JPS6240452B2 - - Google Patents

Info

Publication number
JPS6240452B2
JPS6240452B2 JP14879079A JP14879079A JPS6240452B2 JP S6240452 B2 JPS6240452 B2 JP S6240452B2 JP 14879079 A JP14879079 A JP 14879079A JP 14879079 A JP14879079 A JP 14879079A JP S6240452 B2 JPS6240452 B2 JP S6240452B2
Authority
JP
Japan
Prior art keywords
yarn
false
wound
core
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14879079A
Other languages
Japanese (ja)
Other versions
JPS5673133A (en
Inventor
Masayuki Tani
Yoshuki Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP14879079A priority Critical patent/JPS5673133A/en
Publication of JPS5673133A publication Critical patent/JPS5673133A/en
Publication of JPS6240452B2 publication Critical patent/JPS6240452B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は仮撚巻付による仮撚複合糸並びにその
製造法における改良に関するものである。 仮撚加工を利用してオーバーフイード下に供給
された仮撚中の糸に、他の糸を巻き込ませながら
供給し、芯糸の表面に捲付糸が巻付いた、梳毛調
の風合を呈する二層構断の糸を作る方法について
は既に特公昭45−28018号公報等で良く知られて
いる。唯、この種の糸の共通の問題点として、使
用時に於いて芯糸と巻付糸との結合が堅固でな
く、ずれ易い傾向があり、その結果、糸品質が著
しく低下する欠点が生じる。 また巻付糸の風合の面からみると、近年、木綿
のもつ素朴な自然の味が好まれる風潮にある。し
かしその風合、タツチは合成繊維とは比較する術
もない程に異なつているので、合成繊維を以てし
ては、凡そ、その特性に近づけることができなか
つたのが現状である。 本発明者等は合成繊維使いで綿紡績糸類似の仮
撚複合糸について種々検討している過程でコアヤ
ーン(Core Yarn)タイプの仮撚加工糸におい
て、実質的に芯部のみを融着させ、他方鞘糸とし
ておよそ2de以下の単繊維を用い、しかもこれら
単繊維の一部を芯糸との界面融着により集束させ
るとき綿類似の風合が現出する兆候が見受けられ
ることを知り、先願において以下の如き綿様複合
糸を提案した。 芯糸の周りにマルチフイラメント糸よりなる鞘
糸が巻付いてなる仮撚複合糸であつてその際、鞘
糸を構成するフイラメント糸の一部が実質的に集
束状態で芯糸に連続反転交互撚状に巻付くと共
に、芯糸の融着により巻付界面は少くとも部分的
に固着され、一方残余のフイラメント糸は個々に
分離し、しかも捲縮状態で巻付いていることを特
徴とする綿様風合を有する複合三層構造糸。第1
図及び第2図は夫々、上述の複合三層構造糸の側
面図及び断面図であり、芯糸1は融着していて伸
縮性がなく、鞘糸の一部2は芯糸の融着により芯
糸との界面で少くとも部分的に固着され、しかも
S方向、Z方向に360゜以下の巻付角度でもつて
連続的に巻付方向を反転して巻付いており、鞘糸
の残余のフイラメント糸3は個々に分離して、し
かも捲縮状態で巻付いているという特異な構造を
とつている。 これに対し第3図は綿の紡績糸の側面モデル図
であるが、糸に伸縮性はなく、芯部4は撚のため
繊維が密に集束し硬くなつている。一方表面部は
無数の細い単繊維の毛羽5でおおわれソフトな感
触を呈する。 ここで、第1〜2図の加工糸の融着芯糸1及び
鞘糸の一部2は綿糸の集束芯部4に、また捲縮単
繊維3は綿糸の表面毛羽5に例えることができ
る。 しかるに上述の三層構造糸を経糸として用いる
製繊過程において織機の停止回数が目立つて増加
することがその後確認されたのである。この原因
を追求した結果、該構造糸の最外層においてはフ
イラメント3が個々に遊離して柔かく巻付いてい
ることから、これらが織機上で経糸として隣接状
態になると糸間での絡まりが生じ、ひいては断糸
を誘発していることが判つたのである。 それ故、本発明の目的は上述の如き欠点がな
く、作業性が著しく改善された仮撚複合糸を提供
することにある。 本発明の他の目的は、合成繊維使いで、綿紡績
糸類似の自然な味を呈する仮撚複合糸を提供する
ことにある。 本発明によれば (1) 芯糸の周りにマルチフイラメント糸よりなる
鞘糸が巻付いてなる複合仮撚糸において前記マ
ルチフイラメント糸内の構成フイラメントの一
部は芯糸に交互撚糸状に巻付き(第1の巻付
き)、更に残余のフイラメントが前記交互撚糸
部の巻付き方向とは反対方向に巻付き(第2の
巻付き)、かくして芯糸の周りに同一鞘糸糸状
内でのフイラメントが互いに交叉状態で巻付い
た積層巻付部分を含むことを特徴とする仮撚複
合糸、並びに (2) 延伸仮撚されつつある合成繊維糸状(芯糸)
に対し、仮撚具の上流で、該糸の回転トルクを
利用して他の糸条(鞘糸)をオーバーフイード
下に捲込ませつつ供給して捲付構造糸を形成
し、仮撚具直後で該捲付構造糸を一山のみのバ
ルーニングを惹起せしめつつ解撚することを特
徴とする仮撚複合糸の製造法 が提供される。 更に、これについて述べると本発明による複合
糸においては同一鞘糸内のフイラメントが交叉状
態で積層巻付構造をとりしかも最外層のフイラメ
ント(鞘糸)も緊締巻付状態にある。この構造は
一見硬い感触を呈するものと受取られがちである
が鞘糸内の個々のフイラメントが交叉状態で積層
巻付いていることからフイラメント間空隙が極め
て大で先願の構造糸同様柔軟なタツチを呈する。 また、第2の発明である、該複合糸の製造法の
ポイントは(イ)加工方式が同時延伸仮撚方式を採用
し、(ロ)この工程で鞘糸を捲込ませるようにし、(ハ)
更に解撚点直後で一山のみのバルーンを生じさせ
るという要件の相乗的作用により新規な構造糸を
得るに至つたものでこの理由については後で詳細
に説明する。 第4図は本発明による仮撚複合糸のモデル(側
面)図であり、1は芯糸、2′は鞘糸8の一部の
フイラメント群で芯糸1に交互撚糸状に巻付き、
第1の巻付部を形成している。その上に更に、鞘
糸の残りのフイラメント群3′が第1の巻付方向
とは逆方向にすなわち第1の巻付フイラメント群
と交叉しつつ巻付いて第2の巻付部分を形成して
いる。しかもここで特筆されるのは2′,3′のフ
イラメント群共に、元々マルチフイラメントの単
糸内で加工中に分離して積層巻付構造をとつてい
ることである。しかも、3′のフイラメント群は
先願のものとは異つて、捲縮状態で遊離して糸表
面を覆つているのではなく安定な巻付構造をとつ
ているため、経糸として配列された場合において
も糸当りの懸念もなく隣接断糸を誘発することも
ない。 第5図は積層巻付部分の顕微鏡写真図(X56)
であり、第1の巻付と第2の巻付部が交叉してお
り鞘糸内で積層巻付を形成しているのが確認され
る。 更に、本発明の仮撚複合糸の付加的特徴につい
て、第6図の工程を参照しつつ説明する。図は本
発明における仮撚捲付加工の一例であつて、芯糸
1は第一フイードローラー6より供給され、仮撚
具7にて回転力を伝えられて仮撚状態となる。こ
れに対し巻付糸8は第二フイードローラー9、ガ
イド10を経て仮撚状態となつている芯糸1′に
その回転力で巻付かせる様にして供給する。その
状態でヒーター11により熱セツトし、仮撚具
7、ガイド12、ドローローラー13を経てワイ
ンダー14に巻き取ると、芯糸の周囲を巻付糸が
取巻いた複合加工糸が得られる。 ここで大事なことは芯糸1に延伸可能な高伸度
の合成繊維糸条を配し、これと第一フイードロー
ラー6とドローローラー13との間で延伸しなが
ら仮撚加工する所謂インドロー加工状態とし、こ
れに巻付糸を巻き付ける様にしている。そうする
事により、巻付状態は糸が進むにつれて引き伸ば
されるので(延伸仮撚のため)捲付糸間のフイラ
メント間のマイグレーシヨンが顕著になると共に
外周部に位置するフイラメントは捲付状態(第1
の巻付)から遊離する。この遊離したフイラメン
トを更に堅固に巻付けるようにするのが、本発明
の工程の重要なポイントであり、これは仮撚装置
とガイド12の間で捲付糸に一山のみのバルーニ
ングを付与することによつて達成される。これは
縄飛びにも例えることができ糸は仮撚具7とガイ
ド12に把持された如き状態にあり、その間で一
山のみのバルーンにより一回転させられこの時遊
離状態にあるフイラメントが第1の巻付とは異つ
た位相で堅固に巻付くのである。この一山のみの
バルーニングは第2の巻付部分を形成する上で重
要なことであり一山未満或いは一山を越えても第
2の堅固な巻付は形成されないことが判つた。こ
の一山のみのバルーニングの設定にあたつては、
先ず、その時の設定加工条件下でガイド12を設
けず仮の加工を行い仮撚具7直後に生じる第1の
バルーニングの節を確認してから該節部にガイド
12を取付て加工を再開すればよい。通常バルー
ニングの最少振幅は3mm、また波長は5〜15mmの
範囲にある。 この工程において形成される仮撚複合糸の特徴
として、第1の巻付部と第2の巻付部との間で
夫々のフイラメント2′,3′は互いにマイグレー
トしており、一見相分離はあるものの、両者は堅
固な連結構造をとつていることが挙げられる。こ
れは前述の延伸仮撚中に遊離してくるフイラメン
トは延伸による頻繁なマイグレーシヨンの所産で
あるので第1の巻付部を形成したフイラメント群
の一部が遊離し、仮撚具7以降でのバルーニング
により第2の巻付部を形成する機会が多いことに
よる。 尚、以上の説明において使用した“連続交互反
転状(連続反転交互撚状)”、“マイグレーシヨ
ン”および“マイグレートしている”という語句
は以下の意味で使用される。 a “連続交互反転状” 捲付糸が芯糸の周囲にS、Zの交互撚糸状に
捲付いてはいるが、各捲付部(SまたはZ部)
では捲付糸が芯糸の周囲を完全に1回以上捲付
いたラセン状捲付構造をとらず、360゜未満の
捲付状態でもつて反転している(所謂連続反
転)ことを言う。 b “マイグレーシヨン”、“マイグレートしてい
る” 仮撚工程で糸が加撚・伸長されると、糸内の
構成繊維には、撚変形のらせん長の大小に応じ
た応力の大小を生じる。撚糸の外層に位置する
繊維は内層に位置する繊維よりも変形のらせん
長が長い為、大きな応力を生じる。そして、外
層部の大きな応力の繊維は内層部の応力の小さ
な繊維と位置を変わることによつて歪を相互に
均等化するよう糸軸からの半径方向の距離を転
