JPH045505B2 - - Google Patents

Info

Publication number
JPH045505B2
JPH045505B2 JP22476983A JP22476983A JPH045505B2 JP H045505 B2 JPH045505 B2 JP H045505B2 JP 22476983 A JP22476983 A JP 22476983A JP 22476983 A JP22476983 A JP 22476983A JP H045505 B2 JPH045505 B2 JP H045505B2
Authority
JP
Japan
Prior art keywords
crown
main body
rotor
reinforced plastic
plastic laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22476983A
Other languages
Japanese (ja)
Other versions
JPS60118259A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22476983A priority Critical patent/JPS60118259A/en
Publication of JPS60118259A publication Critical patent/JPS60118259A/en
Publication of JPH045505B2 publication Critical patent/JPH045505B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)

Description

【発明の詳細な説明】 本発明は遠心分離機用ロータに関する。[Detailed description of the invention] The present invention relates to a rotor for a centrifuge.

遠心分離機用ロータの材料としては遠心力に抗
するため強度が大きく比重の小さい、即ち比強度
(強度/比重)の高い材料が有利である。従来か
らアルミ合金、チタン合金がロータ材料に用いら
れてきたがこれに同等かそれ以上の材料として繊
維強化プラスチツクがあげられる。
As a material for a centrifuge rotor, a material with high strength and low specific gravity, that is, high specific strength (strength/specific gravity), is advantageous in order to resist centrifugal force. Conventionally, aluminum alloys and titanium alloys have been used as rotor materials, but fiber-reinforced plastics can be cited as a material that is equivalent to or better than these.

遠心分離機用ロータの形状は試料穴を有する円
柱状の本体部が上側に、モータの駆動軸をさし込
むクラウン穴を有する円柱状のクラウン部が下側
にくるように構成されており、本体部の外径の方
がクラウン部の外径より大きく、また本体部もク
ラウン部も同一材料で一体で加工される。本体部
は外径が大きいので大きな遠心力がかかる上、試
料穴を開けたことによる応力集中や試料が遠心力
によつて円孔壁面を圧迫したりするため比強度の
優れた材料で作る必要がある。しかし、クラウン
部は中心にクラウン穴を有するものの外径が小さ
いため発生応力も小さく必ずしも本体部と同じ比
強度の材料にする必要はない。
The shape of the centrifuge rotor is such that the cylindrical main body with the sample hole is on the top, and the cylindrical crown with the crown hole into which the motor drive shaft is inserted is on the bottom. The outer diameter of the main body portion is larger than the outer diameter of the crown portion, and both the main body portion and the crown portion are integrally machined from the same material. Since the main body has a large outer diameter, it is subject to a large centrifugal force, and it must be made of a material with excellent specific strength because of the stress concentration caused by drilling the sample hole and the fact that the sample presses against the wall of the circular hole due to centrifugal force. There is. However, although the crown part has a crown hole in the center, the outside diameter is small, so the generated stress is small, and it is not necessarily necessary to use a material having the same specific strength as the main body part.

本発明の遠心分離機用ロータはこれらの点に鑑
みなされたもので、試料穴を有する擬似等方性の
カーボン繊維強化プラスチツク積層体(CFRP積
層体)製の円柱状の本体部と駆動軸をさし込むク
ラウン穴を有する擬似等方性のガラス繊維強化プ
ラスチツク積層体(GFRP積層体)製の円柱状の
クラウン部を、本体部底面の伸びとクラウン部上
面の伸びが一致するように、本体部底面の外径に
対するクラウン部上面の外径の比が0.35〜0.70に
なるようにして接合したことを特徴とする。
The centrifuge rotor of the present invention was developed in view of these points, and consists of a cylindrical main body made of a quasi-isotropic carbon fiber reinforced plastic laminate (CFRP laminate) having a sample hole, and a drive shaft. A cylindrical crown made of pseudo-isotropic glass fiber reinforced plastic laminate (GFRP laminate) with a crown hole to be inserted is inserted into the main body so that the elongation of the bottom of the main body matches the elongation of the top of the crown. The joint is characterized in that the ratio of the outer diameter of the top surface of the crown portion to the outer diameter of the bottom surface of the portion is 0.35 to 0.70.

