JPS6241452A - Speed shift timing valve in automatic speed change gear - Google Patents

Speed shift timing valve in automatic speed change gear

Info

Publication number
JPS6241452A
JPS6241452A JP17990385A JP17990385A JPS6241452A JP S6241452 A JPS6241452 A JP S6241452A JP 17990385 A JP17990385 A JP 17990385A JP 17990385 A JP17990385 A JP 17990385A JP S6241452 A JPS6241452 A JP S6241452A
Authority
JP
Japan
Prior art keywords
speed
valve
timing valve
shift
shift timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17990385A
Other languages
Japanese (ja)
Inventor
Kazuhiko Sugano
一彦 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP17990385A priority Critical patent/JPS6241452A/en
Publication of JPS6241452A publication Critical patent/JPS6241452A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the accuracy of control, by forming a taper section in a spool in a speed shift timing valve so that the opening degree of the valve is continuously changed when the valve is opened and closed. CONSTITUTION:A taper section 10 is formed between lands of a spool 1a in a speed shift timing valve 1, and has a shape such that it is tapered toward an annular groove 1e to be connected with a circuit 5 from an annular groove 1d to be connected with a circuit 3. Accordingly, it is possible to continuously change the opening degree of the valve over the transient zone during opening or closing the valve, thereby it is possible to enhance the control accuracy of the speed shift timing valve.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は自動変速機の変速タイミング弁に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a shift timing valve for an automatic transmission.

(従来の技術) 自動変速機は、各種摩擦要素に対する油圧の給排を切換
えることにより動力伝達経路を切換えて変速するよう構
成するのが普通である。ところで、成る種の変速(通常
第8速から第2速へのダウン・シフト変速)は、油圧を
排除されて当該変速を司どる摩擦要素の油圧抜は速度を
車速毎に適切に制御し、エンジン回転数が変速後のエン
ジン回転数(車速及び変速後のギヤ比で決まる)に一致
したところで当該油圧の抜け(変速)が完了するように
しないと、大きな変速ショックを発生する。
(Prior Art) Automatic transmissions are generally configured to change speed by switching the power transmission path by switching the supply and discharge of hydraulic pressure to various friction elements. By the way, in some types of gear shifting (usually downshifting from 8th gear to 2nd gear), hydraulic pressure is removed from the friction elements that control the gear shifting, and the speed is appropriately controlled for each vehicle speed. If the oil pressure is not released (shift) when the engine speed matches the engine speed after the shift (determined by the vehicle speed and the gear ratio after the shift), a large shift shock will occur.

そこで通常は例えば日量自動車(株)発行1’−RNa
FOIA型オートマチックトランスアクスル整備要領書
J (A261003 )に記載の如く、スプール型変
速タイミング弁(3−2タイミング弁)の開閉により、
上記油圧の抜は速度を制御することが行なわれてきた。
Therefore, usually, for example, 1'-RNa issued by Nichiwa Jidosha Co., Ltd.
As described in FOIA type automatic transaxle maintenance manual J (A261003), by opening and closing the spool type shift timing valve (3-2 timing valve),
The hydraulic pressure has been removed by controlling the speed.

この変速タイミング弁は第6図に1で示すように、スプ
ール1aをばね1bに抗して室1cへのガバナ圧PG(
車速の上昇につれ高くなる)に応動させる構成にする。
As shown at 1 in FIG. 6, this shift timing valve operates by moving the spool 1a against the spring 1b to apply the governor pressure PG (
(increases as the vehicle speed increases).

そして、弁1はガバナ圧P。And valve 1 has governor pressure P.

が低い低車速時図中右半部に示す開状態となって、又、
弁1はガバナ圧PGが高い高車速時図中左半部・に示す
閉状態となり、回路3,5間を遮断して回路8を弁l及
びオリフィス4に対し並列な回路6及びオリフィス7に
よってのみ回路5に通じさせる。なお、オリフィス7に
対し並列にチェックバルブ8を設け、これを回路8から
回路5への油流を阻止する向きに配置する。
is in the open state shown in the right half of the diagram at low vehicle speeds, and
When the governor pressure PG is high and the vehicle speed is high, valve 1 is in the closed state shown in the left half of the diagram, and circuits 3 and 5 are cut off, and circuit 8 is connected to valve l and orifice 4 by circuit 6 and orifice 7, which are parallel to each other. only to the circuit 5. Note that a check valve 8 is provided in parallel with the orifice 7, and is arranged in a direction to block oil flow from the circuit 8 to the circuit 5.

