JPS6241070B2 - - Google Patents

Info

Publication number
JPS6241070B2
JPS6241070B2 JP57101878A JP10187882A JPS6241070B2 JP S6241070 B2 JPS6241070 B2 JP S6241070B2 JP 57101878 A JP57101878 A JP 57101878A JP 10187882 A JP10187882 A JP 10187882A JP S6241070 B2 JPS6241070 B2 JP S6241070B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
rotor
layer
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57101878A
Other languages
Japanese (ja)
Other versions
JPS58219958A (en
Inventor
Mitsuhiro Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP57101878A priority Critical patent/JPS58219958A/en
Publication of JPS58219958A publication Critical patent/JPS58219958A/en
Publication of JPS6241070B2 publication Critical patent/JPS6241070B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は超遠心分離機用ローター及びその製造
方法に関する。現在の超遠心機用ローターは、ア
ルミ合金或はチタン合金製で最高遠心加速度は60
万G前後が限度である。ローター材料としては強
度が大で比重の小であることが有利である。即ち
比強度の高い材料が良い。これに対し従来最高の
材料としてチタン合金が使用されてきたが、チタ
ン合金は高価であるうえ機械加工が難かしい。そ
こで本発明では試料用穴を有する擬似等方性積層
体の外周に周方向を補強した繊維強化プラスチツ
ク製リングを設けることにより、最高遠心加速度
をアルミ合金或はチタン合金製と同等以上を可能
としかつ安価なローターの提供を可能としたもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotor for an ultracentrifuge and a method for manufacturing the same. Current rotors for ultracentrifuges are made of aluminum alloy or titanium alloy and have a maximum centrifugal acceleration of 60
The limit is around 10,000G. It is advantageous for the rotor material to have high strength and low specific gravity. In other words, a material with high specific strength is preferable. In contrast, titanium alloys have traditionally been used as the best material, but titanium alloys are expensive and difficult to machine. Therefore, in the present invention, by providing a circumferentially reinforced fiber-reinforced plastic ring on the outer periphery of a quasi-isotropic laminate having a sample hole, it is possible to achieve a maximum centrifugal acceleration equal to or higher than that of aluminum alloy or titanium alloy. Moreover, it is possible to provide an inexpensive rotor.

従来高速回転をさせる繊維強化プラスチツクと
して、フイラメントワインデイング円筒や擬似等
方性円板があつた。フイラメントワインデイング
円筒は繊維の強度を最も有効に発揮させるため高
速回転体としてすぐれていた。しかし遠心分離機
用ローターの場合試料用穴を設ける必要があり、
フイラメントワインデイング円筒に穴を開けると
そこで繊維が切断され強度が低下しフイラメント
ワインデイングの特徴が生かされないうえ、試料
用穴に入れた試料の遠心力や成形時の残留応力で
層間剥離を生じた。一方樹脂を含浸させた織布や
一方向性シートを一定角度づつ回転させて積層し
た擬似等方性円板はフイラメントワインデイング
円筒に較べ強度が低く最高回転数は劣るものの等
方性であるため穴を開けて回転させても急激な強
度低下や層間剥離は生じない。
Filament winding cylinders and pseudo-isotropic disks have conventionally been used as fiber-reinforced plastics that rotate at high speeds. The filament winding cylinder was excellent as a high-speed rotating body because it maximized the strength of the fibers. However, in the case of a rotor for a centrifuge, it is necessary to provide a hole for the sample.
When a hole is made in a filament winding cylinder, the fibers are cut there, the strength is reduced, and the characteristics of filament winding are not utilized, and the centrifugal force of the sample placed in the sample hole and residual stress during molding caused delamination. . On the other hand, pseudo-isotropic disks made by laminating woven fabrics or unidirectional sheets impregnated with resin by rotating them at a constant angle have lower strength than filament winding cylinders, and although their maximum rotational speed is inferior, they are isotropic. Even when holes are drilled and rotated, there is no sudden decrease in strength or delamination.

そこで本発明者は擬似等方性積層体に試料用穴
を設け、その外周に周方向を補強した繊維強化プ
ラスチツク製リングを設けることにより高速回転
に耐えかつ層間剥離等のない遠心分離機用ロータ
ーが出来ることを見いだし本発明にいたつた。
Therefore, the present inventor created a rotor for a centrifuge that can withstand high-speed rotation and is free from delamination by providing a sample hole in a quasi-isotropic laminate and a fiber-reinforced plastic ring reinforced in the circumferential direction on the outer periphery. We have discovered that this can be done, and have come up with the present invention.

本発明の擬似等方性積層体とは織布や一方向に
繊維の配置したシートを多数枚積層し樹脂で結合
した積層体であつて、回転面に平行な方向に弾性
率や強度が等方性を有するものである。これを得
るためには補強繊維である織布や一方向に繊維の
配置したシートを一定角度づつ回転させてずらし
て積層すればよい。最低繊維の方向を3方向以上
に回転させれば一応の目的は達成される。
The pseudo-isotropic laminate of the present invention is a laminate in which a large number of woven fabrics or sheets with fibers arranged in one direction are laminated and bonded with resin, and the elastic modulus and strength are equal in the direction parallel to the rotating surface. It is directional. In order to obtain this, a woven fabric serving as a reinforcing fiber or a sheet in which fibers are arranged in one direction may be rotated and shifted by a certain angle and laminated. At least, the purpose can be achieved by rotating the fibers in three or more directions.

