JPS624067B2 - - Google Patents

Info

Publication number
JPS624067B2
JPS624067B2 JP55144997A JP14499780A JPS624067B2 JP S624067 B2 JPS624067 B2 JP S624067B2 JP 55144997 A JP55144997 A JP 55144997A JP 14499780 A JP14499780 A JP 14499780A JP S624067 B2 JPS624067 B2 JP S624067B2
Authority
JP
Japan
Prior art keywords
point
parts
polyolefin
weight
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55144997A
Other languages
Japanese (ja)
Other versions
JPS5767640A (en
Inventor
Tsutomu Hayakawa
Sumio Matsuno
Kenji Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP55144997A priority Critical patent/JPS5767640A/en
Publication of JPS5767640A publication Critical patent/JPS5767640A/en
Publication of JPS624067B2 publication Critical patent/JPS624067B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は高枩における耐熱老化性の改善された
耐熱性架橋ポリオレフむン組成物に関する。 ポリオレフむンはすぐれた耐候性、機械特性、
電気特性を有しおいるために電気絶瞁材料ずしお
広く䜿甚に䟛されおいるが、耐熱倉圢性がわるい
のでたずえば120℃以䞊の高枩で連続䜿甚される
電気絶瞁材料の甚途に甚いるばあいは架橋などの
手段を講じお耐熱倉圢性を高めるこずが必芁であ
る。 しかし、架橋により単に耐熱倉圢性をよくしお
もポリオレフむン自䜓の酞化に察する抵抗性を改
良しないかぎり、到底高枩での連続䜿甚に耐えう
るものはえられない。埓来の架橋ポリオレフむン
はかかる点においお高枩での耐熱老化性に劣るも
のであり、高枩で連続䜿甚される電気絶瞁材料の
甚途には䞍満足なものである。そのため埓来はや
むをえず高䟡ではあるが、180℃以䞊の高枩にも
耐えるようなシリコヌンゎムやフツ玠系暹脂が甚
いられおいた。 本発明の目的は前蚘の点に鑑みお、高枩での長
時間の連続䜿甚に耐えうる架橋ポリオレフむンを
提䟛するにある。 すなわち本発明は、 (1) ポリオレフむンにベンゟむミダゟヌル系老
化防止剀およびb44′−ビスα−ゞメチルベ
ンゞルゞプニルアミンが配合され、該お
よび成分の配合割合が、図面に瀺される盎角
座暙〔軞にポリオレフむン100郚重量郚、
以䞋同様に察する成分の郚数をずり、軞
にポリオレフむン100郚に察する成分の郚数
をずる〕における点、点
、点および点で囲たれる
範囲にあるこずを特城ずする耐熱性架橋ポリオ
レフむン組成物、および (2) 前蚘組成物にさらに酞化亜鉛、酞化カドミ
りム、酞化鉛および酞化マグネシりムよりなる
矀から遞ばれた少なくずも皮の金属酞化物
が、ポリオレフむン100郚に察しお10郚以䞋で
配合されおなる耐熱性架橋ポリオレフむン組成
物に関する。 本発明はポリオレフむンに酞化防止剀ずしお前
蚘および成分を、さらにはこれらに加えお
成分を前蚘特定の割合で配合したこずを特城ずす
るものであり、かかる酞化防止剀の組み合わせに
おいおは各成分の間に顕著な盞剰効果が発揮され
お、高枩での耐熱老化性にすぐれた架橋ポリオレ
フむンがえられるのである。しかも前蚘成分た
たは成分からなる酞化防止剀においおは、架橋
阻害が少なく、高枩における揮散が少なく、か぀
暹脂ずの盞溶性がよくブリヌドなどの惧れがな
い。 前蚘および成分は個々にはゎム類、プ
ラスチツク類の酞化防止剀ずしお知られおいるも
のであるが、およびの成分の組み合わせた
たはおよびの成分の組み合わせがポリ
オレフむンの高枩での耐熱老化性においお顕著な
盞剰効果を発揮するずいう事実は本発明においお
はじめお芋出されたものである。しかしお本発明
においおは、安䟡なポリオレフむンを120〜150℃
皋床の高枩における長時間の連続䜿甚に耐えうる
ものずなしえ、埓来䜿甚されおいたシリコヌンゎ
ムやフツ玠系暹脂などの高䟡な材料にかえお䜿甚
するこずが可胜ずな぀たのであり、その工業的䟡
倀はきわめお倧きい。 本発明においお成分ずしお甚いられるベンゟ
むミダゟヌル系老化防止剀ずしおは、−メルカ
プトベンゟむミダゟヌル、−メルカプトベンゟ
むミダゟヌルの亜鉛塩などがあげられる。 成分の4′−α−ゞメチルベンゞルゞ
プニルアミンは匏 で瀺されるものである。 前蚘および成分のポリオレフむンに察する
配合割合は、盎角座暙の点、点
、点および点で囲たれ
る範囲以䞋、配合領域ずいうにあるこずが
必芁である。成分およびたたは成分の配
合割合が配合領域より少ないずきは耐熱老化性
における盞剰効果が充分に珟われず、䞀方配合領
域より倚いばあいは配合量の増加に比しお効果
が向䞊されないから経枈的に䞍利であり、しかも
架橋阻害、ブリヌドなどの奜たしくない珟象が生
じる傟向がある。かかる芳点から、本発明におい
おはおよび成分の配合割合が、盎角座暙にお
けるA1点、B1点、点
およびD1点で囲たれる範囲
以䞋、配合領域ずいう、なかんづくA1点
、B2点、C1点およびD2
点で囲たれる範囲以䞋、配合領域
ずいうにあるのが奜たしい。 本発明においおは、前蚘および成分に加え
お成分ずしお酞化亜鉛Zno、酞化カドミりム
Cdo、酞化鉛Pboおよび酞化マグネシりムgの
皮もしくは皮以䞊をポリオレフむン100郚に
察しお10郚以䞋で配合するずきに、耐熱老化性が
より䞀局向䞊するこずを芋出した。成分の配合
割合が10郚より倚いばあいは配合量の増加に比し
お効果が向䞊されず、奜たしくない。成分の奜
たしい配合割合は〜郚である。 および成分に加えお成分を䜵甚するばあ
い、および成分の配合割合が前蚘配合領域
、なかんづく配合領域にあるずき耐熱老化性
におけるおよび成分の盞剰効果が最も顕
著に珟われ、か぀架橋阻害、ブリヌドなどの奜た
しくない珟象が生ぜず、経枈的であるので奜たし
い。 本発明に甚いるポリオレフむンずしおはポリ゚
チレンず゚チレン−プロピレン−非共圹ゞ゚ン䞉
元共重合䜓ずのブレンド物が適しおいるが、ポリ
゚チレン、゚チレン−酢酞ビニル共重合䜓、゚チ
レン−アルキルアクリレヌト共重合䜓、゚チレン
−プロピレン共重合䜓、゚チレン−プロピレン−
非共圹ゞ゚ン䞉元共重合䜓、゚チレン−α−オレ
フむン共重合䜓などの゚チレン共重合䜓の皮も
しくは皮以䞊のブレンド物などの䜿甚も可胜で
ある。 本発明においお前蚘ポリオレフむンの架橋は有
機過酞化物などの架橋剀による方法、電子線照射
による方法など通垞の架橋方法により行ないう
る。 有機過酞化物架橋剀ずしおは通垞䞀般に甚いら
れおいるものがいずれも甚いられうるが、たずえ
ばゞクミルパヌオキサむド、ベンゟむルパヌオキ
サむド、クメンハむドロパヌオキサむド、
−ビス−ブチルパヌオキシ−−
トリメチルシクロヘキサンなどがあげられる。こ
れら架橋剀はポリオレフむン100郚に察しお〜
郚甚いるのが奜たしい。架橋剀の割合が前蚘範
囲より少ないずきは充分な架橋が行なわれず、前
蚘範囲より倚いずきは過架橋ずなり熱安定性の䜎
䞋をきたすばかりでなく、架橋剀の分解残枣が倚
量に生じ、暹脂衚面ぞのブルヌミングが生じる。
前蚘架橋剀は必芁に応じお゚チレンゞメタクリレ
ヌト、トリアリルむ゜シアヌレヌトなどの䞀般に
甚いられおいる架橋助剀ず䜵甚しおもよい。 本発明の組成物には前蚘成分以倖に、クレヌ、
タルク、氎酞化アルミニりム、炭酞カルシりムな
どの無機充填剀、塩玠系、臭玠系などの難燃剀、
ホり酞亜鉛、メタホり酞バリりム、酞化アンチモ
ンなどの難燃助剀、カヌボンブラツク、着色剀、
滑剀などを適宜配合しおもよい。 本発明の耐熱性架橋ポリオレフむン組成物は高
枩における耐熱老化性がすぐれおいるので、たず
えば120〜150℃皋床の高枩䞋で長時間連続䜿甚さ
れる電気絶瞁材料などに奜適に適甚される。 ぀ぎに実斜䟋および比范䟋をあげお本発明の組
成物を説明する。 実斜䟋〜および比范䟋〜 第衚に瀺される基準配合に第衚に瀺される
薬剀を配合し、110〜130℃のオヌブンロヌルで充
分に混緎したのち、175℃、150Kgcm2、15分間の
条件で加熱加圧しお架橋し、厚さmmのシヌトを
䜜成した。 えられたシヌトに぀いお高枩での耐熱老化性を
みるために、UL150℃玚の芏栌に準じお180℃で
日間老化埌の䌞びを枬定した。䌞びから
䌞びの枬定はJIS  6301に準拠しお行な぀た。
たた老化前の䌞びず老化埌の䌞び残率を求
めた。なお老化埌の䌞びが50末満のものは脆化
ずした。これらの結果を第衚に瀺す。なお第
衚における各薬剀の配合割合はポリオレフむン
100郚に察する郚数である以䞋同様。
The present invention relates to a heat-resistant crosslinked polyolefin composition with improved heat aging resistance at high temperatures. Polyolefin has excellent weather resistance, mechanical properties,