じる。その結果、糸を構成する個々の繊維は糸
軸(長さ)方向に沿つて絶えず半径方向の位置
を変えていくことになり、この層転移を「マイ
グレーシヨン」といい、その状態を「マイグレ
ートしている」と言う。 本発明において、芯糸1となる糸は延伸して仮
撚する事に耐えるだけの伸度が必要であり、その
為には少くとも70%以上、好ましくは100%以上
のものが望ましい。伸度が70%未満では引き伸ば
しながら仮撚することが出来ず、また仮撚中に融
離フイラメントが生じる度合も低下する。また、
引き伸ばしの程度(延伸倍率)は少くとも1.1倍
(即ち10%)以上に調節する事が必要であり、特
に1.2倍(即ち20%)以上引き伸ばすとき複合糸
において第2の巻付部が顕著に生じる。但し、あ
まり強く引き伸ばすと巻付ピツチが粗くなるばか
りでなく加工中に糸切れ等生産性が悪くなるの
で、高々、伸度(%表示)×0.01+0.8倍以下、望
ましくは伸度(%表示)×0.01+0.5倍以下にとど
めておく必要がある。 第7図は、芯糸の伸度(y≧70)に対して、本
発明で採用される延伸倍率(x)の範囲を示すも
ので、x及びyを〓部及び〓部の領域に収めるこ
とによつて始めて所望の巻付効果を得ることがで
きる。これに対しての領域では芯糸をあまり引
伸ばさないので、本発明の如き糸構造が得られ
ず、またの領域では、例え適正伸度を選択した
としても引伸ばし過ぎで巻付があまりにも粗くな
り、風合的に好ましくないものとなる。一方、
の領域では伸度不足に伴い、延伸仮撚自体遂行で
きず捲付不良が生じ易い。 更に特殊なケースとして、前述の延伸培率の範
囲の中でも特に延伸培率を芯糸1の自然延伸倍率
以下に選ぶと(第7図の〓部分)、糸の微細構造
に於ける分子鎖配向が十分でないので分子の運動
性が高く、仮撚熱セツト時の加熱で融着し易くな
る。従つて巻付状態が延伸仮撚で引き伸ばされて
締め付けられる際この融着性も加味され、両者の
相乗効果によつて一層堅固な複合化が期待出来
る。 尚、芯糸1用の高伸度素材としては紡速2500
m/min以上の高速紡糸等によつて得られる半延
伸糸等が適当である。 また、巻付糸としては芯糸と同じ素材は勿論こ
れより軟化点乃至融点の高いものが用いられる。
そして、この巻付糸は芯糸と、断面、染色性等の
異るものを用いることにより、光沢、異色効果等
を種々得ることも可能である。唯、仮撚複合糸に
綿様風合を付与するには、芯糸1よりも高い熱融
着温度を有し、しかも太さがおよび2de以下好ま
しくは1de以下フイラメント本数が40本以上の極
細単繊維から成るマルチフイラメント糸8をオー
バーフイード下に巻付かせ、この状態で実質的に
芯部を形成する糸条1を融着させ、また同時に芯
糸の融着によりその界面で接する鞘糸の少くとも
一部を固着させつつ熱固定を行うことが好まし
い。この特徴を効果的に発揮させるには、芯鞘構
造の現出の点から加工糸の芯糸と鞘糸との間に15
%以上の糸足差が必要であり、25%以上になると
更に好ましい風合・外観が得られる。 また、上記熱融着により第1の巻付部は風合的
に柔い連続交互反転状になる。巻付オーバーフイ
ード率についても従来と同様に考えて良いが、但
しその設定はドローローラー13の速度との関係
に於いて設定した方が良い。というのも、本発明
が延伸仮撚方式(同時)であることから芯糸1の
供給速度との割合で設定すると、芯糸が伸ばされ
る関係上出来上つた糸は所定のオーバーフイード
捲付量とはならない。 本発明において糸の巻付けかたは、ガイド10
による巻付点が固定した均一捲付方式の外、捲付
点を自由にさせた変動捲付方式に応用しても良
い。特にこの方法の特長として、捲付点をしつか
り固定せず、多少変動気味にしても捲付后の延伸
作用により均整の捲付糸が見られ、且つこのこと
は従来の仮撚捲付糸に見られない大きな特長であ
る。その他、仮撚数、セツト温度等は従来の仮撚
捲付糸と同様に設定すれば良い。 第1表は鞘糸のフイラメント数、単繊維デニー
ルの効果をみたものであるが、単繊維は1デニー
ル以下、フイラメント数は40本以上で好ましい結
果が得られ、更に好ましくは0.5de以下で40本以
上のとき顕著な風合効果が得られる。
The present invention relates to a false-twisted composite yarn by false-twist winding and an improvement in its manufacturing method. Using false twisting, the false-twisted yarn is fed under the overfeed and is fed while winding other yarns, creating a worsted-like texture in which the twisted yarn is wrapped around the surface of the core yarn. The method for making the two-layered yarn shown is already well known, such as in Japanese Patent Publication No. 45-28018. However, a common problem with this type of yarn is that during use, the bond between the core yarn and the wrapped yarn is not strong and tends to shift easily, resulting in a disadvantage that the quality of the yarn is significantly reduced. In addition, in terms of the texture of wrapped yarn, there has been a trend in recent years to favor the simple, natural taste of cotton. However, the texture and touch are so different from those of synthetic fibers that there is no way to compare them, so it is currently impossible to approximate these characteristics using synthetic fibers. In the process of investigating various false twisted composite yarns similar to spun cotton yarn using synthetic fibers, the present inventors fused essentially only the core of a core yarn type false twisted yarn. On the other hand, I learned that when single fibers of approximately 2 de or less are used as sheath yarns, and when some of these single fibers are bundled by interfacial fusion with the core yarn, there are signs that a cotton-like texture appears. In this application, we proposed the following cotton-like composite yarn. A false twisted composite yarn consisting of a sheath yarn made of multifilament yarn wrapped around a core yarn, in which a part of the filament yarns constituting the sheath yarn are continuously and alternately inverted around the core yarn in a substantially bundled state. It is characterized in that it is wound in a twisted manner, and the winding interface is at least partially fixed by fusing the core yarn, while the remaining filament yarns are individually separated and wound in a crimped state. A composite three-layer yarn with a cotton-like texture. 1st
Figures 1 and 2 are a side view and a sectional view, respectively, of the above-mentioned composite three-layer structure yarn, in which the core yarn 1 is fused and has no elasticity, and a part of the sheath yarn 2 is a fused core yarn. The sheath yarn is at least partially fixed at the interface with the core yarn, and is continuously wound in the S and Z directions at a winding angle of 360° or less, with the winding direction reversed, and the remaining sheath yarn is The filament yarns 3 have a unique structure in that they are individually separated and wound in a crimped state. On the other hand, FIG. 3 is a side view of a spun cotton yarn. The yarn has no elasticity, and the core 4 is twisted, so the fibers are tightly bundled and stiff. On the other hand, the surface portion is covered with countless thin filament fluffs 5, giving