JPS6240429B2 - - Google Patents

Info

Publication number
JPS6240429B2
JPS6240429B2 JP53132268A JP13226878A JPS6240429B2 JP S6240429 B2 JPS6240429 B2 JP S6240429B2 JP 53132268 A JP53132268 A JP 53132268A JP 13226878 A JP13226878 A JP 13226878A JP S6240429 B2 JPS6240429 B2 JP S6240429B2
Authority
JP
Japan
Prior art keywords
titanium
gas
coating
tic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53132268A
Other languages
Japanese (ja)
Other versions
JPS5558365A (en
Inventor
Moriaki Fuyama
Mitsuru Ura
Haruhiko Pponda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP13226878A priority Critical patent/JPS5558365A/en
Priority to US06/053,731 priority patent/US4264682A/en
Publication of JPS5558365A publication Critical patent/JPS5558365A/en
Publication of JPS6240429B2 publication Critical patent/JPS6240429B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

超硬合金、高速度鋼などの切削工具、耐摩耗部
品などの耐摩耗性、耐溶着性および耐酸化性を要
求されるものの表面被覆方法に関するものであ
る。 炭化タングステンを主成分とし、主としてコバ
ルトで結合した超硬合金を母材とし、表面に母材
より耐摩耗性に富む、周期律表a族金属の炭化
物窒化物、炭窒化物を一層もしくは、それ以上の
層にして、5〜10ミクロンの厚さに被覆した、い
わゆるコーテイングチツプは、母材のじん性と表
面被覆層の耐摩耗性を兼ねそなえており、切削工
具として従来の超硬合金より優れた切削性能を有
し、広く使用されている。 コーテイングチツプとしては、チタンの炭化物
窒化物、炭窒化物を被覆したものが主流であり、
それらの皮膜の上層に耐溶着性、耐酸化性に優れ
たアルミナの皮膜を組合わせたもの、チタンのオ
キシ化合物を被覆したものなど、単層被覆による
欠点を補うため、また性能向上のため、複雑な多
層被覆も開発されている。単層被覆および多層被
覆において殆んどの場合チタン化合物単独または
チタン化合物との組合わせでありチタン化合物が
性能上大きな役割をはたしている。それらは気相
を用いた化学蒸着法による被覆を行なつている。
この方法は通常チタンのハロゲン化物(一般に四
塩化チタン)、炭化水素(メタンガス)、窒素ガス
および水素ガスを一定の割合で混合し、混合ガス
をコーテイングする基体上に導き、900〜1100℃
の温度および1〜100mmHgの圧力下で皮膜を生成
するものである。この場合、水素ガスは四塩化チ
タンを運ぶ、キヤリアーガスおよび四塩化チタン
を還元する重要な役割を持つている。また生産技
術上では減圧下で水素ガスを使用することとな
り、空気がリークして系内に混入した場合爆発の
危険性および反応生成ガス(HClガス)による装
置の腐食などの問題を有する。 一方水素ガスを使用しない方法および非爆発性
雰囲気でチタン化合物を得る方法も各々特開昭51
−68479号、特公昭52−48585号に述べられてい
る。 この方法を化学式で示すと TiCl4+Ti→2TiCl2 ……(1) 2TiCl2+C(母材)→TiC+TiCl4 ……(2) のようになる。 (1)式の四塩化チタンをチタン金属で還元し低級
の二塩化チタンを生成することが必要であり、こ
れらの方法ではチタンカーバイド(TiC)の生成
のための炭素源として炭化水素を使用することが
好ましくないため、母材中の炭素が炭素源となつ
ている。特に超硬合金では、母材中の炭素が消費
され炭素含有量が減少するとTiC量の直下にη相
と呼ばれる脆い脱炭層が生成するため上記方法は
好ましくない。ただし特開昭51−68479の場合は
TiC被覆を行なつたのち、窒化処理を行ないTiC
層中の炭素を母材に逆拡散させる処理を行なつて
いる。 本発明は、これらの点の改善および被覆層の性
能の向上について鋭意研究した結果、爆発等の危
険のあるH2ガスや従来の液体である塩化チタン
を用いずに、チタンのヨウ化物である固体の四ヨ
ウ化チタンと少量の炭化水素または窒素ガスとの
混合ガスを減圧下800〜1200℃で反応せしめる
と、緻密で密着が良く耐摩耗性、耐溶着着性及び
耐酸化性にすぐれたチタニウム化合物を簡単に生
成できることを見出し本発明にいたつた。この方
法を用いてコーテイングを行なつたTiCコーテイ
ングチツプは従来のTiCコーテイングチツプに比
較して、耐摩耗性およびTiC皮膜の密着強度も十
分であることが分かつた。本発明はこれら上記方
法に関するものである。 本発明の目的は、切削工具や耐摩耗部品である
超硬合金、サーメツト等の超硬質合金部材の耐摩
耗性、耐溶着性及び耐酸化性を向上させるため、
その表面に、チタン化合物をコーテイングすると
ころにある。また普通化学蒸着法で用いられる
H2−TiCl4−CH4ガスを用いず、高級チタンヨウ
化物である四ヨウ化チタン(TiI4)を生成し、そ
れに炭化水素または窒素ガスの内少くとも1種の
ガスを導入し、減圧下の状態で、チタン化合物を
生成するところにある。すなわち炭化水素のCと
四ヨウ化チタンのTiとの比C/Ti=0.1〜0.4(重
量比)なる混合ガスを800〜1200℃に加熱された
基体上に通し、減圧下、好ましくは反応圧力
0.5Torr以下の圧力でチタン化合物を生成するこ
とによつてチタン化合物を被覆する方法を提供す
るものである。 以下本発明の実施例とその効果についてのべ
る。 試作した装置の概略図を第1図に示す。本装置
加熱部は、ヨウ素を所定温度にし、一定量のヨウ
素を送り出す加熱部、TiI4を生成するためのチタ
ンを所定温度にする加熱部、TiI4と反応ガス(炭
化水素、窒素)とを反応させ、チタン化合物を生
成するための基体加熱部の3ケ所がある。基体の
加熱には、高周波誘導加熱方式を用いているが、