Due to its electrical properties, it is widely used as an electrical insulating material, but because of its poor heat deformation resistance, cross-linking is recommended when used as an electrical insulating material that is used continuously at high temperatures of 120°C or higher. It is necessary to take such measures to improve heat deformation resistance. However, even if the heat deformation resistance is simply improved by crosslinking, unless the resistance to oxidation of the polyolefin itself is improved, it will not be possible to obtain a product that can withstand continuous use at high temperatures. In this respect, conventional crosslinked polyolefins have poor heat aging resistance at high temperatures, and are unsatisfactory for use as electrical insulating materials that are continuously used at high temperatures. For this reason, silicone rubber and fluorine-based resins, which are unavoidably expensive but can withstand high temperatures of 180°C or higher, have been used in the past. In view of the above points, an object of the present invention is to provide a crosslinked polyolefin that can withstand long-term continuous use at high temperatures. That is, the present invention provides the following features: (1) a polyolefin is blended with a benzimidazole anti-aging agent and b 4,4'-bis(α-dimethylbenzyl) diphenylamine, and the blending ratio of components a and b is at right angles as shown in the drawings. Coordinates [100 parts of polyolefin (parts by weight,
The same applies hereinafter)), and the y-axis is the number of parts of component b relative to 100 parts of polyolefin], point A is 2,1, point B is 12,0, etc.
5. A heat-resistant crosslinked polyolefin composition characterized by being in a range surrounded by points C 12, 6 and points D 1, 6, and (2) the composition further contains c zinc oxide, cadmium oxide, lead oxide and The present invention relates to a heat-resistant crosslinked polyolefin composition in which at least one metal oxide selected from the group consisting of magnesium oxide is blended in an amount of 10 parts or less per 100 parts of the polyolefin. The present invention provides polyolefin with the above-mentioned components a and b as antioxidants, and furthermore, in addition to these, C.
It is characterized in that the ingredients are blended in the above-mentioned specific proportions, and in such a combination of antioxidants, a remarkable synergistic effect is exhibited between each ingredient, resulting in excellent heat aging resistance at high temperatures. A crosslinked polyolefin is obtained. In addition, the antioxidant consisting of two or three components has less inhibition of crosslinking, less volatilization at high temperatures, good compatibility with resins, and no risk of bleeding. The above components a, b and c are individually known as antioxidants for rubbers and plastics, but a combination of two components a and b or a combination of three components a, b and c is The fact that polyolefins exhibit a remarkable mutual effect on heat aging resistance at high temperatures was discovered for the first time in the present invention. However, in the present invention, inexpensive polyolefin is heated to 120 to 150°C.
It has become possible to withstand continuous use for long periods of time at moderately high temperatures, and it has become possible to use it in place of conventionally used expensive materials such as silicone rubber and fluoroplastics. The value is extremely large. Examples of the benzimidazole anti-aging agent used as component a in the present invention include 2-mercaptobenzimidazole and a zinc salt of 2-mercaptobenzimidazole. Component b, 4,4'-(α-dimethylbenzyl)diphenylamine, has the formula; This is shown in . The blending ratio of the a and b components to the polyolefin is as follows: point A 2, 1, point B 12, 1 on the rectangular coordinates.
0.5, within the range surrounded by points C 12, 6 and points D 1, 6 (hereinafter referred to as blending region). When the blending ratio of component a and (or) component b is less than the blending range, the mutual effect on heat aging resistance will not be sufficiently exhibited, whereas when it is higher than the blending range, the effect will improve compared to the increase in the blending amount. This is economically disadvantageous because it is not carried out, and moreover, undesirable phenomena such as crosslinking inhibition and bleeding tend to occur. From this point of view, in the present invention, the blending ratios of components a and b are as follows: A 1 point 2.5.1, B 1 point 12.1, C point 1 in rectangular coordinates.
The range surrounded by 2, 6 and D 1 point 2.5, 6 (hereinafter referred to as blending area), especially A 1 point 2.5, 1, B 2 points 6, 1, C 1 point 6, 3, and D 2