9は変速弁で、ばね9aにより左半部図示のダウンシフ
ト位置に弾支されたスプール9bを具え、このスプール
を変速圧Psの発生時右半部図示のアップシフト位置に
切換えられる。変速圧P6の発生で変速弁9がアップシ
フト位置にある間、回路5にライン圧PLが供給され、
このライン圧はチェックバルブ8、回路8を経て変速用
摩擦要素2に達し、第3速を選択させることができる。
Reference numeral 9 designates a speed change valve, which has a spool 9b elastically supported by a spring 9a in a downshift position shown in the left half, and this spool is switched to an upshift position shown in the right half when a speed change pressure Ps is generated. While the shift valve 9 is in the upshift position due to the generation of the shift pressure P6, the line pressure PL is supplied to the circuit 5,
This line pressure reaches the shift friction element 2 via the check valve 8 and the circuit 8, allowing the third speed to be selected.

変速圧PSが消失して、変速弁9がダウンシフト位置に
なると、回路5はドレンボー)90に通じ、変速用摩擦
要素2の油圧は以下の如くに抜は速度を制御されながら
排除される。即ち、ガバナ圧PGが低い低車速時、変速
タイミング弁1が図中右半部位置にあって、要素2の油
圧はオリフィス7(開度B)だけでなくオリフィス4(
開度a)を経ても排除され、その抜は速度が速い。一方
ガバナ圧PGが高い高車速時、変速タイミング弁1が図
中左半部位置にあって、要素2の油圧はオリフィス7を
経てのみ排除され、その抜は速度が遅い。
When the speed change pressure PS disappears and the speed change valve 9 is in the downshift position, the circuit 5 is connected to the Drainbow 90, and the oil pressure of the speed change friction element 2 is removed while the speed is controlled as follows. That is, at low vehicle speeds where the governor pressure PG is low, the shift timing valve 1 is in the right half position in the figure, and the hydraulic pressure of the element 2 is applied not only to the orifice 7 (opening degree B) but also to the orifice 4 (
It is removed even after opening degree a), and the removal speed is fast. On the other hand, when the governor pressure PG is high and the vehicle speed is high, the shift timing valve 1 is in the left half position in the figure, and the hydraulic pressure of the element 2 is removed only through the orifice 7, and the removal speed is slow.

(発明が解決しようとする問題点) しかしかかる変速タイミング弁1は、要素2からの油圧
の抜は絞り開度をa+B (低車速時)かBc高車速時
)かの2段階に切換える構成のため、以下の間頃を生じ
ていた。即ち、ガバナ圧PGが車速に対し第3図中Xの
如くに変化するものとすると、上記抜は絞り開度は同図
中yで示すようにPG=PG0に対応した車速70未満
の低車速でa+Bとなり、車速70以上の高車速でBと
なる。
(Problem to be Solved by the Invention) However, the shift timing valve 1 has a configuration in which the oil pressure is removed from the element 2 by switching the throttle opening in two stages: a+B (at low vehicle speed) and Bc (at high vehicle speed). As a result, the following situation occurred. That is, assuming that the governor pressure PG changes with respect to the vehicle speed as shown by X in Fig. 3, the above-mentioned throttle opening is determined at low vehicle speeds below 70, which corresponds to PG=PG0, as shown by y in the figure. At a high vehicle speed of 70 or higher, the formula becomes a+B.