it a soft feel. Here, the fused core yarn 1 and part 2 of the sheath yarn of the processed yarn in FIGS. 1 and 2 can be compared to the bundled core part 4 of cotton yarn, and the crimped single fiber 3 can be compared to the surface fuzz 5 of cotton yarn. . However, it was subsequently confirmed that the number of stops of the loom increases noticeably in the fiber manufacturing process using the above-mentioned three-layer structured yarn as the warp yarn. As a result of investigating the cause of this, it was found that in the outermost layer of the structural yarn, the filaments 3 are individually loosely wound around each other, and when these become adjacent to each other as warp yarns on the loom, entanglement occurs between the yarns. In turn, it was found that it was inducing suture breakage. Therefore, an object of the present invention is to provide a false-twisted composite yarn which does not have the above-mentioned drawbacks and has significantly improved workability. Another object of the present invention is to provide a false-twisted composite yarn that uses synthetic fibers and exhibits a natural taste similar to spun cotton yarn. According to the present invention, (1) in a composite false twisted yarn in which a sheath yarn made of a multifilament yarn is wound around a core yarn, some of the constituent filaments in the multifilament yarn are wound around the core yarn in an alternately twisted yarn shape; (first winding), and the remaining filament is further wound in the opposite direction to the winding direction of the alternating twist portion (second winding), thus the filament is wrapped around the core yarn within the same sheath thread. A false-twisted composite yarn characterized in that it includes a laminated wound portion in which the yarns are wound in a crossed manner, and (2) a synthetic fiber yarn-like yarn (core yarn) that is being drawn and false-twisted.
On the other hand, upstream of the false twisting tool, other yarns (sheath yarns) are wound and fed under the overfeed using the rotational torque of the yarn to form a wound structured yarn, and the false twisting tool There is provided a method for producing a false-twisted composite yarn, which is characterized in that the wound structure yarn is immediately untwisted while causing ballooning of only one pile. Furthermore, regarding this, in the composite yarn according to the present invention, the filaments within the same sheath yarn have a laminated winding structure in a crossed state, and the outermost layer filament (sheath yarn) is also in a tightly wound state. At first glance, this structure tends to be perceived as having a hard feel, but since the individual filaments within the sheath yarn are wound in a stacked manner in a crossed manner, the gaps between the filaments are extremely large, and it has a soft touch similar to the structural yarn of the previous application. exhibits. In addition, the key points of the method for producing the composite yarn, which is the second invention, are (a) the processing method adopts a simultaneous stretching and false twisting method, (b) the sheath yarn is wound in this process, and (h) )
Furthermore, the synergistic effect of the requirement to form a balloon with only one peak immediately after the untwisting point led to the creation of a new structural yarn, and the reason for this will be explained in detail later. FIG. 4 is a model (side) view of a false twisted composite yarn according to the present invention, in which 1 is a core yarn, 2' is a group of filaments of a part of the sheath yarn 8, which are wound around the core yarn 1 in an alternately twisted manner;
A first winding portion is formed. Further, the remaining filament group 3' of the sheath yarn is wound in the opposite direction to the first winding direction, that is, intersecting with the first winding filament group, to form a second winding portion. ing. Moreover, what is noteworthy here is that both the 2' and 3' filament groups are originally separated during processing within the single yarn of the multifilament and have a laminated and wound structure. Moreover, unlike the filament group of the previous application, the filament group 3' does not cover the yarn surface in a crimped state, but has a stable winding structure, so when arranged as warp yarns, There is no concern about threads hitting each other, and there is no possibility of adjacent thread breakage. Figure 5 is a microscopic photograph of the laminated winding part (X56)