GFRP積層体はCFRP積層体より強度が劣るが
材料費が安いため、本発明のロータは本体部もク
ラウン部もCFRP積層体で作られたロータと比べ
て、同レベルの性能を維持し、かつ価格が安く生
産性の向上を図ることができる。以下本発明を詳
細に説明する。
Although GFRP laminates have lower strength than CFRP laminates, the material cost is lower, so the rotor of the present invention maintains the same level of performance as a rotor made of CFRP laminates for both the main body and the crown. The price is low and productivity can be improved. The present invention will be explained in detail below.

本発明のロータに用いられる擬似等方性積層体
は樹脂を含侵し半硬化させた繊維織布(プリプレ
グ)を積層して圧力を加え、完全硬化したもの
で、回転軸に直角な平面は等方性を呈するように
織布を一定角度ずつ回転させずらしてあるものを
いう。ロータの製造方法はカーボンのプリプレグ
群とガラスのプリプレグ群を同時に積層して成形
する方法とカーボンのプリプレグ群とガラスのプ
リプレグ群とを別々に成形し、のちに2つのブロ
ツクを接着する方法があるが、信頼性を考えた場
合、前者の方が好ましい。こうして成形した素材
のCFRP積層体とGFRP積層体の境界層がロータ
の本体部とクラウン部との境界と一致するように
外形加工する。本体部とクラウン部の境界部分は
応力集中を避けるため、回転軸に平行な断面形状
でみて曲線とするのが好ましい。
The pseudo-isotropic laminate used in the rotor of the present invention is made by laminating semi-cured fibrous fabrics (prepregs) impregnated with resin and completely curing them by applying pressure. This refers to fabrics that are rotated and shifted by a certain angle so that they exhibit directionality. There are two ways to manufacture rotors: one is to simultaneously laminate and mold carbon prepregs and glass prepregs, and the other is to mold carbon prepregs and glass prepregs separately and then glue the two blocks together. However, when considering reliability, the former is preferable. The outer shape is processed so that the boundary layer between the CFRP laminate and the GFRP laminate formed in this manner matches the boundary between the main body portion and the crown portion of the rotor. In order to avoid stress concentration, the boundary between the main body and the crown is preferably curved when viewed in cross section parallel to the axis of rotation.

遠心分離機用ロータは前述したように本体部と
クラウン部とで外径が異なるため遠心力も異な
り、その結果、半径方向に対する任意の点におけ
る変化が本体部とクラウン部とで異つている。こ
のため本体部とクラウン部の境界付近はこの変位
差のために層間にせん断応力が生ずる。
As described above, in a rotor for a centrifugal separator, the main body and the crown have different outer diameters, so the centrifugal force also differs, and as a result, the change at any point in the radial direction is different between the main body and the crown. Therefore, near the boundary between the main body portion and the crown portion, shear stress is generated between the layers due to this displacement difference.

擬似等方性繊維強化プラスチツク積層体は半径
方向、円周方向に比べて軸方向の引張強度や層間
せん断強度が非常に小さく、せん断力が層間に働
くと破壊の原因となる。このせん断力をなくすた
めに本体部とクラウン部との境界付近の変位差を
できるだけ小さくしなければならない本発明では
クラウン部に擬似等方性ガラス繊維強化プラスチ
ツク積層体を用い本体部の底面の外径1に対して
クラウン部の上面の外径を0.35〜0.70にしてある
ので境界層の変位差が小さくなりせん断強度の許
容値に収めることができ、強度に優れを安価なロ
ータが得られる。
Pseudo-isotropic fiber-reinforced plastic laminates have much lower tensile strength and interlaminar shear strength in the axial direction than in the radial and circumferential directions, and when shear force acts between the layers, it causes destruction. In order to eliminate this shearing force, it is necessary to minimize the displacement difference near the boundary between the main body and the crown.In the present invention, a quasi-isotropic glass fiber reinforced plastic laminate is used for the crown, and the outside of the bottom surface of the main body is Since the outer diameter of the upper surface of the crown portion is set to 0.35 to 0.70 with respect to the diameter 1, the difference in displacement of the boundary layer becomes small and the shear strength can be kept within the allowable value, and a rotor with excellent strength and low cost can be obtained.