しかして抜は絞り開度は、PG=PG2に対応した車速
72未満における好適値及びPG ” PG8に対応し
た車速78以上における好適値が夫々固定であるものの
、車速72〜78間における好適値が一定でなく、■、
からv3への車速上昇につれ、徐々に低下する。従って
、車速72未満において抜け・絞り開度a+Bが好適値
であり得て、摩擦要素2の油圧を第5図中αの如く狙い
通りの速度で排除することができ、エンジン回転数が同
図中βの如く変速後のエンジン回転数(車速及び変速後
のギヤ比で決まる)に丁度達した時に上記の抜け(3→
2ダウンシフト変速)を終了させて変速ショックの発生
を防止できる。又、車速73以上においても扱は絞り開
度Bが好適値であり得て、摩擦要素2の油圧を第5図中
αlの如く狙い遡りの速度で排除することができ、エン
ジン回転数が同図中βIの如く変速後のエンジン回転数
に丁度達した時に上記の扱けを終了させて変速ショック
の発生を防止できる。
However, for the opening degree of the throttle, although the preferred value at vehicle speeds below 72 corresponding to PG = PG2 and the preferred value at vehicle speeds of 78 or higher corresponding to PG8 are fixed, the preferred value at vehicle speeds between 72 and 78 is fixed. Not constant, ■,
It gradually decreases as the vehicle speed increases from V3 to V3. Therefore, when the vehicle speed is less than 72, the release/throttle opening degree a+B can be a suitable value, and the oil pressure of the friction element 2 can be removed at the targeted speed as shown by α in FIG. When the engine speed after the shift (determined by the vehicle speed and the gear ratio after the shift) is exactly reached as shown in the middle β, the above omission (3→
2 downshift) can be completed to prevent the occurrence of shift shock. In addition, even when the vehicle speed is 73 or higher, the throttle opening degree B can be a suitable value, and the hydraulic pressure of the friction element 2 can be removed at the desired reverse speed as indicated by αl in Fig. 5, and the engine speed is the same. As shown by βI in the figure, the above-mentioned handling can be completed when the engine speed has just reached the post-shift engine speed, thereby preventing the occurrence of shift shock.

しかるに車速70〜72間においては抜は絞り開度a十
Bが大き過ぎ、摩擦要素2の油圧が第5図中αで示すと
同じ速度で抜けてしまい、その抜は速度が好適速度より
速過ぎ、エンジン回転数が変速後のエンジン回転数に達
する前に変速を終了する結果、エンジン回転数の第5図
中γで示す如き急変を生じ、変速ショックが大きくなる
のを免れ・ない。又、車速70〜78間においては抜は
絞り開度Bが小さ過ぎ摩擦要素2の油圧が第5図中αI
で示すと同じ速度で抜けてしまい、その抜は速度が好適
速度より遅過ぎ、エンジンが第5図中δの如く空吹けし
、変速終了でエンジン回転数が変速後の回転数に落着く
時、エンジンの回転数差に基づく空吹はショックが生ず
るのを免れない。
However, at vehicle speeds between 70 and 72, the aperture opening a and B are too large, and the hydraulic pressure of the friction element 2 is released at the same speed as shown by α in FIG. If the engine speed is too high, the speed change ends before the engine speed reaches the post-shift engine speed, resulting in a sudden change in the engine speed as shown by γ in FIG. 5, which inevitably increases the speed change shock. Also, when the vehicle speed is between 70 and 78, the throttle opening B is too small and the oil pressure of the friction element 2 is αI in Fig. 5.
As shown in , the engine will come out at the same speed, and the engine will come out at a speed that is too slow than the preferred speed, and the engine will start racing as shown by δ in Figure 5. When the engine speed settles to the speed after the shift, at the end of the shift. , racing due to the difference in engine speed inevitably causes a shock.

(問題点を解決するための手段) 本発明はこれらの間穎を解決するため、変速タイミング
弁の開閉過渡域において抜は絞り開度を連続的に変化さ
せ得るようにしたもので、油圧を給排されて変速を司ど
る摩擦要素を具え、該摩擦要素からの油圧の抜は速度を
スプール型変速タイミング弁の開閉により制御するよう
にした自動変速機において、 前記変速タイミング弁のスプールに、抜弁の開閉が連続
的開度変化しつつ行なわれるようテーパ部を設けたこと
を特徴とする。
(Means for Solving the Problems) In order to solve these problems, the present invention makes it possible to continuously change the throttle opening in the opening/closing transition region of the shift timing valve, thereby reducing the hydraulic pressure. In an automatic transmission comprising a friction element that is supplied and discharged to control gear shifting, and the speed of removing hydraulic pressure from the friction element is controlled by opening and closing a spool-type shift timing valve, the spool of the shift timing valve is equipped with: The present invention is characterized in that a tapered portion is provided so that the opening and closing of the vent valve is performed while continuously changing the degree of opening.