It is preferable to be in the range surrounded by points 2, 5 and 3 (hereinafter referred to as blending region). In the present invention, in addition to the a and b components, zinc oxide Zno and cadmium oxide are used as the c component.
It has been found that heat aging resistance is further improved when one or more of Cdo, lead oxide Pbo, and magnesium oxide M g o is blended in an amount of 10 parts or less per 100 parts of polyolefin. If the blending ratio of component c is more than 10 parts, the effect will not be improved as compared to an increase in the blending amount, which is not preferable. The preferred blending ratio of component c is 3 to 6 parts. When component c is used in combination with components a and b, the additive effect of components a, b, and c on heat aging resistance is most pronounced when the blending ratio of components a and b is in the above blending range, especially in the blending range. This is preferable because it is economical and does not cause undesirable phenomena such as crosslinking inhibition or bleeding. As the polyolefin used in the present invention, a blend of polyethylene and an ethylene-propylene-nonconjugated diene terpolymer is suitable, but polyethylene, ethylene-vinyl acetate copolymer, ethylene-alkyl acrylate copolymer, ethylene -Propylene copolymer, ethylene-propylene-
It is also possible to use one type or a blend of two or more types of ethylene copolymers such as non-conjugated diene terpolymers and ethylene-α-olefin copolymers. In the present invention, the polyolefin can be crosslinked by a conventional crosslinking method such as a method using a crosslinking agent such as an organic peroxide or a method using electron beam irradiation. As the organic peroxide crosslinking agent, any commonly used organic peroxide crosslinking agent can be used, such as dicumyl peroxide, benzoyl peroxide, cumene hydroperoxide, 1,1
-bis(t-butylperoxy)-3,3,5-
Examples include trimethylcyclohexane. These crosslinking agents are used in amounts ranging from 1 to 100 parts per 100 parts of polyolefin.
Preferably, 6 parts are used. If the proportion of the crosslinking agent is less than the above range, sufficient crosslinking will not be carried out, and if it is greater than the above range, it will not only result in over-crosslinking, resulting in a decrease in thermal stability, but also a large amount of decomposition residue of the crosslinking agent, which may damage the resin surface. Blooming occurs.
The crosslinking agent may be used in combination with commonly used crosslinking aids such as ethylene dimethacrylate and triallylisocyanurate, if necessary. In addition to the above-mentioned components, the composition of the present invention includes clay,
Inorganic fillers such as talc, aluminum hydroxide, and calcium carbonate; flame retardants such as chlorine and bromine;
Flame retardant aids such as zinc borate, barium metaborate, antimony oxide, carbon black, colorants,
A lubricant or the like may be added as appropriate. Since the heat-resistant crosslinked polyolefin composition of the present invention has excellent heat aging resistance at high temperatures, it is suitably applied to electrical insulation materials that are used continuously for long periods of time at high temperatures of, for example, about 120 to 150°C. Next, the composition of the present invention will be explained with reference to Examples and Comparative Examples. Examples 1 to 2 and Comparative Examples 1 to 4 The chemicals shown in Table 2 were blended with the standard formulation shown in Table 1, thoroughly kneaded in an oven roll at 110 to 130°C, and then heated at 175°C and 150 kg/kg. cm 2 for 15 minutes to crosslink and create a sheet with a thickness of 1 mm. In order to examine the heat aging resistance of the resulting sheet at high temperatures, the elongation (%) after aging at 180°C for 7 days was measured in accordance with the UL 150°C class standard. Measurement from elongation to elongation was performed in accordance with JIS K 6301.
In addition, the elongation before aging and the remaining elongation rate (%) after aging were determined. In addition, those whose elongation after aging was less than 50% were considered to be brittle. These results are shown in Table 2. Furthermore, the second
The compounding ratio of each drug in the table is polyolefin.
This is the number of copies per 100 copies (the same applies below).