抵抗加熱方式を用いてもよい。 本装置を用いて、例えば、TiC皮膜を生成する
場合について以下、実施例として説明する。 TiCの生成反応を下記に示す。 Ti+2I2→TiI4 ……(3) 4TiI4+C4H10→4TiC+1OHI+3I2 ……(4) 炭化水素としては、ブタン(C4H10)が用いて
ある。 (3)式において、被覆に必要なTiI4を安定に生成
するためのチタンとヨウ素との反応温度は200〜
350℃が最適である。 また該反応温度が350℃を超えると、生成した
TiI4とTi金属とが反応を起こし、低級ヨウ化物
(TiI3,TiI2)を生成する。低級ヨウ化物は蒸気圧
が低いために、移動が困難となり、Ti金属上に
順次折出してくる。したがつて、主原料ガス(ヨ
ウ化チタン)の流量調整が難しくなり、皮膜の均
一性などに問題が生じる。200℃以下でもTiI4
生成するが、TiI4以外に未反応のヨウ素が残り、
基体上のエツチング作用を起こす。また密着強度
も低下し皮膜のハク離現象が著しくなる。よつ
て、TiI4の使用が必須不可欠であり、生成された
TiI4は他の経路から導入された炭化水素(例えば
C4H10・ブタンガス)と一緒に800〜1200℃に加
熱された超硬質合金の基体上に導かれ反応を起こ
し、TiCを生成する。この反応式は(4)で示され
る。反応温度800℃以下では被覆膜の生成速度が
遅くなるので一定の膜厚を得るのに時間がかか
り、また膜の耐摩耗性も劣るため実用上好ましく
なり、1200℃以上の場合膜の生成速度は速いが、
柱状結晶となり表面が荒れており切削の際にチツ
ピングなどの原因となる。 反応圧力が0.5Torr以下の減圧の状態で被覆を
生成した場合、得られた皮膜は微細結晶をしてお
り、かつ均一被覆性が優れている。0.5Torrより
圧力が上昇すると均一な微細結晶が得られず、結
晶の異状成長が著しくなり表面が荒れてくるので
0.5Torr以下が好ましい。 得られるチタニウム化合物皮膜の耐摩耗性、密
着性は反応温度、TiI4および炭化水素もしくは窒
素ガスの供給量によつて左右されることはいうま
でもない。 実施例 1 例えば耐摩耗性のあるTiC皮膜の形成条件を下
記に示す。 形成条件 反応温度 1000℃ 反応圧力 0.05Torr ブタンガス流量0.2ml/min ヨウ素流量 22mg/min Tiとヨウ素との反応温度 300℃ その際の皮膜生成速度は20μm/hである。 実施例 2 TiN皮膜の形成条件を下記に示す。 形成条件 反応温度 950℃ 反応圧力 0.1Torr 窒素ガス流量 2.0ml/min ヨウ素流量 22mg/min Tiとヨウ素との反応温度 300℃ その際の皮膜生成速度は1.5μm/hである。
なお、反応ガスは窒素以外にNH3ガスを用いても
よいが爆発の危険があるのでさけたい。また、反
応ガスとしてブタンと窒素の混合ガスを用いるこ
とにより、TiC・Nを生成することができる。 実施例1の方法で超硬合金(P30)の表面に
TiC皮膜を5μmコーテイングしたチツプの切削
試験を行なつた。また比較のために市販の同一グ
レードのTiCコーテイングチツプの切削試験をも
行なつた。 切削試験 切削条件 被削材 SCM3(Hs30〜35) 切削速度 140m/min 送 り 0.3mm/rev 切込み 2.0mm 乾式切削 Γ連続切削試験結果 切削試験結果を表1に示す。逃げ面摩耗が0.4
mmに達した時点を寿命時間とした。
The present invention relates to a surface coating method for cutting tools made of cemented carbide, high-speed steel, etc., and wear-resistant parts that require wear resistance, adhesion resistance, and oxidation resistance. The base material is a cemented carbide mainly composed of tungsten carbide and bonded with cobalt, and the surface is coated with a layer of carbide nitride or carbonitride of a group A metal of the periodic table, which has higher wear resistance than the base material. The so-called coating chips, which are coated with the above layers to a thickness of 5 to 10 microns, have both the toughness of the base material and the wear resistance of the surface coating layer, and are better suited for cutting tools than conventional cemented carbides. It has excellent cutting performance and is widely used. The mainstream coating chips are those coated with titanium carbide nitride or carbonitride.
In order to compensate for the shortcomings of single-layer coatings and to improve performance, such as those that combine an alumina coating with excellent welding resistance and oxidation resistance on the upper layer of these coatings, and those that are coated with a titanium oxy compound, Complex multilayer coatings have also been developed. In most cases of single-layer coatings and multi-layer coatings, titanium compounds are used alone or in combination with titanium compounds, and the titanium compounds play a major role in terms of performance. They are coated by chemical vapor deposition using a gas phase.