C作用) 摩擦要素は油圧を給排されて変速を行なわせる、ことが
できる。摩擦要素の油圧を給排して行なう変速に際し、
該油圧の給排速度を変速タイミング弁の開閉により制御
し、エンジン回転数が丁度変速後のエンジン回転数に一
致したところで、上記油圧の給排、つまり対応する変速
を完了させることができ、変速ショックを緩和し得る0 ところで、変速タイミング弁のスプールに設けたテーパ
部は、変速タイミング弁の開閉を連続的に開度変化さ°
せつつ行なわせ、これがため変速タイミング弁の開閉過
渡域において上記油圧の給排速度を連続的に変化させる
ことができる。従って、当該過渡域においても上記油圧
の抜は速度を好適速度になし得て、エンジン回転数が変
速後の回転数に一致したところで、上記油圧の給排、つ
まり対応する変速を完了させることができ、ショックの
発生を防止し得る。
C) The friction element can be supplied with and discharged from hydraulic pressure to change gears. When shifting by supplying and discharging hydraulic pressure from friction elements,
The supply and discharge speed of the hydraulic pressure is controlled by opening and closing the shift timing valve, and when the engine speed exactly matches the engine speed after the shift, the supply and discharge of the hydraulic pressure, that is, the corresponding shift can be completed, and the shift is completed. By the way, the tapered part provided on the spool of the shift timing valve allows the opening and closing of the shift timing valve to be continuously changed.
Therefore, the supply and discharge speed of the hydraulic pressure can be continuously changed in the opening/closing transition region of the shift timing valve. Therefore, even in the transient region, the oil pressure can be removed to a suitable speed, and when the engine speed matches the rotation speed after the gear shift, the oil pressure can be supplied and discharged, that is, the corresponding gear shift can be completed. This can prevent the occurrence of shock.

(実施例) 以下、図示の実施例に基づき本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail based on illustrated embodiments.

第1図は本発明一実施例の態様で、図中第6図における
と同様の部分を同一符号にて示す。本例では、回路3か
ら第6図中4で示すオリフィスへを除去し、その代りに
スプール1aのランド間にテーパ部10を設ける。テー
パ部10は回路3を接続すべき変速タイミング弁1の環
状条溝1dから回路5を接続すべき変速タイミング弁1
の環状条1711eに向は先細となる形状とする。かく
て、テーパ部10は条溝1eに近い条溝1dの開口隅角
部1fとの間に、第2図中Aで示す開度が変化する可変
オリフィスを形成し、この可変オリフィスは、スプール
1aが第1図中左半部図示の限界位置の時開度Aを最大
Amaxにされ、スプール1aが第1図中左半部図示の
限界位置に向はストロークするにつれ開度Aを漸減され
、遂にOにされる。
FIG. 1 shows an embodiment of the present invention, in which the same parts as in FIG. 6 are designated by the same reference numerals. In this example, the circuit 3 to the orifice shown by 4 in FIG. 6 is removed, and in its place a tapered portion 10 is provided between the lands of the spool 1a. The tapered portion 10 extends from the annular groove 1d of the shift timing valve 1 to which the circuit 3 is to be connected to the shift timing valve 1 to which the circuit 5 is to be connected.
The annular strip 1711e has a tapered shape. In this way, the tapered part 10 forms a variable orifice whose opening degree changes as shown by A in FIG. 2 between the opening corner part 1f of the groove 1d near the groove 1e, and this variable orifice When the spool 1a is at the limit position shown in the left half of FIG. 1, the opening degree A is set to the maximum Amax, and as the spool 1a strokes toward the limit position shown in the left half of FIG. , finally made O.

なお、スプール1aは第3図中車速v2に対応するガバ
ナ圧P。3以上で第1図中有半部位置から図中上昇し、
車速v8に対応するガバナ圧P。8以上で条溝1dを閉
止(可変オリフィス開度A=0)するようばね1bのば
ね力及びばね定数を決定する。これにより本例における
変速タイミング弁1を用いた場合、抜は絞り開度は第8
図に2で示す。
Note that the spool 1a has a governor pressure P corresponding to the vehicle speed v2 in FIG. 3 or more, it rises in the figure from the half position in Figure 1,
Governor pressure P corresponding to vehicle speed v8. The spring force and spring constant of the spring 1b are determined so that the groove 1d is closed (variable orifice opening A=0) at 8 or more. As a result, when using the shift timing valve 1 in this example, the opening degree of the throttle opening is the 8th.
It is shown as 2 in the figure.