織布やシートは炭素繊維芳香族ポリアミド繊
維、ガラス繊維等よりなり、これらの繊維を一種
又は二種以上使用してもよい。たとえば織布のよ
こ糸が炭素繊維、たて糸がガラス繊維でもよい
し、炭素繊維よりなる織布とガラス繊維よりなる
織布を重ね合わせてもよい。結合用樹脂としては
熱硬化性樹脂が好ましく、エポキシ樹脂、ポリエ
ステル樹脂、ポリイミド樹脂、などが特に好まし
い。
The woven fabric or sheet is made of carbon fiber, aromatic polyamide fiber, glass fiber, etc., and one or more of these fibers may be used. For example, the weft of the woven fabric may be carbon fiber and the warp yarn may be glass fiber, or a woven fabric made of carbon fiber and a woven fabric made of glass fiber may be overlapped. As the bonding resin, thermosetting resins are preferred, and epoxy resins, polyester resins, polyimide resins, and the like are particularly preferred.

擬似等方性積層体は回転面に平行な方向に弾性
率や強度が等方性になるような形状に成形や機械
加工されるのはいうまでもない。したがつて回転
軸に対して軸対称であればよく、回転軸方向にそ
つて直径が一定の円筒形である必要はなく二段円
筒であつてもよい。又擬似等方性体には試料用穴
以外にローター駆動用コーンのさし込み穴が有つ
てもよいし、金属製のシヤフトを取り付ける穴が
あつてもよい。
It goes without saying that the pseudo-isotropic laminate is molded or machined into a shape such that the elastic modulus and strength are isotropic in the direction parallel to the plane of rotation. Therefore, it only needs to be axially symmetrical with respect to the rotation axis, and it does not need to be a cylinder with a constant diameter along the rotation axis direction, but may be a two-stage cylinder. In addition to the sample hole, the pseudo-isotropic body may have a hole for inserting a rotor driving cone, or a hole for attaching a metal shaft.

擬似等方性積層体に設けられるローターの試料
用穴は試料の入つた試験管(薄いプラスチツク製
あるいは金属製管)の遠心力に耐えて支持するこ
とができ、また試験管が内圧に耐えるようにその
形を維持することのできるようなものであればよ
く特に限定はない。
The sample hole in the rotor provided in the quasi-isotropic laminate can withstand and support the test tube containing the sample (thin plastic or metal tube), and also allows the test tube to withstand internal pressure. There is no particular limitation as long as it can maintain its shape.

したがつて試料用穴は擬似等方性積層体を貫通
してなくても、貫通していてもよい。また貫通し
ていない穴や貫通している穴に直接試料の入つた
試験管を入れて用いてもよいし、試験管を入れる
金属製あるいは繊維強化プラスチツク製のバケツ
トを取りつけてもよい。試料用穴は擬似等方性積
層体の回転軸に対して平行に設けてもよいし傾む
けて設けてもよい。又試料用穴の断面形状につい
て特に限定はない。又試料用穴は1ケでもよい
が、好ましくは2ケ以上にし擬似等方性積層体の
回転軸に対して軸対称に配置するようにする。
Therefore, the sample hole may or may not penetrate the pseudo-isotropic laminate. Further, a test tube containing a sample may be placed directly into a hole that is not penetrated or a hole that is penetrated, or a bucket made of metal or fiber-reinforced plastic to hold the test tube may be attached. The sample hole may be provided parallel to the rotation axis of the pseudo-isotropic laminate or may be provided at an angle. Further, there is no particular limitation on the cross-sectional shape of the sample hole. Further, the number of sample holes may be one, but preferably two or more holes are arranged axially symmetrically with respect to the rotation axis of the pseudo-isotropic laminate.

周方向を補強した繊維強化プラスチツク製リン
グは織布や繊維シートを巻き樹脂で結合されたも
のでもよいがフイラメントワインデイング法によ
つて成型したものが好ましい。繊維としては炭素
繊維、芳香族ポリアミド繊維、ガラス繊維等が用
いられ、結合用樹脂として熱硬化性樹脂が好まし
く特にエポキシ樹脂、ポエステル樹脂、ポリイミ
ド樹脂が用いられる。繊維強化プラスチツク製リ
ングは擬似等方性積層体の外周全面に設けられて
もよいし、部分的に設けられてもよい。また繊維
強化プラスチツク製リングの周方向の比縦弾性率
(縦弾性率を比重で割つたもの)は擬似等方性体
の回転面方向の比縦弾性率よりも大きいことが好
ましい。すなわちローター回転数が大きくなるに
つれて2つの接合が強固になるためである。もし
繊維強化プラスチツク製リングの周方向の比縦弾
性率が擬似等方性体の回転面方向の比縦弾性率よ
りも小さい場合、ローター回転数が大きくなるに
つれて、繊維強化プラスチツク製リングの変形量
が擬似等方性体の変形量より大きくなり2つの接
合が離される方向の力が加わるからであり、繊維
強化プラスチツク製リングと擬似等方性体は接着
剤で接着あるいははめ込まれているだけのため強
度が低く破かいすることがある。そこで擬似等方
性積層体と繊維強化プラスチツク製リングの比縦
弾性率の差が小さいときや擬似等方性積層体の比
縦弾性率が大きい場合繊維強化プラスチツク製リ
ングを熱や外力で膨脹させたり、あるいは擬似等
方性積層体を熱や外力で収縮させたり、あるいは
繊維強化プラスチツク製リングを膨脹させ、同時
に擬似等方性積層体を収縮させて接合させると最
高回転数を上昇させることができる。
The circumferentially reinforced fiber-reinforced plastic ring may be made by winding woven fabric or fiber sheets and bonding them with resin, but it is preferably molded by a filament winding method. Carbon fibers, aromatic polyamide fibers, glass fibers, etc. are used as the fibers, and thermosetting resins are preferably used as the bonding resin, with epoxy resins, polyester resins, and polyimide resins being particularly used. The fiber-reinforced plastic ring may be provided over the entire outer periphery of the pseudo-isotropic laminate, or may be provided partially. Further, it is preferable that the specific longitudinal elastic modulus (the longitudinal elastic modulus divided by the specific gravity) in the circumferential direction of the fiber-reinforced plastic ring is larger than the specific longitudinal elastic modulus in the rotating surface direction of the pseudo-isotropic body. That is, as the rotor rotational speed increases, the bond between the two becomes stronger. If the specific longitudinal elastic modulus of the fiber-reinforced plastic ring in the circumferential direction is smaller than the specific longitudinal elastic modulus of the pseudo-isotropic body in the direction of the rotating surface, the amount of deformation of the fiber-reinforced plastic ring increases as the rotor rotation speed increases. This is because the amount of deformation of the pseudo-isotropic body becomes larger than the amount of deformation of the pseudo-isotropic body, and a force is applied in the direction of separating the two bonds. Therefore, it has low strength and may break. Therefore, when the difference in specific longitudinal elasticity between the pseudo-isotropic laminate and the fiber-reinforced plastic ring is small, or when the specific longitudinal elasticity of the pseudo-isotropic laminate is large, the fiber-reinforced plastic ring is expanded by heat or external force. Alternatively, the maximum rotational speed can be increased by shrinking the pseudo-isotropic laminate using heat or external force, or by expanding the fiber-reinforced plastic ring and simultaneously contracting and bonding the pseudo-isotropic laminate. can.

