造す
る方法を見い出し本発明を完成した。 本発明の目的は、触媒を高活性とし、エチレン
を2量化してブテン−1を選択性よく製造する方
法を提供することにある。 本発明の方法で用いるオルソチタン酸エステル
とは一般式Ti(OR14(式中;R1は炭素数1〜10
の炭化水素残基)で表わされる化合物であり、具
体的には、チタン酸テトラメチル、チタン酸テト
ラエチル、チタン酸テトラプロピル、チタン酸テ
トラブチル、チタン酸テトラ(2−エチルヘキシ
ル)、チタン酸テトラプロペニル、チタン酸テト
ラブテニルなどが挙げられる。 有機アルミニウム化合物としては、アルミニウ
ムトリアルキル、アルミニウムジアルキルハイド
ライド、アルミニウムジアルキルハライドが挙げ
られるが、アルミニウムトリアルキル及びアルミ
ニウムジアルキルハイドライドが好ましく、さら
に好ましくはアルミニウムトリアルキルである。
アルミニウムトリアルキルとは一般式AlR2 3(式
中;R2は炭素数1〜10の脂肪族炭化水素残基)
で示される化合物であり、より具体的にはトリメ
チルアルミニウム、トリエチルアルミニウム、ト
リブチルアルミニウム、トリペンチルアルミニウ
ム、トリヘキシルアルミニウム、トリヘプチルア
ルミニウム、トリオクチルアルミニウム、トリノ
ニルアルミニウム、トリデシルアルミニウムが挙
げられる。 本発明の方法でブテン−1を製造する際はオル
ソチタン酸エステルに予め水素、窒素、酸素、ヘ
リウム、ネオン、又はアルゴンから選ばれた少な
くとも1種の気体を通気することであり、そうす
ることによつて触媒当り極めて高活性でエチレン
を2量化してブテン−1を選択的に製造できる。 上記少なくとも1種の気体を通す方法について
は特に制限はないが、一般にはオルソチタン酸エ
チルに直接上記ガスを吹き込めば良い。又、例え
ばオルソチタン酸メチルのように固体の場合には
ヘキサン、ヘプタンなどの不活性な炭化水素に希
釈して、上記ガスを吹き込むことでよい。又一般
にオルソチタン酸エステルは非常に粘調であるか
ら不活性炭化水素に希釈した後に、上記ガスを吹
き込むことが好ましい。 この通気操作はオルソチタン酸エステルを有機
アルミニウム化合物と接触させる前、又は接触後
のいづれでも行うことが可能であるが、有機アル
ミニウム化合物と接触処理を行う前に行う方が操
作としては簡単であり、特に酸素を用いる場合に
は、有機アルミニウム化合物との接触前に行う方
が有機アルミニウム化合物と酸素の反応をさける
ためにより好ましい。この通気する気体は、実質
的に水分を含まないものであることが好ましい。 通気する際の温度についても特に制限はない
が、10〜30℃の室温付近で行えば良い。吹き込み
の時間については、装置の形状によつて異なり特
定できないが通常1分〜30分程度もあれば良い。 オルソチタン酸エステルと有機アルミニウム化
合物の使用量比は、アルミニウムがチタン1モル
に対し1.5〜20モルとすることが必要であり、1.5
モル以下では活性が不充分であり、20以上では重
合体が多く副生するので好ましくない。特に好ま
しくは2〜10モルの範囲である。 本発明の2量化反応は一般には不活性溶媒中で
行なわれ、不活性溶媒としてはペンタン、ヘキサ
ン、ヘプタン、オクタン、シクロヘキサン、トル
エン等の脂肪族炭化水素、脂環族炭化水素、芳香
族炭化水素が用いられる。この反応で生成するブ
テン−1を用いることも可能である。 この反応温度についても特に制限はないが一般
には30〜100℃、特に40〜90℃が好ましく、30%
より低い温度では活性が低く又100℃以上では、
触媒、失活が速いこと及び反応圧力が高くなり好
ましくない。この反応はエチレン加圧下で行うこ
とにより活性が高くより好ましい。 以下に実施例を挙げ本発明をさらに詳しく説明
する。 実施例 1 充分に乾燥し、窒素で置換した電磁撹拌式の内
容積3のオートクレーブ中に窒素雰囲気下で、
n−ヘプタン1を装入したものを準備する。他
方、充分に乾燥し窒素で置換した200mlのフラス
コを準備する。このフラスコに1mmolのオルソ
チタン酸n−ブチル(和光純薬社製1級試薬)と
充分に窒素で脱気したn−ヘプタン50mlを装入
し、さらに内径1mmのガラス製毛細管を通して、
水分を500Volppm以下とした空気を1分間通し
た後空間部の空気を窒素で置換した。その後窒素
気流下で5mmolのトリエチルアルミニウムを装
入して充分に混合した後、前述のオートクレーブ
に上記混合液を装入した。次に真空ポンプでオー
トクレーブ中の窒素を排気した後エチレンを装入
し、2Kg/cm2−ゲージとした。オートクレーブを
温水で加熱して、内温を70℃とした後エチレンを
装入しながら圧力を9Kg/cm2−ゲージに保つて2
時間反応を続けた。2時間の反応の後オートクレ
ーブの内温を、冷水で冷却することにより40℃に
した後、系内ガスをドライアイス−メタノール系
で冷却したトラツプを通じて放出し、更に、オー
トクレーブの内温を60℃に昇温して比較的低沸点
部分をドライアイス−メタノールで冷却したトラ
ツプに捕集した。 上記操作をオートクレーブの内圧が0Kg/cm2
ゲージになるまで続けた後オートクレーブの内温
を30℃に降温した後、内容物を取り出した。トラ
ツプに捕集された部分及び、オートクレーブの内
容物をガスクロマトグラフイーで分析し、炭素数
4、炭素数6、の部分を分析し、さらにオートク
レーブの内容物を蒸留し、100℃で不揮発分とし
て、ポリマーを分離した。 上記を分析した結果、炭素数4、炭素数6、及
び不揮発分の総和はエチレンの装入量とほぼ対応
していた。これらの結果を表に示す。 比較例 1 n−ヘプタンにオルソチタン酸n−ブチルを溶
解した後空気に装入しない他は実施例1と同様に
エチレンを反応した結果は表に示す。オルソチタ
ン酸n−ブチル当りの活性が極めて低い。 比較例 2 トリエチルアルミニウムの使用量を0.5mmolと
した他は実施例1と同様に反応を行つたがエチレ
ンはまつたく吸収されなかつた。 比較例 3 トリエチルアルミニウムの使用量を25mmolと
した他は実施例1と同様にエチレンの二量化反応
を行つた。結果を表に示す。 実施例 2〜6 オルソチタン酸n−ブチルをn−ヘプタンに溶
解した後の処理を空気のかわりに、窒素(実施例
2)、水素(実施例3)、ヘリウム(実施例4)、
ネオン(実施例5)、アルゴン(実施例6)に変
えた他は実施例1と同様に、エチレンの反応を行
つた。結果を表に示す。 比較例 4 オルソチタン酸n−ブチルのn−ヘキサン溶液
を、空気に通気することなく、オートクレーブ中
に装入し、次いでエチレンと水素の混合ガス
(1:1)を入れ、2Kg/cm2ゲージ圧として10分
間処理した。 一方、5mmolのトリエチルアルミニウムを予
めエチレンと水素の混合ガス(1:1)で十分に
置換された100mlのn−ヘキサンを入れた丸底フ
ラスコに入れ、エチレンと水素の混合ガスの雰囲
気のまま10分間保持し、次いで上記オートクレー
ブに装入した。 以下、実施例1と同様にオートクレーブ中のエ
チレンと水素を真空ポンプで除去したのち、エチ
レンを入れて反応した。 チタン化合物1g当りのエチレンの反応量は実
施例1にくらべ約3分の1の1150gと少なかつ
た。結果を表に示す。 比較例 5 通気するガスを空気に代えて水素とエチレンの
混合ガス(1:9)とする他は実施例1と同様に
したところ、チタン化合物1g当りのエチレンの
反応量は1680gであり、比較例4よりは良好であ
るが、実施例1の約半分であり、また、ブテン−
1の選択率(ブテン−1/全反応量)が0.77と劣
つていた。結果を表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved process for dimerizing ethylene. Specifically, when dimerizing ethylene using a catalyst consisting of an orthotitanate and an organoaluminium compound, ethylene can be dimerized with extremely high activity per orthotitanate by subjecting the orthotitanate to a specific treatment in advance. This is the way to do it. Butene-1 can be used as a raw material for producing polybutene-1 or as a comonomer when producing polyethylene by low-pressure polymerization of ethylene, and also as a comonomer for producing polyethylene by low-pressure polymerization of ethylene.
-Olefins are important monomers, especially in copolymerization with propylene, and the consumption of butene-1 has recently increased due to the specialization of polyolefins. At present, the source of butene-1 is to separate butene-1 from a fraction with a carbon number of 4, which is a by-product when producing ethylene from naphtha. It is difficult to separate -1 partly because the difference in boiling point of each component is small, and the cost is high because a special method is used for separation. On the other hand, many studies have already been conducted on the method of producing butene-1 by dimerizing ethylene, and in Japanese Patent Publication No. 32-5067, trialkylaluminum and orthotitanate were used as catalysts. However, the yield of butene-1 per orthotitanate is extremely small. As a method for improving the catalyst consisting of orthotitanate and trialkylaluminium,