如くになり、車速72未満でAmax+B(Bは固定オ
リフィス7の開度)、車速78以上でBに固定されるが
、車速V、〜v3間において抜は絞り開度は両面定値間
で連続的に変化する。
As shown, it is fixed at Amax + B (B is the opening of the fixed orifice 7) when the vehicle speed is less than 72, and at B when the vehicle speed is 78 or more. Changes to

上記実施例の作用を次に説明する。The operation of the above embodiment will be explained next.

変速弁9が右半部図示のアップシフト位置になり、変速
用摩擦要素2が油圧(ライン圧)を供給されて行なわれ
る変速(アップシフト変速)は第6図につき前述したと
同様に実行される。
The shift valve 9 is in the upshift position shown on the right half, and the shift friction element 2 is supplied with hydraulic pressure (line pressure) to perform a shift (upshift) in the same manner as described above with reference to FIG. Ru.

変速弁9が左半部図示のダウンシフト位置に切換わると
、摩擦要素2の油圧は以下の如くに回路5及びドレンボ
ー)9Cより排除されて、ダウンシフト変速を行なう。
When the speed change valve 9 is switched to the downshift position shown in the left half, the oil pressure of the friction element 2 is removed from the circuit 5 and Dorenboe 9C as described below, and a downshift is performed.

即ち、第3図中車速V。That is, vehicle speed V in FIG.

(P、 = Po、)未満の他車速時変速タイミング弁
1は第1図中有半部位置にあって可変オリフィス開度A
を最大値Amaxにしており、摩擦要素2の油圧はこの
開度Amax及び固定オリフイスフの開度Bの合計開度
で決まる高速で、つまり第4図中αにより示す速度(第
5図中のαと同じ)で排除され、・エンジン回転数が同
図中β(第5図中のβと同じ)の如く変速後の回転数に
丁度達した時に上記の油圧排除(ダウンシフト変速)を
終了させて、変速ショックの発生を防止する。
When the vehicle speed is less than (P, = Po,), the shift timing valve 1 is at the half position in Fig. 1, and the variable orifice opening degree is A.
is set to the maximum value Amax, and the oil pressure of the friction element 2 is set at a high speed determined by the total opening of this opening Amax and the opening B of the fixed orifice, that is, the speed shown by α in Fig. 4 (α in Fig. 5).・When the engine speed reaches the speed after the shift, as indicated by β in the figure (same as β in Figure 5), the above-mentioned hydraulic pressure removal (downshift) is completed. This prevents shift shock from occurring.

第3図中車速v8(PG=PG8)以上の高速時変速タ
イミング弁1は第1図中左半部位置にあって可変オリフ
ィス開度Aを0にしており、摩擦要素2の油圧は固定オ
リフィス7を経てのみ排除され、その開度Bで決まる低
速で、つまり第1図中左半により示す速度(第5図中の
αIと同じ)で排除され、エンジン回転数が同図中βl
(第5図中のβIと同じ)の如く丁度変速後の回転数に
達した時に上記の油圧排除(ダウンシフト変速)を終了
させて、変速ショックの発生を防止し得る。
In Fig. 3, when the vehicle speed is higher than v8 (PG = PG8), the shift timing valve 1 is located in the left half position in Fig. 1, and the variable orifice opening A is set to 0, and the hydraulic pressure of the friction element 2 is fixed orifice. 7, and at a low speed determined by the opening degree B, that is, at a speed shown in the left half of Fig. 1 (same as αI in Fig. 5), and the engine rotation speed is
(Same as βI in FIG. 5), when the rotational speed after the shift is reached, the above-mentioned oil pressure removal (downshift) is terminated, thereby preventing the occurrence of a shift shock.

