JPS6240606B2 - - Google Patents

Info

Publication number
JPS6240606B2
JPS6240606B2 JP56076224A JP7622481A JPS6240606B2 JP S6240606 B2 JPS6240606 B2 JP S6240606B2 JP 56076224 A JP56076224 A JP 56076224A JP 7622481 A JP7622481 A JP 7622481A JP S6240606 B2 JPS6240606 B2 JP S6240606B2
Authority
JP
Japan
Prior art keywords
combustion
oxidation catalyst
reforming
fuel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56076224A
Other languages
Japanese (ja)
Other versions
JPS57188921A (en
Inventor
Kenji Tabata
Ikuo Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7622481A priority Critical patent/JPS57188921A/en
Publication of JPS57188921A publication Critical patent/JPS57188921A/en
Publication of JPS6240606B2 publication Critical patent/JPS6240606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spray-Type Burners (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Gas Burners (AREA)

Description

【発明の詳細な説明】 本発明は炭化水素を燃料とし、その熱量を利用
する触媒燃焼装置にかかわるものである。即ち炭
化水素燃料を酸化触媒体上に供給し、触媒体表面
において酸化反応を終結させ、発熱した熱量を利
用する燃焼方式は、燃焼器をコンパクトにするこ
とが可能なこと、排気ガスの性状が優れている等
の長所が多い燃焼方式である。本発明はこの燃焼
方式をより完全なものにするために、炭化水素を
燃料改質器により改質した後、酸化触媒に供給す
る方式を取り入れたものである。本発明の目的を
以下に記す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalytic combustion device that uses hydrocarbon as fuel and utilizes its calorific value. In other words, the combustion method in which hydrocarbon fuel is supplied onto the oxidation catalyst, the oxidation reaction is terminated on the surface of the catalyst, and the generated heat is utilized makes it possible to make the combustor compact and improve the properties of the exhaust gas. This combustion method has many advantages such as: In order to make this combustion system more complete, the present invention incorporates a system in which hydrocarbons are reformed in a fuel reformer and then supplied to an oxidation catalyst. The objects of the present invention are described below.

(1) 軽質の炭化水素ガス(天然ガス、プロパン、
ブタン)の内とりわけ天然ガス(メタン)は燃
焼性が悪く酸化触媒体上で反応が終結せずに、
酸化触媒体から数パーセントスリツプするのが
通例であつた。本発明は天然ガスを一部改質し
燃焼性の良い水素に変換することにより酸化触
媒体からのスリツプをなくすことを目的とす
る。さらに炭化水素ガスを完全に改質し、水素
と二酸化炭素の無機ガスにした場合、水素の優
れた燃焼性を生かした低温触媒燃焼器が可能と
なる。即ち点火源なしに単に酸化触媒体に生成
した水素ガスを通過させるだけで燃焼を完結す
ることができ、水素供給量を変化させるだけで
500℃迄の任意の温度を得られるという優れた
燃焼器を提供することを目的とする。
(1) Light hydrocarbon gas (natural gas, propane,
Butane), especially natural gas (methane) has poor combustibility and the reaction does not complete on the oxidation catalyst.
It was usual to slip a few percent from the oxidation catalyst. The object of the present invention is to eliminate slip from the oxidation catalyst by partially reforming natural gas and converting it into hydrogen with good combustibility. Furthermore, if hydrocarbon gas is completely reformed into inorganic gases of hydrogen and carbon dioxide, a low-temperature catalytic combustor that takes advantage of hydrogen's excellent combustibility becomes possible. In other words, combustion can be completed simply by passing the generated hydrogen gas through the oxidation catalyst without an ignition source, and by simply changing the amount of hydrogen supplied.
The purpose is to provide an excellent combustor that can obtain any temperature up to 500℃.

(2) 重質の炭化水素燃料(灯油)は従来、小型の
燃焼器としては吸い上げ芯型、気化方式の予混
合タイプのものに使用されるのが主流である。
さらに酸化触媒を利用する場合にも小型の燃焼
器では気化面が必要である。上記いづれの場合
にも重質の炭化水素燃料を使用するとタール析
出が問題となる。即ち灯芯あるいは気化面にタ
ールが蓄積し、燃焼不良につながる。本発明は
予め重質の炭化水素燃料をリフオーミング触媒
により供給燃料より軽質な炭化水素あるいは水
素等の無機ガスに改質した後、酸化触媒体に供
給することにより、燃焼性能の向上並びにター
ル析出問題の解決を目的とする。
(2) Heavy hydrocarbon fuel (kerosene) has traditionally been mainly used in small combustors of the wick type and premixed vaporization type.
Furthermore, even when using an oxidation catalyst, a small combustor requires a vaporization surface. In any of the above cases, if heavy hydrocarbon fuel is used, tar precipitation becomes a problem. That is, tar accumulates on the wick or vaporizing surface, leading to poor combustion. The present invention improves combustion performance and solves the problem of tar precipitation by reforming heavy hydrocarbon fuel into hydrocarbons or inorganic gases such as hydrogen that are lighter than the supplied fuel using a reforming catalyst and then supplying the fuel to an oxidation catalyst. The aim is to solve