-1445 and Japanese Patent Publication No. 49-2084 disclose a method using a special orthotitanate ester or a method using a special additive;
No. 113903 states that the yield of butene-1 per orthotitanate ester can be greatly improved by treating orthotitanate ester and/or trialkyl aluminum with hydrogen in the presence of ethylene, but it is still insufficient. It is. As a result of various studies, the inventors of the present invention have found that an extremely large improvement can be achieved by subjecting the orthotitanate to a specific treatment in advance using a catalyst consisting basically of an orthotitanate and an organoaluminum compound. They discovered a method for selectively producing butene-1 at high temperatures and completed the present invention. An object of the present invention is to provide a method for producing butene-1 with high selectivity by dimerizing ethylene using a highly active catalyst. The orthotitanate ester used in the method of the present invention has the general formula Ti(OR 1 ) 4 (wherein; R 1 has a carbon number of 1 to 10
Hydrocarbon residues), specifically, tetramethyl titanate, tetraethyl titanate, tetrapropyl titanate, tetrabutyl titanate, tetra(2-ethylhexyl) titanate, tetrapropenyl titanate, Examples include tetrabutenyl titanate. Examples of the organoaluminum compound include aluminum trialkyl, aluminum dialkyl hydride, and aluminum dialkyl halide, with aluminum trialkyl and aluminum dialkyl hydride being preferred, and aluminum trialkyl being more preferred.
What is aluminum trialkyl? General formula AlR 2 3 (in the formula; R 2 is an aliphatic hydrocarbon residue having 1 to 10 carbon atoms)
More specific examples include trimethylaluminum, triethylaluminum, tributylaluminum, tripentylaluminum, trihexylaluminum, triheptylaluminum, trioctylaluminum, trinonylaluminum, and tridecylaluminum. When producing butene-1 by the method of the present invention, at least one gas selected from hydrogen, nitrogen, oxygen, helium, neon, or argon is passed through the orthotitanate ester in advance; It is possible to dimerize ethylene and selectively produce butene-1 with extremely high activity per catalyst. There are no particular restrictions on the method of passing the at least one gas, but generally the gas may be blown directly into ethyl orthotitanate. For example, in the case of a solid such as methyl orthotitanate, it may be diluted with an inert hydrocarbon such as hexane or heptane, and then the above gas may be blown into the solution. Furthermore, since orthotitanate esters are generally very viscous, it is preferable to dilute them with an inert hydrocarbon before blowing the above gas into them. This aeration operation can be performed either before or after contacting the orthotitanate with the organoaluminum compound, but it is easier to perform it before the contact treatment with the organoaluminum compound. In particular, when oxygen is used, it is more preferable to carry out the reaction before contacting the organoaluminum compound in order to avoid a reaction between the organoaluminum compound and oxygen. Preferably, the gas to be vented is substantially moisture-free. There is no particular restriction on the temperature at which ventilation is performed, but it may be performed at around room temperature of 10 to 30°C. The blowing time varies depending on the shape of the device and cannot be specified, but it usually takes about 1 minute to 30 minutes. The usage ratio of the orthotitanate ester and the organoaluminum compound needs to be 1.5 to 20 moles of aluminum to 1 mole of titanium, and 1.5
If it is less than 20 molar, the activity will be insufficient, and if it is more than 20, a large amount of polymer will be produced as a by-product, which is not preferable. Particularly preferred is a range of 2 to 10 moles. The dimerization reaction of the present invention is generally carried out in an inert solvent, and examples of the inert solvent include aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, and toluene. is used. It is also possible to use butene-1 produced in this reaction. There is no particular restriction on this reaction temperature, but it is generally 30 to 100°C, particularly preferably 40 to 90°C, and 30%
Activity is low at lower temperatures, and at temperatures above 100℃,
The catalyst is undesirable because it deactivates quickly and the reaction pressure becomes high. It is more preferable to carry out this reaction under pressure of ethylene because the activity is high. The present invention will be explained in more detail with reference to Examples below. Example 1 Under a nitrogen atmosphere in a sufficiently dried and nitrogen-substituted electromagnetic stirring autoclave with an internal volume of 3,