繊維強化プラスチツク製リングは補強繊維の方
向を変えることにより擬似等方性積層体の変形を
押えたり、試料穴部に加わる遠心力を受けもたせ
たりする効果以外に擬似等方性積層体の軸方向強
度を補強させることができる。すなわち、繊維強
化プラスチツク製リングの繊維方向を回転方向に
対し傾むけたものを含ませればよい。また周方向
の比縦弾性率の均一な繊維強化プラスチツク製リ
ングを回転させた場合、リング内の厚さ方向に引
張り力が発生し、それが層間剥離の原因となり最
高回転数を低下させる。そこで繊維強化プラスチ
ツク製リングを内層と外層で構成させ内層(擬似
等方性積層体に接する層)の周方向比縦弾性率を
外層の周方向比縦弾性率より低くすれば、厚さ方
向の引張り力を減じられ、内層と外層間には圧縮
方向の力を発生させることができる。
By changing the direction of the reinforcing fibers, the fiber-reinforced plastic ring suppresses the deformation of the quasi-isotropic laminate, and in addition to the effect of absorbing centrifugal force applied to the sample hole, it also suppresses the deformation of the quasi-isotropic laminate by changing the direction of the reinforcing fibers. Strength can be reinforced. That is, it is sufficient to include a ring made of fiber-reinforced plastic whose fiber direction is inclined with respect to the rotation direction. Furthermore, when a ring made of fiber-reinforced plastic with a uniform specific longitudinal elastic modulus in the circumferential direction is rotated, tensile force is generated in the thickness direction within the ring, which causes delamination and reduces the maximum rotational speed. Therefore, by constructing a fiber-reinforced plastic ring with an inner layer and an outer layer, and making the circumferential specific longitudinal elastic modulus of the inner layer (the layer in contact with the quasi-isotropic laminate) lower than the circumferential specific longitudinal elastic modulus of the outer layer, it is possible to The tensile force is reduced and a compressive force can be generated between the inner layer and the outer layer.

内層の周方向比縦弾性率を外周のそれより低く
する方法として内層にガラス繊維、外層に炭素繊
維を用いるように材料構成を変えることにより得
られる。また内層の繊維を外層の繊維より回転軸
方向に傾けることによつても実現させることがで
きる。たとえばフイラメントワインデイング法で
繊維強化プラスチツク製リングを作る場合、内層
を0゜〜75゜の巻角度(軸に対する角度)、外層
を76゜〜90゜の巻角度とすればよい。
A method for making the circumferential specific modulus of elasticity of the inner layer lower than that of the outer circumference can be obtained by changing the material composition such that glass fiber is used for the inner layer and carbon fiber is used for the outer layer. It can also be realized by tilting the fibers in the inner layer more toward the axis of rotation than the fibers in the outer layer. For example, when making a fiber-reinforced plastic ring using the filament winding method, the inner layer may have a winding angle (angle with respect to the axis) of 0° to 75°, and the outer layer may have a winding angle of 76° to 90°.

内層の巻角度を0゜〜75゜に撰ぶことは軸方向
の強度も発生し、繊維強化プラスチツク製リング
の軸方向強度が大きくなり、軸方向強度の小さい
擬似等方性積層体の補強になり好ましい。
Choosing the winding angle of the inner layer from 0° to 75° also generates strength in the axial direction, increasing the axial strength of the fiber-reinforced plastic ring, which is useful for reinforcing quasi-isotropic laminates that have low axial strength. It's very desirable.

また繊維強化プラスチツク製リングの回転時の
層間剥離方向の引張り力を減じたり成形時の残留
応力に対するためには、複数層で繊維強化プラス
チツク製リングを製作するのがさらに好ましい。
複数層設けるにあたり内層と外層とで1つの層を
形成し、前記層を互いに密着して複数層設けると
共に、これらの各層の周方向比縦弾性係数を外側
に向うに従つて順々に高くなるようにすればよ
い。
Further, in order to reduce the tensile force in the delamination direction during rotation of the fiber-reinforced plastic ring and to prevent residual stress during molding, it is more preferable to manufacture the fiber-reinforced plastic ring with a plurality of layers.
When providing multiple layers, an inner layer and an outer layer form one layer, and multiple layers are provided in close contact with each other, and the circumferential specific modulus of longitudinal elasticity of each layer is increased in turn toward the outside. Just do it like this.