なお本体部、クラウン部の形状は必ずしも真円
柱状である必要なく、多少の変形は許容される。
Note that the shapes of the main body portion and the crown portion do not necessarily have to be perfectly cylindrical, and some deformation is allowed.

次に本体部とクラウン部は直接接続してもよい
が、より応力集中値の低下を図るために境界部分
付近でカーボン積層体からガラス積層体へと材質
を徐々に移行させた方が好ましい。
Next, the main body portion and the crown portion may be directly connected, but in order to further reduce the stress concentration value, it is preferable to gradually transition the material from the carbon laminate to the glass laminate near the boundary portion.

すなわち、本体部とクラウン部を回転軸に沿つ
て本体部からクラウン部に移行するに従い、カー
ボン繊維強化プラスチツク積層体:ガラス繊維強
化プラスチツク積層体の積層構成比率を1:0〜
0:1へと徐々に変化させた境界層を介して接合
することが好ましい。
That is, as the main body part and the crown part move from the main part to the crown part along the rotation axis, the laminated composition ratio of carbon fiber reinforced plastic laminate: glass fiber reinforced plastic laminate is changed from 1:0 to 1:0.
It is preferable to bond via a boundary layer gradually changing to 0:1.

たとえばカーボンのプリプレグ4枚重ねてガラ
スのプリプレグを1枚入れるこれをしばらくくり
返した後、次にカーボンのプリプレグ3枚重ねて
ガラスのプリプレグ1枚入れ、数回これをくり返
すといつたパターンを順次行つてゆけばよい。こ
のようにして積層すれば境界層の急激な応力変化
を避けることができ安定した材質を得ることがで
きる。ここでガラス繊維にはEガラス、Sガラス
のどちらを用いてもよい。
For example, stack 4 sheets of carbon prepreg and add 1 sheet of glass prepreg. After repeating this for a while, then stack 3 sheets of carbon prepreg and add 1 sheet of glass prepreg, and repeat this several times to create the pattern. Just go. By laminating the layers in this manner, sudden stress changes in the boundary layer can be avoided and a stable material can be obtained. Here, either E glass or S glass may be used for the glass fiber.

次に実施例について述べる。 Next, examples will be described.

第1図は試料穴を回転軸と平行に設けたバーテ
イカルタイプロータの縦断面図である。本体部1
は30°ずつずらしたカーボンクロスによる擬似等
方性カーボン繊維強化プラスチツク積層体を用
い、クラウン部3は同じく30°ずつずらしたEガ
ラスクロスによる擬似等方性ガラス繊維強化プラ
スチツク積層体を用いた。本体部1の厚みは80
mm、クラウン部の厚みは40mmで積層したときのカ
ーボン、ガラスクロス1枚当たりの厚みはほぼ
0.2mmとなるのでそれぞれ、プリプレグを400枚、
200枚使用する。本体部1の外径φ191.2に対して
クラウン部外径はφ114であり、このときのクラ
ウン部上面の外径/本体部底面の外径は0.60とな
る。第2図に65000rpm時の中心からの半径に対
するクラウン部の変位6と本体部の変位7のグラ
フを示す。これを見るとそれぞれの変位は完全に
一致はしないがほぼ同等に伸びており、発生する
せん断力は強度内に許容される。境界層5はカー
ボンクロスとEガラスクロスの2種類の材料を用
いたハイブリツド構造とした。その構造を第3図
に示す。
FIG. 1 is a longitudinal sectional view of a vertical type rotor in which sample holes are provided parallel to the rotation axis. Main body part 1
For the crown part 3, a pseudo-isotropic carbon fiber-reinforced plastic laminate made of carbon cloth shifted by 30° was used, and for the crown portion 3, a pseudo-isotropic glass fiber-reinforced plastic laminate made of E-glass cloth shifted by 30° was used. The thickness of main body part 1 is 80
mm, the thickness of the crown part is 40mm, and the thickness of each carbon glass cloth when laminated is approximately
Since it is 0.2mm, 400 sheets of prepreg each,
Use 200 sheets. The outer diameter of the crown portion is φ114 while the outer diameter of the main body portion 1 is φ191.2, and the outer diameter of the top surface of the crown portion/the outer diameter of the bottom surface of the main body portion at this time is 0.60. FIG. 2 shows a graph of the displacement 6 of the crown portion and the displacement 7 of the main body portion with respect to the radius from the center at 65,000 rpm. Looking at this, the respective displacements do not match completely, but they are elongated almost equally, and the shearing force generated is within the allowable strength. The boundary layer 5 has a hybrid structure using two types of materials: carbon cloth and E-glass cloth. Its structure is shown in FIG.