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 第衚から明らかなごずく、酞化亜鉛ず−メ
ルカプトベンゟむミダゟヌルたたはその亜鉛塩ず
−ビスα−ゞメチルベンゞルゞプニ
ルアミンずを䜵甚するばあいは実斜䟋〜
耐熱老化性が顕著にすぐれおいるが、4′−ビ
スα−ゞメチルベンゞルゞプニルアミンに
かえおポリオレフむンの有効な老化防止剀ずしお
埓来より䜿甚されおいる−トリメチル
−−ゞヒドロキノリンたたは4′−チオ
−ビス−−ブチル−−クレゟヌルを甚
いたばあいは比范䟋〜耐熱老化性が劣぀
おいる。 実斜䟋〜11および比范䟋〜10 第衚の基準配合に第衚に瀺される薬剀を配
合したほかは実斜䟋〜ず同様にしおシヌトを
䜜成し、それに぀いお老化前埌の䌞びを枬定し
た。結果を第衚に䜵蚘する。
[Table] As is clear from Table 2, when zinc oxide, 2-mercaptobenzimidazole or its zinc salt, and 4,4-bis(α-dimethylbenzyl)diphenylamine are used together (Examples 1 and 2)
2,2,4-trimethyl-1, which has remarkable heat aging resistance, has been conventionally used as an effective anti-aging agent for polyolefins in place of 4,4'-bis(α-dimethylbenzyl)diphenylamine. , 2-dihydroquinoline or 4,4'-thio-bis(6-t-butyl-m-cresol) (Comparative Examples 1 to 4) had poor heat aging resistance. Examples 3 to 11 and Comparative Examples 5 to 10 Sheets were prepared in the same manner as in Examples 1 to 2, except that the chemicals shown in Table 3 were added to the standard formulation shown in Table 1, and the elongation before and after aging was measured. was measured. The results are also listed in Table 3.