複数層設ける場合の内層と外層の周方向比縦弾
性係数はどちらの層が大きくならなければならな
いという限定はないが好ましくは内層より外層の
周方向比縦弾性係数が高いほうが好ましい。内層
と外層よりなる層の周方向比縦弾性係数を外側に
向うに従つて順々に高くする方法として種々ある
が基本的に材料を変える方法、繊維の配向角を変
える方法、内層と外層の厚さの比率を変える方法
があり目的が達成されれば限定はしない。
When a plurality of layers are provided, there is no restriction as to which layer must have a larger circumferential specific longitudinal elastic modulus, but it is preferable that the outer layer has a higher circumferential specific longitudinal elastic modulus than the inner layer. There are various ways to increase the circumferential specific modulus of longitudinal elasticity of the inner and outer layers in order toward the outside, but the basic methods include changing the material, changing the orientation angle of the fibers, and There is no limitation as long as there is a way to change the thickness ratio and the purpose is achieved.

材料を変える方法として、ガラス繊維でできた
内層、外層の外側に芳香族ポリアミド繊維ででき
た内層、外層を設け、さらに外側に炭素繊ででき
た内層、外層を設けるというような方法である
(尚比縦弾性係数炭素繊維>芳香族ポリアミド繊
維>ガラス繊維)。
One way to change the materials is to provide an inner layer and an outer layer made of aromatic polyamide fiber on the outside of an inner layer and an outer layer made of glass fiber, and then provide an inner layer and an outer layer made of carbon fiber on the outside. (Specific longitudinal elastic modulus carbon fiber > aromatic polyamide fiber > glass fiber).

また繊維の配向角を変える方法としてフイラメ
ントワインデイングで内層が10゜の巻角度、外層
が90゜の巻角度よりなる層を設けその外側に内層
が45゜の巻角度、外層が90゜の巻角度よりなる層
を設けさらにその外側に内層が75゜の巻角度、外
層が90゜の巻角度よりなる層を設けるというよう
な方法である。(尚巻角度が0゜から90゜になる
にしたがつて周方向縦弾性係数が大きくなる。) また内層と外層の厚さの比率をかえる方法とし
てたとえばフイラメントワインデイングで内層が
45゜の巻角度で厚さ3mm、外層が90゜の巻角度で
厚さ1mmよりなる層を設けその外側に内層が45゜
の巻角度で厚さ2mm、外層が90゜の巻角度で厚さ
2mmよりなる層を設け、さらに外側に内層が45゜
の巻角度で厚さ1mm、外層が90゜の巻角度で厚さ
3mmのよりなる層を設ける方法がある。すなわち
周方向縦弾性率の高い外層の厚さの比率をリング
の外側にいくにしたがつて大きくすることによつ
て、内層と外層とで構成される層の周方向比縦弾
性係数を外側に向うに従つて、順々に大きくする
ことができる。
In addition, as a method of changing the fiber orientation angle, filament winding is used to create a layer in which the inner layer has a winding angle of 10° and the outer layer has a winding angle of 90°. This method involves providing a layer with a winding angle of 75 degrees, and then providing a layer with an inner layer having a winding angle of 75 degrees and an outer layer having a winding angle of 90 degrees. (The circumferential modulus of longitudinal elasticity increases as the winding angle increases from 0° to 90°.) Also, as a method of changing the ratio of the thickness of the inner layer and the outer layer, for example, filament winding is used to reduce the inner layer.
A layer with a thickness of 3 mm at a winding angle of 45°, an outer layer with a thickness of 1 mm at a winding angle of 90°, an inner layer with a thickness of 2 mm at a winding angle of 45°, and an outer layer with a thickness of 2 mm at a winding angle of 90°. There is a method of providing a layer with a thickness of 2 mm, and further providing an inner layer with a winding angle of 45° and a thickness of 1 mm, and an outer layer with a winding angle of 90° and a thickness of 3 mm. In other words, by increasing the thickness ratio of the outer layer, which has a high circumferential longitudinal elastic modulus, toward the outside of the ring, the circumferential specific longitudinal elastic modulus of the layer consisting of the inner layer and the outer layer can be increased outward. You can gradually increase the size as you go.

また擬似等方性積層体外周に繊維強化プラスチ
ツク製リングを設ける製造法として擬似等方性積
層体を成形硬化した後に外周を削りフイラメント
ワインデイング法や織布、シートワインデイング
で繊維強化プラスチツク製リングを成形してもよ
いが、残留応力等を考慮する場合は擬似等方性積
層体と繊維強化プラスチツク製リングを別々に成
形硬化させた後に組合せ接着することが好まし
い。
In addition, as a manufacturing method for forming a fiber-reinforced plastic ring around the outer periphery of a pseudo-isotropic laminate, the outer periphery is shaved after the pseudo-isotropic laminate is molded and cured, and a fiber-reinforced plastic ring is created using the filament winding method, woven cloth, or sheet winding. However, when considering residual stress etc., it is preferable to mold and harden the pseudo-isotropic laminate and the fiber-reinforced plastic ring separately and then bond them together.