図に示すようにカーボンプリプレグ:Eガラス
プリプレグの比率を4:1、3:1、2:1、
1:1、1:2、1:3、1:4と本体部1から
クラウン部3へと徐々に移行させてゆき、材質の
急激な変化を避けるようにした。プリプレグは
30°ずつずらして擬似等方性とし50枚のプリプレ
グを用いて厚さ10mmの層にした。第1図で試料穴
2は段付形状とし、この段差で試料を封入したア
ダプタが落下するのを防いでいる。試料穴は全部
で8個設けてある。クラウン穴4には駆動軸を挿
入し摩擦力によつて軸からロータにトルクが伝達
される。
As shown in the figure, the ratio of carbon prepreg:E glass prepreg is 4:1, 3:1, 2:1,
1:1, 1:2, 1:3, and 1:4, the material was gradually transferred from the main body part 1 to the crown part 3 to avoid sudden changes in the material. Prepreg is
A layer of 10 mm thick was made using 50 sheets of prepreg, which were shifted by 30 degrees to achieve pseudo-isotropy. In FIG. 1, the sample hole 2 has a stepped shape, and this step prevents the adapter containing the sample from falling. A total of eight sample holes are provided. A drive shaft is inserted into the crown hole 4, and torque is transmitted from the shaft to the rotor by frictional force.

このようにして作られたロータは全部がCFRP
積層体からなるロータと比べて同性能を維持しな
がら価格が安くなる。現在Eガラスクロスの価格
はカーボンクロスに比べて単位重量当たり約1/20
であり材料費のみで約30%の価格低減を計ること
ができ経済的な効果は大きい。
The rotor made in this way is entirely made of CFRP.
Compared to rotors made of laminates, the cost is lower while maintaining the same performance. Currently, the price of E-glass cloth is about 1/20 per unit weight compared to carbon cloth.
This means that the cost of materials alone can be reduced by approximately 30%, which has a large economical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバーテイカルタイプロータの縦断面図
であり、斜視図である。第2図は65000rpm時の
中心からの半径に対する本体部とクラウン部の変
位を示したグラフである。第3図は境界層におけ
るEガラスプリプレグとカーボンプリプレグの積
層構成を示した斜視図である。 符号の説明、1……擬似等方性カーボン強化繊
維プラスチツク製本体部、2……試料穴、3……
擬似等方性Eガラス強化繊維プラスチツク製クラ
ウン部、4……クラウン穴、5……境界層、6…
…クラウン部の変位、7……本体部の変位。
FIG. 1 is a vertical sectional view and a perspective view of a vertical type rotor. FIG. 2 is a graph showing the displacement of the main body portion and the crown portion with respect to the radius from the center at 65,000 rpm. FIG. 3 is a perspective view showing a laminated structure of E-glass prepreg and carbon prepreg in the boundary layer. Explanation of symbols, 1...Main body made of pseudo-isotropic carbon reinforced fiber plastic, 2...Sample hole, 3...
Pseudo-isotropic E-glass reinforced fiber plastic crown part, 4... Crown hole, 5... Boundary layer, 6...
... Displacement of the crown part, 7... Displacement of the main body part.