Prepare one charged with n-heptane. On the other hand, prepare a 200 ml flask that has been thoroughly dried and purged with nitrogen. This flask was charged with 1 mmol of n-butyl orthotitanate (first-class reagent manufactured by Wako Pure Chemical Industries, Ltd.) and 50 ml of n-heptane that had been thoroughly degassed with nitrogen, and then passed through a glass capillary tube with an inner diameter of 1 mm.
After passing air with a moisture content of 500 Volppm or less for 1 minute, the air in the space was replaced with nitrogen. Thereafter, 5 mmol of triethylaluminum was charged under a nitrogen stream and mixed thoroughly, and then the above-mentioned mixed solution was charged into the autoclave. Next, the nitrogen in the autoclave was evacuated using a vacuum pump, and then ethylene was charged to make the autoclave 2 kg/cm 2 -gauge. After heating the autoclave with hot water to bring the internal temperature to 70℃, the pressure was maintained at 9Kg/cm 2 -gauge while charging ethylene.
The reaction continued for hours. After 2 hours of reaction, the internal temperature of the autoclave was brought to 40°C by cooling with cold water, and then the gas inside the system was released through a trap cooled with a dry ice-methanol system, and the internal temperature of the autoclave was further lowered to 60°C. The temperature was raised to 100%, and the relatively low boiling point portion was collected in a trap cooled with dry ice-methanol. The above operation is performed until the internal pressure of the autoclave is 0Kg/cm 2 -
After continuing until the temperature reached the gauge, the internal temperature of the autoclave was lowered to 30°C, and the contents were taken out. The portion collected in the trap and the contents of the autoclave were analyzed by gas chromatography to analyze the portions with 4 carbon atoms and 6 carbon atoms, and the contents of the autoclave were distilled to remove the non-volatile components at 100℃. , the polymer was separated. As a result of the above analysis, the number of carbon atoms was 4, the number of carbon atoms was 6, and the total nonvolatile content almost corresponded to the amount of ethylene charged. These results are shown in the table. Comparative Example 1 Ethylene was reacted in the same manner as in Example 1 except that n-heptane was not charged with air after dissolving n-butyl orthotitanate. The results are shown in the table. The activity per n-butyl orthotitanate is extremely low. Comparative Example 2 The reaction was carried out in the same manner as in Example 1 except that the amount of triethylaluminum used was 0.5 mmol, but ethylene was not completely absorbed. Comparative Example 3 Ethylene dimerization reaction was carried out in the same manner as in Example 1 except that the amount of triethylaluminum used was 25 mmol. The results are shown in the table. Examples 2 to 6 After dissolving n-butyl orthotitanate in n-heptane, instead of air, nitrogen (Example 2), hydrogen (Example 3), helium (Example 4),
Ethylene reaction was carried out in the same manner as in Example 1 except that neon (Example 5) and argon (Example 6) were used. The results are shown in the table. Comparative Example 4 An n-hexane solution of n-butyl orthotitanate was charged into an autoclave without venting to air, and then a mixed gas of ethylene and hydrogen (1:1) was added, and the autoclave was heated to 2 kg/cm 2 gauge. The pressure was applied for 10 minutes. On the other hand, 5 mmol of triethylaluminum was placed in a round-bottomed flask containing 100 ml of n-hexane, which had been sufficiently replaced with a mixed gas of ethylene and hydrogen (1:1), and the atmosphere remained in the mixed gas of ethylene and hydrogen for 10 The mixture was held for a minute and then charged into the autoclave. Thereafter, as in Example 1, ethylene and hydrogen in the autoclave were removed using a vacuum pump, and then ethylene was added and reacted. The amount of ethylene reacted per gram of titanium compound was as small as 1150 g, about one-third of that in Example 1. The results are shown in the table. Comparative Example 5 The same procedure as in Example 1 was carried out except that a mixed gas of hydrogen and ethylene (1:9) was used instead of air as the gas to be vented, and the amount of ethylene reacted per 1 g of titanium compound was 1680 g. Although it is better than Example 4, it is about half of Example 1, and the butene-
The selectivity of 1 (butene-1/total reaction amount) was 0.77, which was poor. The results are shown in the table. 【table】