組合せ接着する方法として外周にテーパーを有
する擬似等方性積層体を内周にテーパーを有する
周方向に補強した繊維強化プラスチツク製リング
に圧入接着すると、圧力を加えて接着することが
できるため強固にすきまなく接着でき高速回転に
耐えるロータが得られる。擬似等方性積層体の外
周にテーパーを設けるには、成形硬化后に機械加
工するのが好ましい。繊維強化プラスチツク製リ
ングの内側にテーパを設けるには外周にテーパの
ついたマンドレルを用いて繊維強化プラスチツク
を成形してもよいし、成形硬化后に内周を機械加
工してもよい。
As a combination bonding method, press-fitting a quasi-isotropic laminate with a tapered outer periphery to a fiber-reinforced plastic ring reinforced in the circumferential direction with a tapered inner periphery is a strong bonding method because it can be bonded by applying pressure. A rotor that can be bonded without gaps and can withstand high-speed rotation can be obtained. In order to provide a taper on the outer periphery of the pseudo-isotropic laminate, it is preferable to perform machining after molding and curing. To provide a taper on the inside of a fiber-reinforced plastic ring, the fiber-reinforced plastic may be molded using a mandrel with a tapered outer periphery, or the inner periphery may be machined after molding and curing.

テーパー程度は4/10以内が好ましい。接着剤と
してはエポキシ樹脂、ナイロン―エポキシ樹脂、
フエノール―エポキシ樹脂、ポリエステル樹脂、
ポリウレタン樹脂等が用いられるが特に限定はな
い。又接着剤にシリカ粉やその他の充填剤を混ぜ
て用いてもよい。
The degree of taper is preferably within 4/10. Adhesives include epoxy resin, nylon-epoxy resin,
Phenol-epoxy resin, polyester resin,
A polyurethane resin or the like may be used, but there is no particular limitation. Also, silica powder or other fillers may be mixed with the adhesive.

次に実施例について説明する。 Next, an example will be described.

第1図は擬似等方性積層体を構成する。平行す
るクロス(織布)を示す分解斜視図である。0゜
回転クロス1は炭素繊維平織りクロスにエポキシ
樹脂を含浸させたものである。そのうえに同様の
クロスのよこ糸とたて糸を60゜回転させた60゜回
転クロス2を重ねさらに120゜回転させた120゜回
転クロス3を重ねた。3枚重ねることで基本的に
擬似等方性になるわけであるが3枚では厚さが薄
いため、順々に60゜づつずらせて500枚重ね金型
の中に入れプレスで加熱加圧して擬似等方性積層
体のブロツクを作つた。実施例では60゜づつ回転
させて積層したが、クロス枚数が多い場合は60゜
の1/n(n=1,2,3,4…)角度づつずら
せてもよい。
FIG. 1 constitutes a pseudo-isotropic laminate. It is an exploded perspective view showing parallel cloth (woven fabric). The 0° rotation cloth 1 is a plain weave carbon fiber cloth impregnated with epoxy resin. On top of that, a 60° rotated cloth 2, in which the weft and warp threads of a similar cloth were rotated by 60°, was layered, and then a 120° rotated cloth 3, in which the weft and warp threads of the same cloth were rotated by 120°, was layered. By stacking three layers, it basically becomes pseudo-isotropic, but since the three layers are thin, 500 layers are stacked one after another, shifted by 60 degrees, and placed in a mold and heated and pressed in a press. A block of quasi-isotropic laminate was made. In the embodiment, the layers were laminated by rotating them by 60 degrees, but if the number of cloth sheets is large, they may be shifted by 1/n of 60 degrees (n=1, 2, 3, 4, . . . ).

第2図は本発明の実施例を示す斜視図である。
モータ4は0〜10万r.p.mまで回転させることが
できる。ローター駆動用コーン5はローターのさ
し込み穴にさし込まれ摩擦力でローターを回転さ
せる。通常ローターは真空中で回転させられる。
擬似等方性積層体8にはバケツト取り付け穴9が
8ケ設けられている。擬似等方性積層体8は炭素
繊維よりなるが、目的によつてはガラス繊維等で
作られる。擬似等方性積層体の外径が大きくバケ
ツト取り付け穴がある部分の外周に繊維強化プラ
スチツク製リング10がある繊維強化プラスチツ
ク製リング10は炭素繊維フイラメントワインデ
イング法で作られており、軸方向補強層11と軸
方向補強層12よりなる内層と90゜の周巻き層1
3よりなる外層からなる。バケツト取り付け穴9
に金属製のバケツト15が挿入されバケツト固定
ネジで固定される。バケツト15の中に試料の入
つた試験管16が、試験管蓋17をして入れられ
たのちバケツトネジ蓋18が取りつけられる。バ
ランスの関係上8ケのバケツト取り付け穴9全部
にバケツトが挿入される。
FIG. 2 is a perspective view showing an embodiment of the present invention.
The motor 4 can rotate from 0 to 100,000 rpm. The rotor driving cone 5 is inserted into the insertion hole of the rotor and rotates the rotor by frictional force. The rotor is usually rotated in a vacuum.
Eight bucket attachment holes 9 are provided in the pseudo-isotropic laminate 8. The pseudo-isotropic laminate 8 is made of carbon fiber, but may be made of glass fiber or the like depending on the purpose. There is a fiber-reinforced plastic ring 10 on the outer periphery of the part of the quasi-isotropic laminate with a large outer diameter and a bucket attachment hole.The fiber-reinforced plastic ring 10 is made by a carbon fiber filament winding method and has axial reinforcement. Inner layer consisting of layer 11 and axial reinforcing layer 12 and 90° circumferential layer 1
The outer layer consists of 3 layers. Bucket mounting hole 9
A metal bucket 15 is inserted and fixed with bucket fixing screws. A test tube 16 containing a sample is placed in a bucket 15 with a test tube lid 17, and then a bucket screw lid 18 is attached. For balance reasons, buckets are inserted into all eight bucket mounting holes 9.