【衚】【table】

【衚】 第衚から明らかなごずく、酞化亜鉛ず−メ
ルカプトベンゟむミダゟヌル亜鉛塩ず4′−ビ
スα−ゞメチルベンゞルゞプニルアミンず
の䜵甚においおは、−メルカプトベンゟむミダ
ゟヌル亜鉛塩および4′−ビスα−ゞメチル
ベンゞルゞプニルアミンの配合割合が配合領
域さらにはにあるずきは実斜䟋〜11、
−メルカプトベンゟむミダゟヌル亜鉛塩および
4′−ビスα−ゞメチルベンゞルゞプニ
ルアミンの配合割合が配合領域より少ないばあ
い比范䟋〜10にくらべお耐熱老化性がすぐ
れおいる。たた酞化亜鉛ず−メルカプトベンゟ
むミダゟヌル亜鉛塩たたは4′−ビスα−ゞ
メチルベンゞルゞプニルアミンずの成分の
䜵甚のばあいは比范䟋〜、埌者の成分を
いくら倚く配合しおも耐熱老化性がた぀たくない
こずがわかる。 実斜䟋 12〜22 第衚の基準配合に第衚に瀺される薬剀を配
合したほかは実斜䟋〜ず同様にしおシヌトを
䜜成し、それに぀いお老化前埌の䌞びを枬定し
た。結果を第衚に䜵蚘する。なお第衚には参
考のために実斜䟋の結果も䜵蚘した。
[Table] As is clear from Table 3, when using zinc oxide, 2-mercaptobenzimidazole zinc salt, and 4,4'-bis(α-dimethylbenzyl) diphenylamine in combination, 2-mercaptobenzimidazole zinc salt and , 4′-bis(α-dimethylbenzyl)diphenylamine is within the blending range (Examples 3 to 11),
The heat aging resistance is superior when the blending ratio of 2-mercaptobenzimidazole zinc salt and 4,4'-bis(α-dimethylbenzyl)diphenylamine is lower than the blending range (Comparative Examples 9 to 10). In addition, when using two components together, zinc oxide and 2-mercaptobenzimidazole zinc salt or 4,4'-bis(α-dimethylbenzyl)diphenylamine (Comparative Examples 5 to 8), it is important to consider how much of the latter component is mixed. However, it can be seen that the heat aging resistance is not good. Examples 12-22 Sheets were prepared in the same manner as in Examples 1-2, except that the chemicals shown in Table 4 were added to the standard formulation shown in Table 1, and the elongation before and after aging was measured. The results are also listed in Table 4. Note that the results of Example 1 are also listed in Table 4 for reference.