Claims (1)

【特許請求の範囲】 1 エチレンを一般式Ti(OR14(式中;R1は炭
素数1〜10の炭化水素残基)で表されるオルソチ
タン酸エステルと有機アルミニウム化合物からな
る触媒を用いて2量化する方法に於いて、 (1) オルソチタン酸エステルが、水素、窒素、酸
素、ヘリウム、ネオンまたはアルゴンから選ば
れた少なくとも1種の気体を通気してあり、 (2) 有機アルミニウム化合物の使用量がオルソチ
タン酸エステル1モルに対し1.5〜20モルであ
る ことを特徴とするエチレンの2量化方法。 2 有機アルミニウム化合物が一般式Al(R23
(式中;R2は炭素数1〜10の脂肪族炭化水素残
基)で表わされるアルミニウムトリアルキルであ
る特許請求の範囲第1項記載のエチレンの2量化
方法。
[Claims] 1. A catalyst consisting of an orthotitanate ester represented by the general formula Ti(OR 1 ) 4 (wherein R 1 is a hydrocarbon residue having 1 to 10 carbon atoms) and an organoaluminum compound for ethylene. In the dimerization method using (1) orthotitanate, at least one gas selected from hydrogen, nitrogen, oxygen, helium, neon, or argon is passed through the orthotitanate, and (2) an organic A method for dimerizing ethylene, characterized in that the amount of aluminum compound used is 1.5 to 20 mol per 1 mol of orthotitanate. 2 The organoaluminum compound has the general formula Al(R 2 ) 3
The method for dimerizing ethylene according to claim 1, wherein R2 is an aluminum trialkyl represented by the following formula: (wherein R2 is an aliphatic hydrocarbon residue having 1 to 10 carbon atoms).
JP56055019A 1981-04-14 1981-04-14 Dimerization of ethylene Granted JPS57169430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56055019A JPS57169430A (en) 1981-04-14 1981-04-14 Dimerization of ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56055019A JPS57169430A (en) 1981-04-14 1981-04-14 Dimerization of ethylene