ところで車速V、〜V3間において、変速タイミング弁
1は可変オリフィス開度AをAmax及び0間で連続的
に変化させ、抜は絞り開度A+Bを第3図に2で示す如
くになす。従って、摩擦要素2の油圧はこの開度A+B
で決まる速度で、つまり成る中車速の場合第4図中α′
により示す速度で排除され、エンジン回転数が同図中β
′の如く丁度変速後の回転数に達した時に上記の油圧排
除(ダウンシフト変速)を終了させて、変速ショックの
発生を防止し得る。そして、この作用を得るための抜は
絞り開度の好適値がv2からv8への車速上昇につれ、
徐々に低下すると靴も、本発明変速タイミング弁1は第
3図中2で示す如く抜は絞り開度を当該車速域v2〜v
3において上記の好適値にマツチするよう変化させるた
め、上記の変速ショック防止効果をいかなる車速時も確
実に達成することができる。
By the way, between the vehicle speeds V and V3, the speed change timing valve 1 continuously changes the variable orifice opening A between Amax and 0, and the throttle opening A+B is set as shown by 2 in FIG. 3. Therefore, the oil pressure of the friction element 2 is at this opening A+B
In the case of medium vehicle speed, α' in Fig. 4 is determined by
The engine rotation speed is β in the figure.
By ending the above-mentioned hydraulic pressure removal (downshifting) when the rotational speed reaches exactly after the gearshift as shown in ', it is possible to prevent the occurrence of gearshift shock. In order to obtain this effect, the optimum value for the throttle opening is as the vehicle speed increases from V2 to V8.
As the speed gradually decreases, the speed change timing valve 1 of the present invention changes the throttle opening degree to the corresponding vehicle speed range v2 to v, as shown by 2 in Fig. 3.
Since the change is made to match the above-mentioned preferred value in step 3, the above-mentioned shift shock prevention effect can be reliably achieved at any vehicle speed.

また、ある摩擦要素の油圧を供給することにより変速を
行なうものにおいても、その供給速度を調整するものに
適用することができることは明らかである。
Furthermore, it is clear that the present invention can also be applied to a device that changes speed by supplying hydraulic pressure to a certain friction element and adjusts the supply speed thereof.

(発明の効果) かくして本発明変速タイミング弁は上述の知く、そのス
プールにテーパ部1oを設けて変速タイミング弁の開閉
が連続的に調度変化つつ行なわれるよう構成したから、
上記開閉の過渡域において給排絞り開度A+Bを連続的
に変化させることができ、従ってこの給排絞り開度をい
かなる条件のもとでも好適値に制御可能で、エンジン回
転数が丁度変速後の回転数に達した時摩擦要素2の油圧
給排を終了させてショックが生ずるのを防止するという
作用効果を常時確実に達成することができる。
(Effects of the Invention) As described above, the speed change timing valve of the present invention is configured such that the spool is provided with a tapered portion 1o so that the speed change timing valve is opened and closed while continuously changing the adjustment.
It is possible to continuously change the supply/discharge throttle opening A+B in the above-mentioned transition region of opening/closing, and therefore, the supply/discharge throttle opening can be controlled to a suitable value under any conditions, and the engine speed is adjusted to just after the gear shift. When the rotational speed reaches , the hydraulic supply and discharge of the friction element 2 is terminated, and the effect of preventing the occurrence of shock can be always reliably achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明変速タイミング弁の一実施例を示す自動
変速機の要部油圧回路図、 第2図は同変速タイミング弁の要部拡大@面図、第3図
は同変速タイミング弁による抜は絞り特性を従来の変速
タイミング弁によるそれと比較して示す線図、 第4図は本発明変速タイミング弁を用いた場合の変速動
作タイムチャート、 第5図は従来の変速タイミング弁を用いた場合の変速動
作タイムチャート、 第6図は従来の変速タイミング弁を示す自動変速機の要
部油圧回路図である。 1・・・変速タイミング弁 1a・・・スプール1b・
・・ばね      1c・・・室1d、 1e・・・
環状条溝   1f・・・開口隅角部2・・・摩擦要素
     7・・・固定オリフィスA・・・可変オリフ
ィス開度B・・・固定オリフィス開度8・・・チェック
パルプ  9・・・変速弁10・・・テーパ部 特許出願人 日産自動車株式会社 第1図 第2図 第3図 第4図 第5図
Fig. 1 is a hydraulic circuit diagram of the main parts of an automatic transmission showing an embodiment of the shift timing valve of the present invention, Fig. 2 is an enlarged view of the main parts of the same shift timing valve, and Fig. 3 is a diagram of the same shift timing valve. Figure 4 is a diagram showing the throttling characteristics in comparison with that of a conventional shift timing valve. Figure 4 is a shift operation time chart when the shift timing valve of the present invention is used. Figure 5 is a diagram showing the speed change operation time chart when the shift timing valve of the present invention is used. Fig. 6 is a hydraulic circuit diagram of a main part of an automatic transmission showing a conventional shift timing valve. 1...Shift timing valve 1a...Spool 1b.
...Spring 1c...Chamber 1d, 1e...
Annular groove 1f... Opening corner 2... Friction element 7... Fixed orifice A... Variable orifice opening degree B... Fixed orifice opening degree 8... Check pulp 9... Speed change Valve 10... Taper portion Patent applicant Nissan Motor Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、油圧を給排されて変速を司どる摩擦要素を具え、該
油圧の給排速度をスプール型変速タイミング弁の開閉に
より制御するようにした自動変速機において、 前記変速タイミング弁のスプールに、該弁の開閉が連続
的開度変化しつつ行なわれるようテーパ部を設けたこと
を特徴とする自動変速機の変速タイミング弁。
[Scope of Claims] 1. An automatic transmission comprising a friction element to which hydraulic pressure is supplied and discharged to control gear shifting, and the speed at which the hydraulic pressure is supplied and discharged is controlled by opening and closing a spool-type shift timing valve, comprising: 1. A shift timing valve for an automatic transmission, characterized in that a spool of the timing valve is provided with a tapered portion so that the valve is opened and closed while continuously changing its opening degree.
JP17990385A 1985-08-15 1985-08-15 Speed shift timing valve in automatic speed change gear Pending JPS6241452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17990385A JPS6241452A (en) 1985-08-15 1985-08-15 Speed shift timing valve in automatic speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17990385A JPS6241452A (en) 1985-08-15 1985-08-15 Speed shift timing valve in automatic speed change gear