【衚】 第衚から明らかなごずく、−メルカプトベ
ンゟむミダゟヌル亜鉛塩ず4′−ビスα−ゞ
メチルベンゞルゞプニルアミンずの配合割合
が配合領域の範囲内にはあるが配合領域の範
囲倖にあるずきは酞化亜鉛の添加効果があたり顕
著でないが、−メルカプトベンゟむミダゟヌル
亜鉛塩ず4′−ビスα−ゞメチルベンゞル
ゞプニルアミンずの配合割合が配合領域、な
かんづくの範囲内にあるずき酞化亜鉛の添加効
果がずくに顕著である。 実斜䟋23〜31および比范䟋11 第衚の基準配合に第衚に瀺される薬剀を配
合したほかは実斜䟋〜ず同様にしおシヌトを
䜜成し、それに぀いお老化前埌の䌞びを枬定し
た。結果を第衚に䜵蚘する。
[Table] As is clear from Table 4, the blending ratio of 2-mercaptobenzimidazole zinc salt and 4,4'-bis(α-dimethylbenzyl)diphenylamine is within the range of the blending range; When outside, the effect of adding zinc oxide is not so pronounced, but 2-mercaptobenzimidazole zinc salt and 4,4'-bis(α-dimethylbenzyl)
The effect of adding zinc oxide is particularly significant when the blending ratio with diphenylamine is within the blending range, especially within the range. Examples 23-31 and Comparative Example 11 Sheets were prepared in the same manner as Examples 1-2, except that the agents shown in Table 5 were added to the standard formulation shown in Table 1, and the elongation before and after aging was measured. did. The results are also listed in Table 5.

【衚】 第衚から明らかなごずずく、酞化亜鉛の配合
割合が倚くなるに぀れお耐熱老化性が向䞊される
が実斜䟋23〜28、郚を超えるずそれ以䞊向
䞊されない比范䟋11。たた酞化亜鉛にかえお
酞化カドミりム、酞化鉛たたは酞化マグネシりム
を配合したばあいにもすぐれた耐熱老化性が発揮
される実斜䟋29〜31。
[Table] As is clear from Table 5, as the proportion of zinc oxide increases, the heat aging resistance improves (Examples 23 to 28), but when it exceeds 9 parts, it does not improve any further (Comparative Example 11). ). Excellent heat aging resistance is also exhibited when cadmium oxide, lead oxide or magnesium oxide is blended instead of zinc oxide (Examples 29 to 31).

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の組成物における成分ベン
ゟむミダゟヌル系老化防止剀ず成分4′−
ビスα−ゞメチルベンゞルゞプニルアミ
ンの配合割合を瀺す盎角座暙である。
The drawing shows component a (benzimidazole anti-aging agent) and component (4,4'-
These are rectangular coordinates showing the blending ratio of bis(α-dimethylbenzyl)diphenylamine).

Claims (1)