第3図は第2図に示すローターの断面図を示
す。擬似等方性積層体はローター駆動用コーン5
をさし込むさし込み穴7のあるさし込み穴有り部
6の外径は小さくなつている。これは穴があると
穴の付近の応力が大きくなるため、さし込み穴有
り部6の外径を小さくし遠心力による応力を減少
させるためである。
FIG. 3 shows a sectional view of the rotor shown in FIG. 2. The quasi-isotropic laminate is rotor driving cone 5
The outer diameter of the insertion hole portion 6, which has the insertion hole 7 into which it is inserted, is smaller. This is because if there is a hole, the stress in the vicinity of the hole becomes large, so the outer diameter of the insertion hole portion 6 is made small to reduce the stress caused by centrifugal force.

第4図はローターの軸受部が金属である実施例
の断面図を示す。穴有り擬似等方性積層体19に
はバケツト取り付け穴20があり外周には繊維強
化プラスチツク製リング21がある。穴有り擬似
等方性積層体19の中心に穴があけられ金属製の
シヤフト22が挿入されている。シヤフト22の
一端はネジになつておりシヤフト固定ネジ23で
固定されている。シヤフト22の他端にはロータ
ー駆動用コーン5をさし込むさし込み穴24があ
る。又シヤフト22と穴有り擬似等方性積層体1
9の間にはまわり止め25がありシヤフト22と
穴有り擬似等方性積層体19とがすべらないよう
になつている。
FIG. 4 shows a cross-sectional view of an embodiment in which the bearing portion of the rotor is made of metal. The holed pseudo-isotropic laminate 19 has bucket attachment holes 20 and a fiber-reinforced plastic ring 21 around its outer periphery. A hole is made in the center of the holed pseudo-isotropic laminate 19, and a metal shaft 22 is inserted. One end of the shaft 22 is a screw, and is fixed with a shaft fixing screw 23. The other end of the shaft 22 has an insertion hole 24 into which the rotor driving cone 5 is inserted. Also, the shaft 22 and the holed pseudo-isotropic laminate 1
A rotation stopper 25 is provided between the shaft 22 and the holed pseudo-isotropic laminate 19 to prevent the shaft 22 from slipping.

第5図は内層と外層の基本構成よりなる繊維強
化プラスチツク製リングの片側断面図を示す。内
層26は炭素繊維を用い巻角度45゜厚さ5mmより
なり外層27は巻角度90゜厚さ10mmよりなる。第
6図は複数層よりなる繊維強化プラスチツク製リ
ングの片側断面図を示す。
FIG. 5 shows a half sectional view of a fiber-reinforced plastic ring consisting basically of an inner layer and an outer layer. The inner layer 26 is made of carbon fiber and has a winding angle of 45 degrees and a thickness of 5 mm, and the outer layer 27 has a winding angle of 90 degrees and a thickness of 10 mm. FIG. 6 shows a half sectional view of a ring made of fiber-reinforced plastic made of multiple layers.

このリングは炭素繊維を用いたフイラメントワ
インデイング法で作られあおり、内層28は巻角
度45゜で厚みは3mm、外層31は巻角度90゜で厚
みは1mmである。又内層29は巻角度45゜で厚み
は2mm、外層32は巻角度90゜で厚みは2mmであ
る。また内層30は巻角度45゜で厚みは1mm、外
層33は巻角度90゜で厚みは6mmである。内層2
8と外層31よりなる層の周方向比縦弾性係数は
3950Kg/mm2、内層29と外層32よりなる層の周
方向比縦弾性係数は5650Kg/mm2、内層30と外層
33よりなる層の周方向比縦弾性係数は8070Kg/
mm2であり外側に向うに従つて順々に高くなつてい
る。第7図は外周にテーパーを設けた擬似等方性
積層体と内周にテーパーを設けた繊維強化プラス
チツク製リングよりなるローターの分解断面図を
示す。
This ring is made by a filament winding method using carbon fiber, and the inner layer 28 has a winding angle of 45 degrees and a thickness of 3 mm, and the outer layer 31 has a winding angle of 90 degrees and a thickness of 1 mm. The inner layer 29 has a winding angle of 45 degrees and a thickness of 2 mm, and the outer layer 32 has a winding angle of 90 degrees and a thickness of 2 mm. The inner layer 30 has a winding angle of 45 degrees and a thickness of 1 mm, and the outer layer 33 has a winding angle of 90 degrees and a thickness of 6 mm. inner layer 2
The specific longitudinal elastic modulus in the circumferential direction of the layer consisting of 8 and the outer layer 31 is
3950Kg/mm 2 , the circumferential specific longitudinal elasticity modulus of the layer consisting of the inner layer 29 and outer layer 32 is 5650Kg/mm 2 , and the circumferential specific longitudinal elasticity modulus of the layer consisting of the inner layer 30 and outer layer 33 is 8070Kg/mm 2
mm 2 and gradually increase in height toward the outside. FIG. 7 shows an exploded sectional view of a rotor consisting of a pseudo-isotropic laminate with a tapered outer circumference and a fiber-reinforced plastic ring with a tapered inner circumference.

擬似等方性積層体34にはバケツト取り付け穴
36があり、ローター駆動用コーンさし込み用さ
し込み穴37がある。さし込み穴有り部35は外
径が小さくなつており、繊維強化プラスチツク製
リングはかぶさらない。擬似等方性積層体34の
外周は5/100のテーパーがついている。また繊維
強化プラスチツク製リング38の内周も5/100の
テーパーがついている。両テーパー面に未硬化エ
ポキシ樹脂とシリカ微粉末を混練して作つた接着
剤を塗布し、第7図の上下方向から荷重を加え接
着した。
The pseudo-isotropic laminate 34 has a bucket attachment hole 36 and an insertion hole 37 for inserting a rotor driving cone. The insertion hole portion 35 has a small outer diameter and is not covered by the fiber-reinforced plastic ring. The outer periphery of the pseudo-isotropic laminate 34 has a taper of 5/100. The inner circumference of the fiber-reinforced plastic ring 38 also has a taper of 5/100. An adhesive made by kneading uncured epoxy resin and fine silica powder was applied to both tapered surfaces, and a load was applied from the top and bottom directions as shown in FIG. 7 to bond them together.