(3) 最近室内燃焼の燃焼器では燃焼排ガス、とり
わけ、窒素酸化物(以下NOxと称す)が大きな
問題となつている。NOxは生成要因からサーマ
ルNOxとフユエルNOxとに分けられるというの
が通説である。前者は火炎中において1200℃以
上の高温領域において生成されるもの、後者
は、燃料自体に含まれる窒素化合物に原因があ
るとするものである。家庭用に使われる灯油程
度ではフユエルNOxは問題とならず専らサーマ
ルNOxが問題となる。しかしながら酸化触媒体
を利用する触媒燃焼の場合では火炎を形成せ
ず、又、熱の島と呼ばれる様な部分的な高温領
域も存在せず他の燃焼方式に比較し、サーマル
NOxは格段に少なくなる。しかしながら一方最
近prompt+NOxと呼ばれるCHラジカルの介在
するNOxの生成機構が提出された。これは、燃
焼開始直後、温度のあまり高くない部分にNOx
の生成が見られるがprompt+NOxはその主因と
されている。この原因は燃焼中間生成物である
CHラジカルであるから炭化水素を直接燃焼さ
せないで、改質してCO、H2にすると炭化水素
は含まれず、CHラジカルに基因するとされる
prompt+NOxは生成しない。この結果、サー
マルprompt+NOxのないクリーンな燃焼ができ
る。
(3) Recently, combustion exhaust gas, especially nitrogen oxides (hereinafter referred to as NO x ), has become a major problem in indoor combustion combustors. It is a common theory that NO x can be divided into thermal NO x and fuel NO x based on the generation factors. The former is generated in a flame at a high temperature of 1200°C or higher, and the latter is caused by nitrogen compounds contained in the fuel itself. In the case of kerosene used for household purposes, fuel NO x is not a problem, but only thermal NO x is a problem. However, in the case of catalytic combustion that uses an oxidation catalyst, no flame is formed, and there are no local high-temperature areas called heat islands, so compared to other combustion methods, the thermal
NO x will be significantly reduced. However, recently a CH radical-mediated NO x generation mechanism called prompt + NO x has been proposed. This is because immediately after the start of combustion, NO x
Prompt + NO x is said to be the main cause. This is caused by combustion intermediate products.
Because they are CH radicals, if hydrocarbons are reformed to CO and H2 without being directly combusted, no hydrocarbons are included, and it is said to be based on CH radicals.
Prompt+NO x is not generated. This results in clean combustion without thermal prompts + NO x .

本発明は以上の様な目的を持ち、酸化触媒とリ
フオーミング触媒を備えた改質型の触媒燃焼装置
を提供するものである。
The present invention has the above objects and provides a reforming type catalytic combustion device equipped with an oxidation catalyst and a reforming catalyst.