It is confirmed that the first winding part and the second winding part intersect and form a laminated winding within the sheath thread. Further, additional features of the false twisted composite yarn of the present invention will be explained with reference to the steps shown in FIG. 6. The figure shows an example of the false twist winding process of the present invention, in which the core yarn 1 is fed from the first feed roller 6, and is subjected to rotational force by the false twister 7 to be in a false twist state. On the other hand, the winding yarn 8 is fed through a second feed roller 9 and a guide 10 so as to be wound around the false-twisted core yarn 1' by its rotational force. In this state, the yarn is heat-set by a heater 11, passed through a false twister 7, a guide 12, and a draw roller 13, and then wound around a winder 14 to obtain a composite textured yarn in which a core yarn is wrapped around a core yarn. What is important here is that the core yarn 1 is made of highly elongated synthetic fiber yarn that can be drawn, and this is stretched between the first feed roller 6 and the draw roller 13 while being false-twisted. It is in a processed state, and a winding thread is wound around it. By doing so, the wrapped state is stretched as the yarn progresses (due to stretching and false twisting), so the migration between the filaments between the wound yarns becomes noticeable, and the filaments located at the outer periphery are in the wrapped state (the first 1
(wrapped). An important point in the process of the present invention is to wind this loose filament more tightly, and this is done by imparting ballooning to the wound yarn of only one thread between the false twisting device and the guide 12. This is achieved by This can be compared to skipping a rope. The thread is held by the false twister 7 and the guide 12, and the filament, which is in a free state at this time, is rotated once by a balloon with only one thread between them. It is tightly wound in a different phase from the winding. It has been found that ballooning with only one ridge is important in forming the second wrapped portion, and even if the ballooning is less than one ridge or exceeds one ridge, a second firm wrapping will not be formed. When setting up this single balloon balloon,
First, perform temporary processing without installing the guide 12 under the set processing conditions at that time, check the first ballooning knot that occurs immediately after the false twister 7, and then attach the guide 12 to the knot and restart the processing. Bye. Typically, the minimum ballooning amplitude is 3 mm, and the wavelength is in the range of 5 to 15 mm. A characteristic of the false twisted composite yarn formed in this process is that the filaments 2' and 3' migrate to each other between the first winding part and the second winding part, and at first glance, there is a phase separation. However, the two have a solid interconnected structure. This is because the filaments that come loose during the above-mentioned stretch false twisting are the result of frequent migration due to stretching, so some of the filament groups that formed the first winding part become loose, and after false twisting tool 7, This is because there are many opportunities to form the second winding part by ballooning. The terms "continuously alternately inverted (continuously inverted and alternately twisted)", "migration" and "migrating" used in the above description are used in the following meanings. a “Continuous alternating inversion” The winding yarn is wound around the core yarn in an alternate S and Z twist pattern, but each winding part (S or Z part)
This means that the winding yarn does not have a helical winding structure in which it completely wraps around the core yarn one or more times, but is reversed even when it is wound less than 360 degrees (so-called continuous reversal). b “Migration”, “migrating” When the yarn is twisted and stretched in the false twisting process, stress is generated in the constituent fibers within the yarn depending on the helical length of the twist deformation. . The fibers located in the outer layer of the twisted yarn have a longer helical length of deformation than the fibers located in the inner layer, so a large stress is generated. The fibers with high stress in the outer layer change their positions with the fibers with low stress in the inner layer, thereby changing the distance in the radial direction from the yarn axis so as to mutually equalize the strain. As a result, the individual fibers that make up the yarn constantly change their radial position along the yarn axis (length) direction. This layer transition is called "migration," and this state is referred to as "migratory.""It'sgreat." In the present invention, the yarn serving as the core yarn 1 must have an elongation sufficient to withstand drawing and false twisting, and for this purpose, it is desirable that the elongation is at least 70% or more, preferably 100% or more. If the elongation is less than 70%, false twisting cannot be performed while stretching, and the degree to which fused filaments are generated during false twisting is also reduced. Also,