This method usually involves mixing a titanium halide (generally titanium tetrachloride), a hydrocarbon (methane gas), nitrogen gas, and hydrogen gas at a certain ratio, and introducing the mixed gas onto the substrate to be coated at a temperature of 900 to 1100°C.
It forms a film at a temperature of 1 to 100 mmHg. In this case, hydrogen gas has an important role of transporting titanium tetrachloride, carrying gas and reducing titanium tetrachloride. In addition, production technology requires the use of hydrogen gas under reduced pressure, which poses problems such as the risk of explosion if air leaks and enters the system, and equipment corrosion due to reaction product gas (HCl gas). On the other hand, a method that does not use hydrogen gas and a method for obtaining titanium compounds in a non-explosive atmosphere are also disclosed in Japanese Patent Laid-Open No. 51
-68479, and Special Publication No. 52-48585. The chemical formula for this method is as follows: TiCl 4 +Ti→2TiCl 2 ...(1) 2TiCl 2 +C (base material)→TiC+TiCl 4 ...(2). It is necessary to reduce titanium tetrachloride in formula (1) with titanium metal to produce lower titanium dichloride, and these methods use hydrocarbons as a carbon source for the production of titanium carbide (TiC). Since this is not preferable, the carbon in the base material serves as the carbon source. In particular, for cemented carbide, the above method is not preferable because when the carbon in the base material is consumed and the carbon content decreases, a brittle decarburized layer called η phase is generated directly below the TiC content. However, in the case of JP-A-51-68479,
After TiC coating, nitriding treatment is performed to make TiC
A process is performed to diffuse the carbon in the layer back into the base material. As a result of intensive research into improving these points and improving the performance of the coating layer, the present invention has developed a technology that uses titanium iodide instead of using H 2 gas or the conventional liquid titanium chloride, which has the danger of explosion. When a mixed gas of solid titanium tetraiodide and a small amount of hydrocarbon or nitrogen gas is reacted at 800 to 1200℃ under reduced pressure, it forms a dense, adhesive product with excellent wear resistance, welding resistance, and oxidation resistance. The inventors discovered that titanium compounds can be easily produced, leading to the present invention. It was found that TiC coated chips coated using this method have sufficient wear resistance and adhesion strength of the TiC film compared to conventional TiC coated chips. The present invention relates to these methods. The purpose of the present invention is to improve the wear resistance, adhesion resistance, and oxidation resistance of cutting tools and wear-resistant parts such as cemented carbide and cermet.