Claims (1)

【特許請求の範囲】 1 試料穴を有する擬似等方性のカーボン繊維強
化プラスチツク積層体製の円柱状の本体部と駆動
軸をさし込むクラウン穴を有する擬似等方性のガ
ラス繊維強化プラスチツク積層体製の円柱状のク
ラウン部を、本体部底面の外径に対するクラウン
部上面の外径の比が0.35〜0.70になるように接合
したことを特徴とする遠心分離機用ロータ。 2 本体部とクラウン部を回転軸に沿つて本体部
からクラウン部に移行するに従い、カーボン繊維
強化プラスチツク積層体:ガラス繊維強化プラス
チツク積層体の積層構成比率を1:0から0:1
へと徐々に変化させた境界層を介して接合したこ
とを特徴とする特許請求の範囲第1項記載の遠心
分離機用ロータ。
[Scope of Claims] 1. A cylindrical main body made of a pseudo-isotropic carbon fiber-reinforced plastic laminate having a sample hole and a pseudo-isotropic glass fiber-reinforced plastic laminate having a crown hole into which a drive shaft is inserted. 1. A rotor for a centrifuge, characterized in that a cylindrical crown made of a body is joined such that the ratio of the outer diameter of the top surface of the crown to the outer diameter of the bottom of the main body is 0.35 to 0.70. 2 As the main body and crown move from the main body to the crown along the rotation axis, the laminated composition ratio of carbon fiber reinforced plastic laminate:glass fiber reinforced plastic laminate is changed from 1:0 to 0:1.
2. A rotor for a centrifuge according to claim 1, wherein the rotor is joined through a boundary layer that gradually changes to .
JP22476983A 1983-11-29 1983-11-29 Rotor for centrifugal separator Granted JPS60118259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22476983A JPS60118259A (en) 1983-11-29 1983-11-29 Rotor for centrifugal separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22476983A JPS60118259A (en) 1983-11-29 1983-11-29 Rotor for centrifugal separator

Publications (2)

Publication Number Publication Date
JPS60118259A JPS60118259A (en) 1985-06-25
JPH045505B2 true JPH045505B2 (en) 1992-01-31

Family

ID=16818930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22476983A Granted JPS60118259A (en) 1983-11-29 1983-11-29 Rotor for centrifugal separator

Country Status (1)

Country Link
JP (1) JPS60118259A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147393B2 (en) * 2009-01-19 2012-04-03 Fiberlite Centrifuge, Llc Composite centrifuge rotor
US8147392B2 (en) * 2009-02-24 2012-04-03 Fiberlite Centrifuge, Llc Fixed angle centrifuge rotor with helically wound reinforcement
US8323169B2 (en) * 2009-11-11 2012-12-04 Fiberlite Centrifuge, Llc Fixed angle centrifuge rotor with tubular cavities and related methods
US8328708B2 (en) 2009-12-07 2012-12-11 Fiberlite Centrifuge, Llc Fiber-reinforced swing bucket centrifuge rotor and related methods

Also Published As

Publication number Publication date
JPS60118259A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
US5362301A (en) Fixed-angle composite centrifuge rotor
JP2519199B2 (en) Rotor device for helicopter
CA1325628C (en) Hybrid helicopter rotor hub retention plate
US10328676B2 (en) Composite structure
JP2538424Y2 (en) Rotary wing aircraft blade
JPH0433266B2 (en)
JP2555152B2 (en) Wing made of composite material and manufacturing method thereof
JP2902116B2 (en) Ultra-lightweight composite centrifugal rotor
JPS63280B2 (en)
CA1320712C (en) Two-step composite joint
JPH0824834B2 (en) Mixing device
US4797064A (en) Composite helicopter rotor hub
JPH045505B2 (en)
EP0496695A2 (en) A unitary, multi-legged helicopter rotor flexbeam made solely of composite materials and the method of manufacturing same
US4150582A (en) Rotor ring for inertial energy storage rotor
CA3011285C (en) Cylindrical rotational body
JPS63199915A (en) Power driving shaft made of fiber reinforced plastic
Wettergren Delamination in composite rotors
EP0225610A2 (en) Composite ultracentrifuge rotor
JP3361116B2 (en) Hollow cylindrical component made of fiber reinforced plastic
JPS61101262A (en) Rotor for centrifugal separator
JPS6036343Y2 (en) Centrifuge rotor
JPH01126412A (en) Manufacture of fiber reinforced resin made transmission pipe
JPH06246189A (en) Centrifuge rotor
JPS61101263A (en) Rotor for centrifugal separator