It is necessary to adjust the degree of stretching (stretching ratio) to at least 1.1 times (i.e., 10%) or more, and especially when stretching more than 1.2 times (i.e., 20%), the second winding part becomes noticeable in the composite yarn. arise. However, if stretched too strongly, not only will the winding pitch become coarse, but also the productivity will deteriorate due to thread breakage during processing. display) x 0.01 + 0.5 times or less. Figure 7 shows the range of the draw ratio (x) adopted in the present invention with respect to the elongation of the core yarn (y≧70), and x and y are within the ranges of 〓 part and 〓 part. Only then can the desired winding effect be achieved. On the other hand, in this region, the core yarn is not stretched too much, so the yarn structure of the present invention cannot be obtained, and in this region, even if an appropriate elongation is selected, it is stretched too much and winding is too difficult. It becomes rough and has an unfavorable texture. on the other hand,
In this region, due to insufficient elongation, stretch false twisting itself cannot be performed and poor winding is likely to occur. In a more special case, if the draw ratio is selected to be less than the natural draw ratio of core yarn 1 within the above-mentioned range of draw ratios (the bottom part in Fig. 7), the molecular chain orientation in the fine structure of the yarn will change. Since the strands have insufficient kinetics, the molecules have high mobility and are likely to be fused by heating during false-twisting heat setting. Therefore, when the wound state is stretched and tightened by stretching and false twisting, this fusion property is also taken into account, and a more solid composite can be expected due to the synergistic effect of both. In addition, as a high elongation material for core yarn 1, the spinning speed is 2500.
Semi-drawn yarn obtained by high-speed spinning at m/min or higher is suitable. Further, as the wrapping thread, the same material as the core thread is of course used, but also one having a higher softening point or melting point than the core thread.
By using the winding yarn with a different cross section, dyeability, etc. from the core yarn, it is possible to obtain various effects such as gloss and different color effects. However, in order to impart a cotton-like texture to the false-twisted composite yarn, it is necessary to use ultra-fine filaments that have a higher heat-fusion temperature than the core yarn 1, have a thickness of 2 de or less, preferably 1 de or less, and have a number of filaments of 40 or more. A multifilament yarn 8 made of a single fiber is wound under the overfeed, and in this state, the yarn 1 that substantially forms the core is fused, and at the same time, the sheath yarn that contacts at the interface is fused by the core yarn. It is preferable to perform heat setting while fixing at least a portion of the material. In order to effectively exhibit this feature, from the point of view of the appearance of the core-sheath structure, it is necessary to
% or more is required, and if it is 25% or more, a more preferable texture and appearance can be obtained. Further, due to the heat fusion described above, the first winding portion has a continuous alternating shape that is soft in texture. The winding overfeed rate may be considered in the same way as in the conventional case, but it is better to set it in relation to the speed of the draw roller 13. This is because the present invention uses a drawing/false twisting method (simultaneous), so if the ratio is set to the supply speed of the core yarn 1, the finished yarn will have a predetermined overfeed winding amount because the core yarn is stretched. It is not. In the present invention, the method of winding the thread is the guide 10.
In addition to the uniform winding method in which the winding point is fixed, it may also be applied to a variable winding method in which the winding point is free. A particular feature of this method is that even if the winding point is not firmly fixed and may fluctuate a little, a well-balanced yarn can be obtained due to the stretching action after winding. This is a major feature not seen in other models. In addition, the number of false twists, setting temperature, etc. may be set in the same manner as for conventional false twist and winding yarns. Table 1 shows the effects of the number of filaments in the sheath yarn and the denier of single fibers. Favorable results are obtained when the single fiber is 1 denier or less and the number of filaments is 40 or more, and more preferably 40 or less when the number of filaments is 0.5 de or less. A noticeable texture effect can be obtained when the size is larger than a book.