Publications (1)

Publication Number Publication Date
JPS6241452A true JPS6241452A (en) 1987-02-23

Family

ID=16073917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17990385A Pending JPS6241452A (en) 1985-08-15 1985-08-15 Speed shift timing valve in automatic speed change gear

Country Status (1)

Country Link
JP (1) JPS6241452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785231B2 (en) 2006-09-15 2010-08-31 Toyota Jidosha Kabushiki Kaisha Automatic transmission controlling apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785231B2 (en) 2006-09-15 2010-08-31 Toyota Jidosha Kabushiki Kaisha Automatic transmission controlling apparatus and method

Similar Documents

Publication Publication Date Title
US4459879A (en) Torque ratio control device for a V-belt type continuously variable transmission for vehicles
US4470117A (en) Control system for a continuously variable transmission for vehicles
US4547178A (en) Control system for an automatic transmission for a vehicle
US4476746A (en) Hydraulic regulator for a V-belt type continuously variable transmission for vehicles
JPH01266352A (en) Line pressure control device for automatic transmission
GB2076483A (en) Control system for a continuously variable transmission for vehicles
US5035157A (en) Method of shift control in an automatic transmission
JPH01188760A (en) Method for controlling speed change of automatic transmission
US5725454A (en) Shift control system for automatic transmission
GB2075619A (en) Shift control mechanism in an automatic transmission for vehicles
US5857935A (en) Upshift control device for automatic transmission
KR960005977B1 (en) Hydraulic control system in an automatic transmission
JPS6241452A (en) Speed shift timing valve in automatic speed change gear
US5462500A (en) Automatic transmission with adaptive shift schedule
KR100397996B1 (en) Method controlling shift at an up-shift for an automatic transmission in vehicles
KR100203886B1 (en) Hydraulic control system of auto-transmission
JPH06257666A (en) Controller of continuously variable transmission
JPH0127299B2 (en)
JP2601019B2 (en) Control device for continuously variable transmission
JPH07119821A (en) Oil pressure controller for automatic transmission of vehicle
JPS60237257A (en) Control device for automatic speed change gear
JPH0252139B2 (en)
KR100298776B1 (en) Shift control method for automatic transmission of vehicle
JPH04312262A (en) Oil pressure control device for automatic transmission
JPS63280957A (en) Hydraulic pressure controlling method for automatic transmission for vehicle