以下本発明の一実施例を添付図面と共に説明す
る。第1図は本発明の原理図を示したものであ
り、Aが燃料改質器、Bが酸化触媒マツトであ
る。一般に炭化水素燃料の改質には、水蒸気改質
法、部分酸化法がある。即ち前者は炭化水素と
水、後者は炭化水素と空気さらに必要であれば、
一部水をアルミナ、シリカ、チタニア等無機耐熱
性担体にニツケル、コバルト、あるいは族の貴
金属を担持したリフオーミング触媒に混合供給す
る改質法である。供給された炭化水素はリフオー
ミング触媒により水素と炭酸ガスに、あるいは、
供給炭化水素よりも軽質な炭化水素に改質された
後、族の貴金属、ニツケル、コバルト、銀、希
土類等の担持金属をシリカ、アルミナ等の無機耐
熱繊維に担持した酸化触媒マツトに供給し、触媒
体表面において酸化反応を起こさせ、燃焼を完結
する。上記の様な原理に基づき軽質の炭化水素ガ
スに適用した本発明の一実施例の概観図を第2図
に示す。1は炭化水素ガス供給口、2は空気供給
用エアーフアン、3は水タンク、4は炭化水素ガ
ス、空気水を加熱混合する蒸発器である。蒸発器
4内にはヒータ(図示せず)が内蔵されている。
蒸発器4は改質器5に配管6により直結してい
る。第3図に改質器5の詳細図を示した。改質器
5は内部にリフオーミング触媒7と該触媒加熱用
のセラミツクヒータ8さらに改質の結果生成した
ガスを酸化触媒に供給する通気管9を持つ。一
方、改質器5の外周は熱の有効利用を図るべく断
熱材10が巻きつけられている。通気管9を通つ
て改質により生成した水素、炭酸ガスの無機ガス
を主体としたガスは、アルミナ、シリカ等の無機
耐熱繊維に族の貴金属、ニツケル、コバルト、
銀、希土類等の金属を担持さてた酸化触媒マツト
11に供給される。
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a diagram of the principle of the present invention, where A is a fuel reformer and B is an oxidation catalyst mat. Generally, hydrocarbon fuels are reformed using steam reforming methods and partial oxidation methods. That is, the former is hydrocarbon and water, the latter is hydrocarbon and air, and if necessary,
This is a reforming method in which a portion of water is mixed and supplied to a reforming catalyst in which nickel, cobalt, or group noble metals are supported on an inorganic heat-resistant carrier such as alumina, silica, or titania. The supplied hydrocarbons are converted into hydrogen and carbon dioxide by a reforming catalyst, or
After being reformed into hydrocarbons lighter than the supplied hydrocarbons, they are fed to an oxidation catalyst mat in which supported metals such as group noble metals, nickel, cobalt, silver, and rare earths are supported on inorganic heat-resistant fibers such as silica and alumina. An oxidation reaction occurs on the surface of the catalyst and combustion is completed. FIG. 2 shows an overview of an embodiment of the present invention applied to light hydrocarbon gas based on the above principle. 1 is a hydrocarbon gas supply port, 2 is an air fan for supplying air, 3 is a water tank, and 4 is an evaporator for heating and mixing hydrocarbon gas, air, and water. A heater (not shown) is built into the evaporator 4.
The evaporator 4 is directly connected to the reformer 5 through a pipe 6. FIG. 3 shows a detailed diagram of the reformer 5. The reformer 5 has therein a reforming catalyst 7, a ceramic heater 8 for heating the catalyst, and a vent pipe 9 for supplying gas produced as a result of reforming to the oxidation catalyst. On the other hand, a heat insulating material 10 is wrapped around the outer periphery of the reformer 5 in order to effectively utilize heat. Gases mainly composed of inorganic gases such as hydrogen and carbon dioxide generated through the reforming through the ventilation pipe 9 contain inorganic heat-resistant fibers such as alumina and silica, noble metals of the group nickel, cobalt,
It is supplied to an oxidation catalyst mat 11 supporting metals such as silver and rare earths.

上記構成を持つ触媒燃焼装置の作用について説
明する。炭化水素ガス供給源(図示せず)から供
給されたガスは、炭化水素ガス供給口1より蒸発
器4に送り込まれる。一方空気はエアーフアン2
により蒸発器4に送り込まれる。水は水タンク3
から同じく蒸発器4に送り込まれる。蒸発器4に
おいてヒータ(図示せず)により予熱混合された
炭化水素、空気、水蒸気は配管6より改質器5内
に送り込まれる。炭化水素、空気、水の混合ガス
は、セラミツクヒータ8により加熱された流路を
通りさらに加熱された後、セラミツクヒータ8に
より設定温度に加熱されたリフオーミング触媒7
に送られ改質される。改質された水素、炭酸ガス
を主体とする無機ガスは通気管9を通り、アルミ
ナ、シリカ等の無機耐熱繊維に族の貴金属、ニ
ツケル、コバルト、銀、希土類等の金属を担持し
た酸化触媒マツト11に供給される。供給された
ガスは、酸化触媒マツト11上で酸化反応を行い
発熱する。以上のような作用により熱を取り出す
わけであるが、本発明による改質型の触媒燃焼装
置を用いた場合、従来みられなかつた次のような
優れた効果が得られる。
The operation of the catalytic combustion device having the above configuration will be explained. Gas supplied from a hydrocarbon gas supply source (not shown) is sent to the evaporator 4 through the hydrocarbon gas supply port 1 . On the other hand, air is air fan 2
It is sent to the evaporator 4 by the evaporator 4. Water is water tank 3
It is also sent to the evaporator 4. Hydrocarbons, air, and steam preheated and mixed by a heater (not shown) in the evaporator 4 are sent into the reformer 5 through a pipe 6. The mixed gas of hydrocarbons, air, and water passes through a flow path heated by a ceramic heater 8 and is further heated, and then passes through a reforming catalyst 7 heated to a set temperature by the ceramic heater 8.
sent to and reformed. The reformed inorganic gas, mainly consisting of hydrogen and carbon dioxide, passes through a vent pipe 9 and is passed through an oxidation catalyst mat in which noble metals such as group noble metals, nickel, cobalt, silver, rare earths, etc. are supported on inorganic heat-resistant fibers such as alumina and silica. 11. The supplied gas undergoes an oxidation reaction on the oxidation catalyst mat 11 and generates heat. Heat is extracted through the above-mentioned actions, and when the reforming type catalytic combustion device according to the present invention is used, the following excellent effects not seen in the past can be obtained.