【表】 鞘糸の全繊維と芯糸の全繊度は糸構造の発現及
び風合の面から好適な範囲がある。芯糸1の比率
が少なすぎると加工時に該芯糸と接する鞘糸8の
固着が不足し、界面回着層ができず、融着芯糸と
それをおおう捲縮糸だけからなる構造となつてし
まい所望の風合効果が得られない。また逆に鞘糸
比率が少なすぎるとその殆んど全部が芯糸に固着
してしまい、表面層をおおう捲縮が存せず、ソフ
トな風合効果が得られない。全繊度の異る糸条を
組合わせて検討した結果、加工糸の鞘糸の全繊度
が芯糸の全繊度に対して0.7〜1.4の範囲にあると
き、好適な風合が得られることが判つた。 尚、芯糸、巻付糸としてはポリエチレンテレフ
タレート系重合体が最も好ましいが目的によりそ
の他の素材を用いることも出来る。例えば巻付糸
としてポリエチレングリコール及び/又はアルキ
ルスルホン酸金属塩等を添加した、制電性乃至吸
水性ポリエステルフイラメントを用いると、機能
的にも綿のそれにより近づけることができる。勿
論、この鞘糸は同一糸条内でデニール、断面等の
異る混繊糸、コ・スパン(CO−SPUN)糸であ
つてもよい。 以上述べたように本発明によれば作業性が著し
く改善された仮撚複合糸更にはその製造法が提供
されるので、織編成功率も向上し高品質の織編物
を得ることができる。 実施例 1 ポリエチレンテレフタレートの高配向未延伸糸
115de、36fil(紡糸速度3200m/min、伸度115
%)を芯糸とし、他方、融着温度250℃(単独で
仮撚加工したとき融着未解撚が発生し始める加工
温度)のポリエステルフイラメント糸65de、
150filを鞘糸とし、第6図の工程で加工温度238
℃、仮撚数2400T/M、加工速度100m/min、巻
付糸のオーバーフイード率(F)80%、仮撚延伸
倍率1.3倍、バルーニングの振巾5mm、波長13mm
の1山で加工した。 尚、この延伸倍率での芯糸の熱融着温度は230
〜235℃であつた。 得られた複合加工糸は第4〜5図に示すような
構造を有し、該構造部分をおよそ60%の割合で含
んでいた。糸足差は38.5%、糸の伸度は32%であ
つた。 また、この加工糸はしごいてもネツプが発生せ
ず製織上のトラブルもなく、得られた織物は適度
な硬さとソフトな表面タツチを有し、高品位の綿
ライク織物であつた。 更に上記の複合糸を経糸(密度21本/cm)とし
て配列し、緯糸としてウーリー糸を打込んだ時の
織機の停止回数(経糸断糸)は0.2回/hrであつ
た。 一方、上記実施例においてバルーニングを5回
生ぜしめて得た複合糸は第1図に示す構造をと
り、これを経糸とした場合織機の停止回数は2
回/hrであつた。 実施例 2 実施例1と同じ原糸を使用し、第6図の工程で
加工温度230℃、仮撚数2400T/m、加工速度100
m/min、巻付糸のオーバーフイード率75%、仮
撚延伸倍率1.3倍、バルーニング振巾5mm、波長
10mmの1山で加工した。 得られた加工糸は、第4〜5図の構造をとりそ
の降芯糸は融着し、糸足差は35%、糸の伸度は31
%であつた。 またこれより得られた織物は硬さを抑えて、綿
毛羽様のソフトなタツチを強調した風合を有して
いた。 また実施例1と同様にして測定した織機停止回
数は本発明の場合0.15回/hr、比較例(バルーン
5山)では2回/hrであつた。
[Table] The total fineness of the total fibers of the sheath yarn and the total fineness of the core yarn has a suitable range from the viewpoint of the expression of the yarn structure and the texture. If the ratio of the core yarn 1 is too small, the sheath yarn 8 that comes into contact with the core yarn during processing will not be properly fixed, and an interfacial wrap layer will not be formed, resulting in a structure consisting only of the fused core yarn and the crimped yarn covering it. As a result, the desired texture effect cannot be obtained. On the other hand, if the sheath yarn ratio is too low, almost all of the sheath yarn will stick to the core yarn, and there will be no crimp covering the surface layer, making it impossible to obtain a soft texture effect. As a result of examining a combination of yarns with different total finenesses, it was found that a suitable texture can be obtained when the total fineness of the sheath yarn of the processed yarn is in the range of 0.7 to 1.4 relative to the total fineness of the core yarn. I understand. It should be noted that polyethylene terephthalate polymer is most preferable for the core thread and the winding thread, but other materials may be used depending on the purpose. For example, if an antistatic or water-absorbing polyester filament to which polyethylene glycol and/or alkyl sulfonic acid metal salts are added is used as the winding yarn, the function can be made closer to that of cotton. Of course, this sheath yarn may be a mixed fiber yarn or a co-spun (CO-SPUN) yarn with different denier, cross section, etc. within the same yarn. As described above, according to the present invention, a false-twisted composite yarn with significantly improved workability and a method for producing the same are provided, so that the success rate of weaving and knitting is improved and high-quality woven and knitted fabrics can be obtained. Example 1 Highly oriented undrawn yarn of polyethylene terephthalate
115de, 36fil (spinning speed 3200m/min, elongation 115
%) as the core yarn, and on the other hand, polyester filament yarn 65de with a fusion temperature of 250°C (the processing temperature at which fusion-bonded untwisting begins to occur when false-twisted alone),
Using 150fil as the sheath yarn, the processing temperature is 238 in the process shown in Figure 6.
℃, number of false twists 2400T/M, processing speed 100m/min, overfeed rate (F) of wrapped yarn 80%, false twist stretching ratio 1.3 times, ballooning width 5mm, wavelength 13mm
Processed in one pile. In addition, the heat fusion temperature of the core yarn at this stretching ratio is 230
It was ~235℃. The obtained composite textured yarn had a structure as shown in FIGS. 4 and 5, and contained approximately 60% of the structure. The yarn foot difference was 38.5%, and the yarn elongation was 32%. Moreover, even when this processed yarn was squeezed, no neps were generated and there were no weaving problems, and the obtained fabric had appropriate hardness and soft surface touch, and was a high-quality cotton-like fabric. Further, when the above-mentioned composite yarn was arranged as a warp (density 21/cm) and a woolly yarn was inserted as a weft, the number of stops of the loom (warp yarn breakage) was 0.2 times/hr. On the other hand, the composite yarn obtained by ballooning five times in the above example has the structure shown in Figure 1, and when this is used as the warp, the number of stops of the loom is 2.
times/hr. Example 2 The same raw yarn as in Example 1 was used, and the processing temperature was 230°C, the number of false twists was 2400T/m, and the processing speed was 100 in the process shown in Figure 6.
m/min, overfeed rate of wrapped yarn 75%, false twist stretching ratio 1.3 times, ballooning amplitude 5 mm, wavelength
Processed with one 10mm thread. The obtained processed yarn has the structure shown in Figures 4 and 5, and the cored yarn is fused, the yarn foot difference is 35%, and the elongation of the yarn is 31.
It was %. In addition, the fabric obtained from this had a texture with reduced hardness and a fluff-like soft touch. Further, the number of times the loom was stopped was measured in the same manner as in Example 1, and was 0.15 times/hr in the case of the present invention, and 2 times/hr in the comparative example (5 balloons).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に対して、比較用の仮撚複合糸
の側面図、第2図はその断面図、第3図は綿紡績
糸の側面図、第4図は本発明の仮撚複合糸の一例
を示す側面図、第5図はその顕微鏡写真図、第6
図はその製造工程図、第7図は本発明の延伸仮撚
工程で採用する延伸倍率について説明するグラフ
である。 1……芯糸、8……鞘糸、2,3……鞘糸を構
成するフイラメント、2′……同一鞘糸を構成す
る一部のフイラメントで第1の巻付部を構成する
もの、3′……同一鞘糸を構成する残りのフイラ
メントで第2の巻付部を構成するもの、4……綿
紡績糸の芯部、5……毛羽、6……第1フイード
ローラー、7……仮撚具、9……第2フイードロ
ーラー、10……鞘糸供給ガイド、11……ヒー
ター、12……バルーン調節ガイド、13……ド
ローローラー。
Fig. 1 is a side view of a comparative false twisted composite yarn of the present invention, Fig. 2 is a sectional view thereof, Fig. 3 is a side view of a spun cotton yarn, and Fig. 4 is a side view of a false twisted composite yarn of the present invention. A side view showing an example of the thread, Fig. 5 is a microscopic photograph thereof, Fig. 6
The figure is a manufacturing process diagram, and FIG. 7 is a graph illustrating the stretching ratio employed in the stretching false-twisting process of the present invention. 1... core thread, 8... sheath thread, 2, 3... filament constituting the sheath thread, 2'... some filaments constituting the same sheath thread constituting the first winding part, 3'... Remaining filaments constituting the same sheath yarn and forming the second winding part, 4... Core part of the cotton spun yarn, 5... Fluff, 6... First feed roller, 7 ... false twister, 9 ... second feed roller, 10 ... sheath yarn supply guide, 11 ... heater, 12 ... balloon adjustment guide, 13 ... draw roller.