第2図に示すローターを回転させたところ
65000r.p.mでも破かいが生じなかつたが、擬似
等方性積層体からなるローターは40000r.p.mで
破かいした。このように本発明の遠心分離機用ロ
ーターは高速回転に耐え、チタン合金等のロータ
ーに較べ安価に供給することができ有用である。
Rotating rotor shown in Figure 2
No fracture occurred even at 65,000 rpm, but the rotor made of the quasi-isotropic laminate was fractured at 40,000 rpm. As described above, the rotor for a centrifugal separator of the present invention is useful because it can withstand high-speed rotation and can be supplied at a lower cost than rotors made of titanium alloy or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は擬似等方性積層体を構成する、平行す
るクロスを示す分解斜視図、第2図は本発明の実
施例を示す斜視図、第3図は第2図に示すロータ
ーの断面図、第4図はローターの軸受部が金属で
ある実施例の断面図、第5図は内層と外層の基本
構成よりなる繊維強化プラスチツク製リングの片
側断面図、第6図は複数層よりなる繊維強化プラ
スチツク製リングの片側断面図、第7図は外周に
テーパーを設けた擬似等方性積層体と内周にテー
パーを設けた繊維強化プラスチツク製リングより
なるローターの分解断面図を示す。 符号の説明、1…0゜回転クロス、2…60゜回
転クロス、3…120゜回転クロス、4…モータ
ー、5…ローター駆動用コーン、6…さし込み穴
有り部、7…さし込み穴、8…擬似等方性積層
体、9…バケツト取り付け穴、10…繊維強化プ
ラスチツク製リング、11…軸方向補強層(+45
゜)、12…軸方向補強層(−45゜)、13…周巻
き層、14…バケツト固定ネジ、15…バケツ
ト、16…試験管、17…試験管蓋、18…バケ
ツトネジ蓋、19…穴有り擬似等方性積層体、2
0…バケツト取り付け穴、21…繊維強化プラス
チツク製リング、22…シヤフト、23…シヤフ
ト固定ネジ、24…さし込み穴、25…まわり止
め、26…内層(±45゜)、27…外層(90゜)、
28…内層(±45゜)、29…内層(±45゜)、3
0…内層(±45゜)、31…外層(90゜)、32…
外層(90゜)、33…外層(90゜)、34…擬似等
方性積層体、35…さし込み穴有り部、36…バ
ケツト取り付け穴、37…さし込み穴、38…繊
維強化プラスチツク製リング、39…内周テー
パ、40…外周テーパ。
Fig. 1 is an exploded perspective view showing parallel crosses constituting a pseudo-isotropic laminate, Fig. 2 is a perspective view showing an embodiment of the present invention, and Fig. 3 is a sectional view of the rotor shown in Fig. 2. , Fig. 4 is a cross-sectional view of an embodiment in which the rotor bearing portion is made of metal, Fig. 5 is a half-sectional view of a ring made of fiber reinforced plastic consisting of the basic structure of an inner layer and an outer layer, and Fig. 6 is a cross-sectional view of a ring made of fiber reinforced plastic consisting of multiple layers. FIG. 7 is an exploded sectional view of a rotor consisting of a quasi-isotropic laminate having a tapered outer periphery and a fiber-reinforced plastic ring having a tapered inner periphery. Explanation of symbols, 1...0° rotating cross, 2...60° rotating cross, 3...120° rotating cross, 4...motor, 5...cone for rotor drive, 6...part with insertion hole, 7...insert Hole, 8...Pseudo-isotropic laminate, 9...Bucket mounting hole, 10...Fiber-reinforced plastic ring, 11...Axial reinforcement layer (+45
゜), 12... Axial reinforcement layer (-45°), 13... Surrounding layer, 14... Bucket fixing screw, 15... Bucket, 16... Test tube, 17... Test tube lid, 18... Bucket screw cap, 19... Hole Pseudo-isotropic laminate, 2
0... Bucket mounting hole, 21... Fiber reinforced plastic ring, 22... Shaft, 23... Shaft fixing screw, 24... Insertion hole, 25... Stopper, 26... Inner layer (±45°), 27... Outer layer (90゜),
28...Inner layer (±45°), 29...Inner layer (±45°), 3
0...Inner layer (±45°), 31...Outer layer (90°), 32...
Outer layer (90°), 33... Outer layer (90°), 34... Pseudo-isotropic laminate, 35... Portion with insertion hole, 36... Bucket mounting hole, 37... Insertion hole, 38... Fiber reinforced plastic ring, 39...inner periphery taper, 40...outer periphery taper.