Its surface is coated with a titanium compound. Also commonly used in chemical vapor deposition
Titanium tetraiodide (TiI 4 ), which is a high-grade titanium iodide, is produced without using H 2 -TiCl 4 -CH 4 gas, and at least one gas among hydrocarbons or nitrogen gas is introduced into it, and then under reduced pressure. In this state, titanium compounds are produced. That is, a mixed gas with a ratio of C in hydrocarbons to Ti in titanium tetraiodide (C/Ti = 0.1 to 0.4 (weight ratio)) is passed over a substrate heated to 800 to 1200°C under reduced pressure, preferably at reaction pressure.
A method of coating a titanium compound is provided by producing the titanium compound at a pressure of 0.5 Torr or less. Examples of the present invention and their effects will be described below. A schematic diagram of the prototype device is shown in Figure 1. The heating section of this device has a heating section that brings iodine to a predetermined temperature and sends out a certain amount of iodine, a heating section that brings titanium to a predetermined temperature to produce TiI 4 , and a heating section that heats TiI 4 and reaction gas (hydrocarbon, nitrogen). There are three substrate heating parts for reacting and producing titanium compounds. A high-frequency induction heating method is used to heat the base.
A resistance heating method may also be used. A case in which, for example, a TiC film is produced using this apparatus will be described below as an example. The reaction for producing TiC is shown below. Ti+2I 2 →TiI 4 ...(3) 4TiI 4 +C 4 H 10 →4TiC+1OHI+3I 2 ...(4) Butane (C 4 H 10 ) is used as the hydrocarbon. In equation (3), the reaction temperature between titanium and iodine to stably generate TiI 4 necessary for coating is 200 ~
350℃ is optimal. Furthermore, when the reaction temperature exceeds 350℃, the formation of
TiI 4 and Ti metal react to produce lower iodides (TiI 3 , TiI 2 ). Lower iodides have low vapor pressure, making them difficult to move, and they are gradually precipitated onto the Ti metal. Therefore, it becomes difficult to adjust the flow rate of the main raw material gas (titanium iodide), causing problems in the uniformity of the film. Although TiI 4 is generated even below 200℃, unreacted iodine remains in addition to TiI 4 .
Causes an etching effect on the substrate. Furthermore, the adhesion strength decreases and the peeling phenomenon of the film becomes significant. Therefore, the use of TiI 4 is essential and the produced
TiI 4 can contain hydrocarbons introduced from other routes (e.g.
TiC is produced by being introduced onto a super-hard alloy substrate heated to 800-1200°C together with C 4 H 10 (butane gas) to cause a reaction. This reaction formula is shown in (4). If the reaction temperature is below 800°C, the rate of formation of the coating film will be slow, so it will take time to obtain a certain film thickness, and the abrasion resistance of the film will also be poor, so this is not practical. Although the speed is fast,
It forms columnar crystals with a rough surface, which causes chipping during cutting. When a coating is produced under a reduced reaction pressure of 0.5 Torr or less, the resulting coating has fine crystals and excellent uniform coverage. If the pressure rises above 0.5 Torr, uniform fine crystals cannot be obtained, and the abnormal growth of crystals becomes significant and the surface becomes rough.
It is preferably 0.5 Torr or less. Needless to say, the wear resistance and adhesion of the titanium compound film obtained depend on the reaction temperature, TiI 4 and the amount of hydrocarbon or nitrogen gas supplied. Example 1 For example, conditions for forming a wear-resistant TiC film are shown below. Formation conditions Reaction temperature 1000℃ Reaction pressure 0.05Torr Butane gas flow rate 0.2ml/min Iodine flow rate 22mg/min Reaction temperature between Ti and iodine 300℃ The film formation rate at that time was 20μm/h. Example 2 The conditions for forming a TiN film are shown below. Formation conditions Reaction temperature: 950°C Reaction pressure: 0.1 Torr Nitrogen gas flow rate: 2.0ml/min Iodine flow rate: 22mg/min Reaction temperature between Ti and iodine: 300°C The film formation rate at that time is 1.5 μm/h.
Note that NH 3 gas may be used instead of nitrogen as the reaction gas, but it should be avoided because of the risk of explosion. Furthermore, TiC·N can be produced by using a mixed gas of butane and nitrogen as the reaction gas. on the surface of cemented carbide (P30) using the method of Example 1.