Claims (1)

【特許請求の範囲】 1 芯糸の周りにマルチフイラメント糸よりなる
鞘糸が巻付いてなる複合仮撚糸において前記マル
チフイラメント糸内の構成フイラメントの一部は
芯糸に交互撚糸状に巻付き(第1の巻付き)、更
に残余のフイラメントが前記交互撚糸部の巻付き
方向とは反対方向に巻付き(第2の巻付き)、か
くして芯糸の周りに同一鞘糸糸条内でのフイラメ
ントが互いに交叉状態で巻付いた積層巻付部分を
含むことを特徴とする仮撚複合糸。 2 同一鞘糸内で構成フイラメントが積層巻付層
間でマイグレートしている特許請求の範囲第1項
記載の仮撚複合糸。 3 第1の巻付部が連続交互反転状である特許請
求の範囲第1項記載の仮撚複合糸。 4 第2の巻付部において巻付フイラメントは緊
締巻付状態にある特許請求の範囲第1項記載の仮
撚複合糸。 5 少くとも芯部が融着してなる特許請求の範囲
第1項または第3項記載の複合糸。 6 鞘糸のフイラメント(単繊維)太さが凡そ
1de以下である特許請求の範囲第1項記載の仮撚
複合糸。 7 単糸状鞘糸が40本以上のフイラメントより成
る特許請求の範囲第1項または第6項記載の仮撚
複合糸。 8 鞘糸の全繊度が芯糸の全繊度に対して0.7〜
1.4である特許請求の範囲第1項記載の仮撚複合
糸。 9 延伸仮撚されつつある合成繊維糸状(芯糸)
に対し、仮撚具の上流で、該糸の回転トルクを利
用して他の糸条(鞘糸)をオーバーフイード下に
捲込ませつつ供給して捲付構造糸を形成し、仮撚
具直後で該捲付構造糸を一山のみのバルーニング
を惹起せしめつつ解撚することを特徴とする仮撚
複合糸の製造法。 10 バルーニングの最少振幅が3mmである特許
請求の範囲第9項記載の仮撚複合糸の製造法。 11 バルーニングの波長が5〜15mmである特許
請求の範囲第9項記載の仮撚複合糸の製造法。 12 芯糸の融着温度が鞘糸のそれよりも低い特
許請求の範囲第9項記載の仮撚複合糸の製造法。 13 芯糸を仮撚の熱固定時に融着させる特許請
求の範囲第9項記載の仮撚複合糸の製造法。
[Scope of Claims] 1. In a composite false twisted yarn in which a sheath yarn made of a multifilament yarn is wound around a core yarn, some of the constituent filaments in the multifilament yarn are wound around the core yarn in an alternately twisted yarn shape ( The remaining filament is further wound in the direction opposite to the winding direction of the alternating twist portion (second winding), and thus the filament is wrapped around the core yarn within the same sheath thread. 1. A false-twisted composite yarn comprising a laminated wound portion in which the yarns are wound in a crossed manner. 2. The false twisted composite yarn according to claim 1, wherein the constituent filaments migrate between the laminated winding layers within the same sheath yarn. 3. The false twisted composite yarn according to claim 1, wherein the first winding portion has a continuous alternating inversion shape. 4. The false twisted composite yarn according to claim 1, wherein the wound filament is tightly wound in the second winding portion. 5. The composite yarn according to claim 1 or 3, wherein at least the core portion is fused. 6 The filament (single fiber) thickness of the sheath yarn is approximately
The false twisted composite yarn according to claim 1, which has a yarn weight of 1 de or less. 7. The false twisted composite yarn according to claim 1 or 6, wherein the single sheath yarn consists of 40 or more filaments. 8 The total fineness of the sheath yarn is 0.7 or more compared to the total fineness of the core yarn.
1.4 of the false twisted composite yarn according to claim 1. 9 Synthetic fiber filament (core yarn) being drawn and false twisted
On the other hand, upstream of the false twisting tool, other yarns (sheath yarns) are wound and fed under the overfeed using the rotational torque of the yarn to form a wound structured yarn, and the false twisting tool A method for producing a false-twisted composite yarn, which comprises untwisting the wound structural yarn immediately after the twisting while causing ballooning of only one pile. 10. The method for producing a false twisted composite yarn according to claim 9, wherein the minimum amplitude of ballooning is 3 mm. 11. The method for producing a false twisted composite yarn according to claim 9, wherein the ballooning wavelength is 5 to 15 mm. 12. The method for producing a false twisted composite yarn according to claim 9, wherein the core yarn has a melting temperature lower than that of the sheath yarn. 13. The method for producing a false-twisted composite yarn according to claim 9, wherein the core yarn is fused during heat-setting during false-twisting.
JP14879079A 1979-11-19 1979-11-19 False twisted composite yarn and method Granted JPS5673133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14879079A JPS5673133A (en) 1979-11-19 1979-11-19 False twisted composite yarn and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14879079A JPS5673133A (en) 1979-11-19 1979-11-19 False twisted composite yarn and method