Claims (1)

【特許請求の範囲】 1 試料用穴を有する擬似等方性積層体の外周に
周方向を補強した繊維強化プラスチツク製リング
を設けたことを特徴とする遠心分離機用ロータ
ー。 2 繊維強化プラスチツク製リングがフイラメン
トワインデイング法で製造されたリングである特
許請求の範囲第1項記載の遠心分離機用ロータ
ー。 3 繊維強化プラスチツク製リングが内層と外層
で構成され内層の周方向比縦弾性係数を外層の周
方向比縦弾性係数よりも低くなるようにしたリン
グである特許請求の範囲第1項又は第2項記載の
遠心分離機用ローター。 4 繊維強化プラスチツク製リングが内層と外層
とで形成される層を互いに密着した複数層で構成
され、これら各層の周方向比縦弾性係数を外側に
向うに従つて順々に高くなるようにしたリングで
ある特許請求の範囲第1項又は第2項記載の遠心
分離機用ローター。 5 外周にテーパを有する擬似等方性積層体を、
前記テーパーに対応するテーパーを内周に有する
周方向に補強した繊維強化プラスチツク製リング
に圧入接着することを特徴とする遠心分離機用ロ
ーターの製造方法。
[Scope of Claims] 1. A rotor for a centrifuge, characterized in that a ring made of fiber-reinforced plastic reinforced in the circumferential direction is provided on the outer periphery of a pseudo-isotropic laminate having a sample hole. 2. The rotor for a centrifuge according to claim 1, wherein the fiber-reinforced plastic ring is a ring manufactured by a filament winding method. 3. Claims 1 or 2, wherein the fiber-reinforced plastic ring is composed of an inner layer and an outer layer, and the inner layer has a circumferential specific longitudinal elastic modulus lower than the outer layer's circumferential specific longitudinal elastic modulus. A rotor for a centrifuge as described in Section 1. 4. The fiber-reinforced plastic ring is composed of multiple layers in which the inner layer and the outer layer are in close contact with each other, and the specific modulus of longitudinal elasticity of each layer in the circumferential direction increases in turn toward the outside. A rotor for a centrifuge according to claim 1 or 2, which is a ring. 5 A quasi-isotropic laminate with a taper on the outer periphery,
A method for manufacturing a rotor for a centrifugal separator, characterized in that the rotor is press-fitted and bonded to a circumferentially reinforced fiber-reinforced plastic ring having a taper corresponding to the taper on the inner periphery.
JP57101878A 1982-06-14 1982-06-14 Rotor for centrifugal separator and preparation thereof Granted JPS58219958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57101878A JPS58219958A (en) 1982-06-14 1982-06-14 Rotor for centrifugal separator and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57101878A JPS58219958A (en) 1982-06-14 1982-06-14 Rotor for centrifugal separator and preparation thereof

Publications (2)

Publication Number Publication Date
JPS58219958A JPS58219958A (en) 1983-12-21
JPS6241070B2 true JPS6241070B2 (en) 1987-09-01

Family

ID=14312206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57101878A Granted JPS58219958A (en) 1982-06-14 1982-06-14 Rotor for centrifugal separator and preparation thereof

Country Status (1)

Country Link
JP (1) JPS58219958A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067152U (en) * 1983-10-17 1985-05-13 東レ株式会社 Centrifuge rotor
JPS61101262A (en) * 1984-10-24 1986-05-20 Hitachi Chem Co Ltd Rotor for centrifugal separator
JPS61101263A (en) * 1984-10-24 1986-05-20 Hitachi Chem Co Ltd Rotor for centrifugal separator
JPS61164666A (en) * 1985-01-11 1986-07-25 Hitachi Chem Co Ltd Method for mounting specimen container of centrifugal separator
JPS63319073A (en) * 1987-06-15 1988-12-27 ベツクマン インスツルメンツ インコ−ポレ−テツド Mixed centrifugal separator rotor and manufacture thereof
US8147393B2 (en) * 2009-01-19 2012-04-03 Fiberlite Centrifuge, Llc Composite centrifuge rotor
US8147392B2 (en) * 2009-02-24 2012-04-03 Fiberlite Centrifuge, Llc Fixed angle centrifuge rotor with helically wound reinforcement
US8323170B2 (en) * 2009-04-24 2012-12-04 Fiberlite Centrifuge, Llc Swing bucket centrifuge rotor including a reinforcement layer
US8328708B2 (en) 2009-12-07 2012-12-11 Fiberlite Centrifuge, Llc Fiber-reinforced swing bucket centrifuge rotor and related methods
KR101162103B1 (en) 2010-03-04 2012-07-03 한국기계연구원 A hybrid fixed angle rotor for a centrifuge with light weight
JP6186161B2 (en) * 2013-04-10 2017-08-23 あおい精機株式会社 Centrifuge

Also Published As

Publication number Publication date
JPS58219958A (en) 1983-12-21

Similar Documents

Publication Publication Date Title
US4817453A (en) Fiber reinforced centrifuge rotor
US5784926A (en) Integral composite flywheel rim and hub
US4738656A (en) Composite material rotor
US9267570B2 (en) Advanced flywheel hub and method
US5695584A (en) Method of manufacturing a flywheel having reduced radial stress
EP0643628B1 (en) Fixed-angle composite centrifuge rotor
US5816114A (en) High speed flywheel
JPS6241070B2 (en)
EP0081968A1 (en) Energy storage flywheels
CN110259886A (en) Wheel rim and flywheel rotor on flywheel rotor
US10012289B2 (en) Flywheels for energy storage and methods of manufacture thereof
JP6800323B2 (en) SPM motor rotor and its manufacturing method
JP6639761B1 (en) Rotor and motor
JP3319563B2 (en) Spiral fabric and prepreg and rotating body using the same
CA2916129A1 (en) Flywheels for energy storage and methods of manufacture thereof
JP3124984B2 (en) Rotating body made of fiber-reinforced composite material and manufacturing method thereof
KR101162103B1 (en) A hybrid fixed angle rotor for a centrifuge with light weight
CA1270665A (en) Composite ultracentrifuge rotor
CA3011285C (en) Cylindrical rotational body
JP2627094B2 (en) Rotor for centrifuge and method for manufacturing the same
JPH045505B2 (en)
JPS61101262A (en) Rotor for centrifugal separator
JPH01135550A (en) Rotor for centrifuge
JP2001179842A (en) Rotating body
JPH045503B2 (en)