(1) 炭化水素燃焼として天然ガスを用いた場合、
従来、酸化触媒体上で完全に酸化してしまわず
に、メタンガスがスリツプとして5%程度もれ
るのが通常であつたが、本発明によりメタンを
燃焼性の良い水素に改質することにより、完全
に酸化触媒体上で酸化反応を行わせることが可
能となつた。
(1) When using natural gas as hydrocarbon combustion,
Conventionally, it was normal for about 5% of methane gas to leak as slip without being completely oxidized on the oxidation catalyst, but by reforming methane into highly combustible hydrogen according to the present invention, It has become possible to carry out the oxidation reaction completely on the oxidation catalyst.

(2) 軽質の炭化水素ガスをリフオーミング触媒に
より完全に水素と炭酸ガスの無機ガスに改質す
ることにより、燃焼性のよい水素による酸化触
媒体上での低温触媒燃焼が可能となる。即ち、
生成した水素を酸化触媒体を通過させるだけ
で、500℃迄の任意の温度が得られる。
(2) By completely reforming light hydrocarbon gas into inorganic gases of hydrogen and carbon dioxide using a reforming catalyst, low-temperature catalytic combustion on an oxidation catalyst using highly combustible hydrogen becomes possible. That is,
Any temperature up to 500°C can be obtained simply by passing the generated hydrogen through an oxidation catalyst.

(3) 灯油、軽油、A重油等の比較的重質油をリフ
オーミング触媒により改質し、より軽質の炭化
水素燃料に変換することにより、従来問題であ
つた、タールの発生による燃焼不良という重大
な問題を解決することができる。
(3) By reforming relatively heavy oils such as kerosene, diesel oil, and A-heavy oil using a reforming catalyst and converting them into lighter hydrocarbon fuels, the serious problem of poor combustion due to the generation of tar can be solved. can solve problems.

(4) 炭化水素燃料特有のprompt+NOxと呼ばれる
窒素酸化物を炭化水素燃料を予め改質し、無機
ガスを主体としたガスに変換することにより解
決することができる。この結果、室内において
も、窒素酸化物のないクリーンな燃焼が可能と
なつた。
(4) Nitrogen oxides called prompt + NO x , which are unique to hydrocarbon fuels, can be solved by reforming the hydrocarbon fuel in advance and converting it into a gas mainly composed of inorganic gases. As a result, clean combustion without nitrogen oxides is now possible even indoors.

(5) 燃料改質器には蒸発器を介して炭化水素、
水、空気を供給するので、炭化水素:水、空気
の予熱混合されたガスが燃料改質器に送られ、
同改質器の作用が迅速に行なわれるとともに燃
焼開始時から、その機能が発揮され、室内開放
型燃焼器に最適である。
(5) Hydrocarbons,
Since water and air are supplied, the preheated mixed gas of hydrocarbons: water and air is sent to the fuel reformer.
The reformer works quickly and its function is demonstrated from the start of combustion, making it ideal for indoor open type combustors.

(6) メタンなどの炭化水素燃焼では得られない点
火源(酸化触媒マツトへの)なしの構成が可能
となり、商品デザイン的にもスツキリしたもの
となる。
(6) It is possible to create a configuration without an ignition source (to the oxidation catalyst), which cannot be obtained with the combustion of hydrocarbons such as methane, and the product design is also streamlined.