【特蚱請求の範囲】  ポリオレフむンにベンゟむミダゟヌル系老
化防止剀およびb44′−ビスα−ゞメチルベン
ゞルゞプニルアミンが配合され、該および
成分の配合割合が、盎角座暙〔軞にポリオレ
フむン100重量郚に察する成分の重量郚数をず
り、軞にポリオレフむン100重量郚に察する
成分の重量郚数をずる〕における点、
点、点および点
で囲たれる範囲にあるこずを特城ずする耐熱性架
橋ポリオレフむン組成物。  および成分の配合割合が、盎角座暙にお
けるA1点、B1点、点
およびD1点で囲たれる範囲に
ある特蚱請求の範囲第項蚘茉の組成物。  および成分の配合割合が、盎角座暙にお
けるA1点、B2点、C1点
およびD2点で囲たれる範囲にある特
蚱請求の範囲第項蚘茉の組成物。  ポリオレフむンがポリ゚チレンず゚チレン−
プロピレン−非共圹ゞ゚ン䞉元共重合䜓ずのブレ
ンド物である特蚱請求の範囲第項、第項たた
は第項蚘茉の組成物。  成分が−メルカプトベンゟむミダゟヌル
たたは−メルカプトベンゟむミダゟヌルの亜鉛
塩である特蚱請求の範囲第項第項第項
たたは第項蚘茉の組成物。  さらに有機過酞化物が配合されおなる特蚱請
求の範囲第項第項第項第項たたは
第項蚘茉の組成物。  有機過酞化物の配合割合がポリオレフむン
100重量郚に察しお〜重量郚である特蚱請求
の範囲第項蚘茉の組成物。  ポリオレフむンに、ベンゟむミダゟヌル系
老化防止剀、b44′−ビスα−ゞメチルベンゞ
ルゞプニルアミンおよび酞化亜鉛、酞化カ
ドミりム、酞化鉛および酞化マグネシりムよりな
る矀から遞ばれた少なくずも皮の金属酞化物が
配合され、該および成分の配合割合が、盎角
座暙〔軞にポリオレフむン100重量郚に察する
成分の重量郚数をずり、軞にポリオレフむン
100重量郚に察する成分の重量郚数をずる〕に
おける点、点、点
および点で囲たれる範囲にあり、
か぀成分の配合割合がポリオレフむン100重量
郚に察しお10重量郚以䞋であるこずを特城ずする
耐熱性架橋ポリオレフむン組成物。  および成分の配合割合が、盎角座暙にお
けるA1点、B1点、点
およびD1点で囲たれる範囲に
ある特蚱請求の範囲第項蚘茉の組成物。  および成分の配合割合が、盎角座暙に
おけるA1点、B2点、C1点
およびD2点で囲たれる範囲にある
特蚱請求の範囲第項蚘茉の組成物。  成分の配合割合がポリオレフむン100重
量郚に察しお〜重量郚である特蚱請求の範囲
第項第項たたは第項蚘茉の組成物。  ポリオレフむンがポリ゚チレンず゚チレン
−プロピレン−非共圹ゞ゚ン䞉元共重合䜓ずのブ
レンド物である特蚱請求の範囲第項第項
第項たたは第項蚘茉の組成物。  成分が−メルカプトベンゟむミダゟヌ
ルたたは−メルカプトベンゟむミダゟヌルの亜
鉛塩である特蚱請求の範囲第項第項第
項第項たたは第項蚘茉の組成物。  さらに有機過酞化物が配合されおなる特蚱
請求の範囲第項第項第項第
項第項たたは第項蚘茉の組成物。  有機過酞化物の配合割合がポリオレフむン
100重量郚に察しお〜重量郚である特蚱請求
の範囲第項蚘茉の組成物。
[Scope of Claims] 1. A benzimidazole-based anti-aging agent a and b4,4'-bis(α-dimethylbenzyl) diphenylamine are blended into a polyolefin, and the blending ratio of components a and b is expressed on a rectangular coordinate [on the x-axis]. The number of parts by weight of component a relative to 100 parts by weight of polyolefin is taken, and the number of parts by weight of component a relative to 100 parts by weight of polyolefin is plotted on the y-axis.
A point 2, 1, B in [take parts by weight of ingredients]
Point 12,0.5, C point 12,6 and D point 1,6
A heat-resistant crosslinked polyolefin composition characterized by being in the range surrounded by . 2 The blending ratio of components a and b is A 1 point 2.5.1, B 1 point 12.1, C point 1 on the rectangular coordinates.
2,6 and D1 point 2.5,6. 3 The blending ratio of components a and b is A 1 point 2.5.1, B 2 point 6.1, C 1 point 6.3 in rectangular coordinates.
and D 2 points 2.5, 3. 4 Polyolefin is polyethylene and ethylene-
The composition according to claim 1, 2 or 3, which is a blend with a propylene-nonconjugated diene terpolymer. 5. The composition according to claim 1, 2, 3 or 4, wherein component a is 2-mercaptobenzimidazole or a zinc salt of 2-mercaptobenzimidazole. 6. The composition according to claim 1, 2, 3, 4 or 5, further comprising an organic peroxide. 7 The blending ratio of organic peroxide is higher than that of polyolefin.
The composition according to claim 6, in an amount of 1 to 6 parts by weight per 100 parts by weight. 8 polyolefin, a benzimidazole anti-aging agent, b 4,4'-bis(α-dimethylbenzyl) diphenylamine and c at least one metal selected from the group consisting of zinc oxide, cadmium oxide, lead oxide and magnesium oxide. The oxide is blended, and the blending ratio of components a and b is determined on a rectangular coordinate [the x-axis is the number of parts by weight of the component a relative to 100 parts by weight of the polyolefin, and the y-axis is the proportion of the polyolefin.
A point 2,1, B point 12,0.5, C point 1 in 100 parts by weight of component b]
It is in the range surrounded by points 2, 6 and D points 1, 6,
A heat-resistant crosslinked polyolefin composition, characterized in that the blending ratio of component c is 10 parts by weight or less based on 100 parts by weight of the polyolefin. 9 The blending ratio of components a and b is A 1 point 2.5.1, B 1 point 12.1, C point 1 in rectangular coordinates.
9. The composition according to claim 8, which is in the range surrounded by 2, 6 and D 1 point 2, 5, 6. 10 The blending ratio of components a and b is A 1 point 2.5.1, B 2 point 6.1, C 1 point 6.
The composition according to claim 9, which is in the range surrounded by points 2.5 and 3 . 11. The composition according to claim 8, 9 or 10, wherein the blending ratio of component c is 3 to 6 parts by weight based on 100 parts by weight of the polyolefin. 12 Claims 8 and 9, in which the polyolefin is a blend of polyethylene and an ethylene-propylene-nonconjugated diene terpolymer,
The composition according to item 10 or 11. 13 Claims 8, 9, and 1, wherein component a is 2-mercaptobenzimidazole or a zinc salt of 2-mercaptobenzimidazole
The composition according to item 0, item 11 or item 12. 14 Claims 8, 9, 10, and 11 further contain an organic peroxide.
The composition according to item 1, item 12 or item 13. 15 The blending ratio of organic peroxide is higher than that of polyolefin.
15. The composition according to claim 14, in an amount of 1 to 6 parts by weight per 100 parts by weight.
JP55144997A 1980-10-15 1980-10-15 Heat-resistant crosslinked polyolefin composition Granted JPS5767640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55144997A JPS5767640A (en) 1980-10-15 1980-10-15 Heat-resistant crosslinked polyolefin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55144997A JPS5767640A (en) 1980-10-15 1980-10-15 Heat-resistant crosslinked polyolefin composition