Publications (2)

Publication Number Publication Date
JPS5673133A JPS5673133A (en) 1981-06-17
JPS6240452B2 true JPS6240452B2 (en) 1987-08-28

Family

ID=15460741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14879079A Granted JPS5673133A (en) 1979-11-19 1979-11-19 False twisted composite yarn and method

Country Status (1)

Country Link
JP (1) JPS5673133A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139910U (en) * 1980-03-19 1981-10-22
JPS56134222A (en) * 1980-03-24 1981-10-20 Teijin Ltd Production of sprinkle like false twisted two layered structural yarn

Also Published As

Publication number Publication date
JPS5673133A (en) 1981-06-17

Similar Documents

Publication Publication Date Title
JPS6221883B2 (en)
JPH08246282A (en) Long and short conjugate yarn and its production
JP2935043B2 (en) Coated elastic yarn and method for producing the same
JPS6240452B2 (en)
JPS6152254B2 (en)
JPS5891839A (en) Composite false twisted crimp yarn
JP2795652B2 (en) Multilayer structured yarn
CS209224B1 (en) Yarn
JPS5921970B2 (en) Polyester fiberglass
JPS6312180B2 (en)
JP2666376B2 (en) Crimped bulky yarn and method for producing the same
JP2006348431A (en) Composite false twist textured yarn
JPS5943573B2 (en) Georgette style knitted fabric
JPS63105134A (en) Spun like composite structural yarn
JPS6119736B2 (en)
JPS6319613B2 (en)
JPS621019B2 (en)
JPS6328139B2 (en)
JPH10183433A (en) Special composite false-twisted yarn
JPS5858448B2 (en) Manufacturing method of slab-like bulky yarn
JPH0733608B2 (en) Special false twisted yarn
JPS5994635A (en) Composite yarn and production thereof
JPS59163433A (en) Production of special composite yarn
JPH06104939B2 (en) Crimped yarn manufacturing method
JPS6120662B2 (en)