Publications (2)

Publication Number Publication Date
JPS57169430A JPS57169430A (en) 1982-10-19
JPS6241653B2 true JPS6241653B2 (en) 1987-09-03

Family

ID=12986948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56055019A Granted JPS57169430A (en) 1981-04-14 1981-04-14 Dimerization of ethylene

Country Status (1)

Country Link
JP (1) JPS57169430A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3360376D1 (en) * 1982-04-06 1985-08-14 Exxon Research Engineering Co Butene dimerization method
FR2552079B1 (en) * 1983-09-20 1986-10-03 Inst Francais Du Petrole IMPROVED PROCESS FOR THE SYNTHESIS OF BUTENE-1 BY DIMERIZATION OF ETHYLENE
US4861846A (en) * 1985-03-22 1989-08-29 Union Carbidae Corporation Process for simultaneously dimerizing ethylene and copolymerizing ethylene with the dimerized product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113903A (en) * 1976-02-23 1977-09-24 Gurozunensukii Fuiriaru Okutei Method of dimerization of alphaaolefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113903A (en) * 1976-02-23 1977-09-24 Gurozunensukii Fuiriaru Okutei Method of dimerization of alphaaolefin

Also Published As

Publication number Publication date
JPS57169430A (en) 1982-10-19

Similar Documents

Publication Publication Date Title
JP2004527635A (en) Improved olefin polymerization catalyst composition and method of manufacture
US6342568B1 (en) Metallocene compound, and process for preparing polyolefin by using it
JPH01126307A (en) Solid catalyst component for polymerization catalyst of alpha olefin
JPH09100312A (en) Polyolefin catalyst made from metal alkoxide or dialkyldimetal and its production and use
JPS6029722B2 (en) Method for producing catalyst component for polymerization of ole fillet
JP2004527636A (en) Olefin polymerization catalyst composition and method for producing the same
KR100334040B1 (en) For the purification of alpha-olefins for polymerization and for the production of poly-alpha-olefins
KR100191384B1 (en) Catalyst and process for the polymerization of alpha-olefins containing trifluoropropyl substituted silane compounds
JPS6241653B2 (en)
JPS60359B2 (en) Method for manufacturing titanium composite
JP3421086B2 (en) Olefin polymerization method
JP2609278B2 (en) Transition metal composition
JP2587256B2 (en) Solid catalyst components and catalysts for olefin polymerization
JPH0623215B2 (en) Method for producing olefin polymerization catalyst component
US3280092A (en) Production of polypropylene
JPS6250481B2 (en)
JP2587243B2 (en) Catalyst components and catalysts for olefins polymerization
JP2587260B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPH0532404B2 (en)
JPH0118924B2 (en)
JP2660967B2 (en) Method for producing olefin polymer
JP2614069B2 (en) Solid catalyst components and catalysts for olefins polymerization
JPS5827704A (en) Preparation of polyolefin
JP2652548B2 (en) Solid catalyst components and catalysts for olefins polymerization
JP2587257B2 (en) Solid catalyst components and catalysts for olefins polymerization