Publications (2)

Publication Number Publication Date
JPS5767640A JPS5767640A (en) 1982-04-24
JPS624067B2 true JPS624067B2 (en) 1987-01-28

Family

ID=15375061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55144997A Granted JPS5767640A (en) 1980-10-15 1980-10-15 Heat-resistant crosslinked polyolefin composition

Country Status (1)

Country Link
JP (1) JPS5767640A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588738A (en) * 1981-07-09 1983-01-18 Tatsuta Electric Wire & Cable Co Ltd Heat-resistant crosslinked polyolefin composition
JPS58174440A (en) * 1982-04-07 1983-10-13 Unitika Ltd Polyamide resin composition
JPS6140344A (en) * 1984-07-31 1986-02-26 Tatsuta Electric Wire & Cable Co Ltd Heat-resistant polyolefin composition
JPS62201953A (en) * 1986-02-28 1987-09-05 Tatsuta Electric Wire & Cable Co Ltd Heat-resistant polyolefin composition
JPS62212444A (en) * 1986-03-13 1987-09-18 Tatsuta Electric Wire & Cable Co Ltd Heat-resistant polyolefin composition
CA1332487C (en) * 1987-06-23 1994-10-11 Yasuaki Yamamoto Flame retardant electrical insulating composition having antifungal action
US6372828B2 (en) * 1999-11-08 2002-04-16 Equistar Chemicals, Lp High temperature flame retardant insulation compositions stabilized with zinc salt/secondary amine combinations
JP6789652B2 (en) * 2016-03-31 2020-11-25 叀河電気工業株匏䌚瀟 Resin composition, molded product, electric wire / cable and manufacturing method of electric wire / cable

Also Published As

Publication number Publication date
JPS5767640A (en) 1982-04-24

Similar Documents

Publication Publication Date Title
EP0333514B1 (en) Low toxicity, fire retardant thermoplastic material
JPS624067B2 (en)
JPH03127405A (en) Insulated wire
JPS6225697B2 (en)
JPS588738A (en) Heat-resistant crosslinked polyolefin composition
JP2648874B2 (en) Heat-resistant polyolefin composition
JPH07330980A (en) Low-smoking flame-retardant resin composition
JP2681195B2 (en) Flame retardant polyolefin composition
KR0124033B1 (en) Wire insulating thermosetting resin composition
JPS60144345A (en) Polyolefin composition
JPS60118724A (en) Crosslinkable polyolefin composition
KR920003903B1 (en) Resin composition which in low pollution and combustion retardant
JPS63286450A (en) Non-halogenated flame-retardant composition for electrical insulation with improved radiation resistance
JP2527103B2 (en) Flame retardant electrical insulation composition
JPH051814B2 (en)
JPH06220264A (en) Flame-retardant resin composition and frame-retardant insulated wire
JPH04314752A (en) Radiation-resistant flame-retardant resin composition
JPS6140344A (en) Heat-resistant polyolefin composition
JPH0235536B2 (en)
JPH08249925A (en) Tracking resistant organic insulating material
JP2857733B2 (en) Heat resistant crosslinked polyolefin composition
JPH10321044A (en) Covering material composition for electrical wire
JPH0813912B2 (en) Heat resistant flame retardant composition
JPH051815B2 (en)
GB1588485A (en) Polymeric compositions containing brominated flame retardants