(7) 低温燃焼が可能となり、暖房器に必要とされ
る燃焼量の変化量を多くとれ、TDR(可燃
巾)1/10まで可能である。
(7) Low-temperature combustion is possible, and the amount of change in combustion required for heaters can be increased, and TDR (flammable width) can be reduced to 1/10.

(8) ガス体燃料から重質成分を含んだ液体燃料ま
で燃焼可能な燃料であれば、その種類を選ばな
い、マルチ燃料型の触媒燃焼器が可能である。
(8) A multi-fuel catalytic combustor is possible that can be used with any type of fuel, from gaseous fuel to liquid fuel containing heavy components, as long as it can be combusted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の触媒燃焼装置の原理図、第2
図は本発明の触媒燃焼装置の一実施例を示す斜視
図、第3図は上記触媒燃焼装置における改質器の
詳細断面図である。 1……炭化水素ガス供給口、2……空気供給用
エアーフアン、3……水タンク、5……改質器、
11……酸化触媒マツト。
Fig. 1 is a principle diagram of the catalytic combustion device of the present invention, Fig. 2
The figure is a perspective view showing one embodiment of the catalytic combustion apparatus of the present invention, and FIG. 3 is a detailed sectional view of the reformer in the catalytic combustion apparatus. 1...Hydrocarbon gas supply port, 2...Air supply air fan, 3...Water tank, 5...Reformer,
11...Oxidation catalyst Matsut.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒体表面において酸化反応を起こさせる酸
化触媒体上に炭化水素を供給する燃料改質器を有
し、この燃料改質器に蒸発器を接続すると共にこ
の蒸発器に炭化水素、水、炭化水素を燃焼させる
に必要な理論空気量より少ない空気を供給する触
媒燃焼器。
1 It has a fuel reformer that supplies hydrocarbons onto an oxidation catalyst that causes an oxidation reaction on the surface of the catalyst, and an evaporator is connected to this fuel reformer, and hydrocarbons, water, and carbon A catalytic combustor that supplies less air than the theoretical amount required to burn hydrogen.
JP7622481A 1981-05-19 1981-05-19 Catalyzer combustor Granted JPS57188921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7622481A JPS57188921A (en) 1981-05-19 1981-05-19 Catalyzer combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7622481A JPS57188921A (en) 1981-05-19 1981-05-19 Catalyzer combustor

Publications (2)

Publication Number Publication Date
JPS57188921A JPS57188921A (en) 1982-11-20
JPS6240606B2 true JPS6240606B2 (en) 1987-08-28

Family

ID=13599198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7622481A Granted JPS57188921A (en) 1981-05-19 1981-05-19 Catalyzer combustor

Country Status (1)

Country Link
JP (1) JPS57188921A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124044A (en) * 1974-08-21 1976-02-26 Eidai Co Ltd SHUGOJUTAKU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124044A (en) * 1974-08-21 1976-02-26 Eidai Co Ltd SHUGOJUTAKU

Also Published As

Publication number Publication date
JPS57188921A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
US5318436A (en) Low NOx combustion piloted by low NOx pilots
US5207185A (en) Emissions reduction system for internal combustion engines
US7037349B2 (en) Method and apparatus for fuel/air preparation in a fuel cell
US6869456B2 (en) Method for starting a fast light-off catalytic fuel reformer
US20050132650A1 (en) Fast light-off catalytic reformer
US20020110711A1 (en) Method and device for starting a reacator in a gas-generating system
US20050274107A1 (en) Reforming unvaporized, atomized hydrocarbon fuel
US4350133A (en) Cold start characteristics of ethanol as an automobile fuel
US7744664B2 (en) Compact counterflow fuel reformer
US4242076A (en) Process of combustion
JPS61180818A (en) Hot air generation by catalytic burning
JPH07500392A (en) Method and apparatus for preparing fuel-air mixtures for internal combustion engines
JPS5821099B2 (en) ``Ninenkikan''
JPS6240606B2 (en)
JPS61171870A (en) Internal-combustion engine utilized reforming natural gas
JPH0128843B2 (en)
JP2618960B2 (en) Catalytic combustion apparatus and combustion control method therefor
JPH08188784A (en) Reforming of fuel for heating furnace
KR20200090078A (en) Water gas & hydrogen gas Exchange Equipment of gas turbine liquid fuel
JPS59167621A (en) Catalyst burner
JPS6245441B2 (en)
JP4973080B2 (en) How to start the reformer
JPS59221509A (en) Catalyst combustion unit capable of revising fuel quality
KR20010019081A (en) Combustor
JPS5926201B2 (en) Two-fluid vaporization co-firing burner