A cutting test was conducted on a chip coated with a 5 μm TiC film. For comparison, a cutting test was also conducted using a commercially available TiC coated chip of the same grade. Cutting test Cutting conditions Work material SCM3 (Hs30~35) Cutting speed 140m/min Feed 0.3mm/rev Depth of cut 2.0mm Dry cutting Γ Continuous cutting test results The cutting test results are shown in Table 1. Flank wear is 0.4
The time when mm was reached was defined as the life time.

【表】 本発明は耐摩耗性に優れていることがわかつ
た。また、本発明チツプは密着強度も十分であり
はく離、チツピングもなく正常摩耗であつた。 なお比較品の市販TiCコーテイングチツプは、
切刃ホーニング部分に小さなはく離が生じた。 Γ端面断続切削試験 切削試験の評価結果を第2図に示す。 本発明TiCコーテイングチツプおよび比較品の
TiCコーテイングチツプ各々6コーナについて端
面断続試験を行なつた結果、本発明品は、耐はく
離性、耐チツピング性ともに比較品よりも優れた
性能を示した。 以上詳述した通り、本願発明は水素等のキヤリ
アガスを用いることなく、四ヨウ化チタンと反応
ガスである炭化水素、窒素ガスの少なくとも1種
との混合ガスを超硬質合金の基体上に導き、800
〜1200℃の温度で、かつ減圧下にてチタン化合物
を被覆する方法であり、緻密で密着が良い耐摩耗
性、耐溶着性及び耐酸化性に優れた被覆膜を得る
ことができる。 尚、取扱い如何によつては爆発の危険のある水
素ガスや高価なAr等の不活性ガスより成るキヤ
リアガスを不要にし、又、生成ガスであるHClも
発生しないので装置内の腐食の必配もなく、安全
性、操作性においても優れる被覆方法であり、そ
の実用上の効果は大である。
[Table] It was found that the present invention has excellent wear resistance. Furthermore, the chips of the present invention had sufficient adhesion strength and exhibited normal wear without peeling or chipping. The commercially available TiC coating chips for comparison are:
Small flaking occurred on the honed part of the cutting edge. Interrupted cutting test on the Γ end face The evaluation results of the cutting test are shown in Figure 2. TiC coated chips of the present invention and comparative products
As a result of performing an end-face intermittent test on each of the six corners of the TiC coated chip, the product of the present invention showed superior performance in both peeling resistance and chipping resistance than the comparative product. As detailed above, the present invention does not use a carrier gas such as hydrogen, but instead introduces a mixed gas of titanium tetraiodide and at least one of a hydrocarbon and nitrogen gas as a reaction gas onto a superhard alloy substrate. 800
This is a method of coating a titanium compound at a temperature of ~1200°C under reduced pressure, and it is possible to obtain a coating film that is dense, has good adhesion, and has excellent wear resistance, welding resistance, and oxidation resistance. Additionally, carrier gas consisting of hydrogen gas, which can be explosive depending on how it is handled, or expensive inert gas such as Ar, is not required, and HCl, which is a generated gas, is not generated, so there is no need for corrosion inside the equipment. This is a coating method that is excellent in terms of safety and operability, and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いたCVD装置の概略図、
第2図は切削試験の評価結果を示す図である。 1:油回転ポンプ、2:トラツプ、3:バル
ブ、4:真空センサ、5:基体加熱用高周波加熱
炉、6:基体、7:反応管、8:基本ホルダー、
9:サブヒータ、10:チタン、11:流量計、
12:ヨウ素容器、13:恒温槽。
FIG. 1 is a schematic diagram of the CVD apparatus used in the present invention,
FIG. 2 is a diagram showing the evaluation results of the cutting test. 1: Oil rotary pump, 2: Trap, 3: Valve, 4: Vacuum sensor, 5: High frequency heating furnace for heating the substrate, 6: Substrate, 7: Reaction tube, 8: Basic holder,
9: sub heater, 10: titanium, 11: flow meter,
12: Iodine container, 13: Constant temperature bath.

Claims (1)

【特許請求の範囲】 1 四ヨウ化チタンを生成し、それに炭化水素、
窒化ガスの内少なくとも1種のガスを導入して該
混合ガスをコーテイングする超硬質合金の基体上
に導き、800〜1200℃の温度でかつ減圧下にてチ
タン化合物を生成することを特徴とするチタン化
合物の被覆方法。 2 特許請求の範囲第1項において、反応系内の
圧力が0.5Torr以下の減圧下であることを特徴と
するチタン化合物の被覆方法。 3 特許請求の範囲第1項または第2項におい
て、チタンとヨウ素とを200〜350℃の温度範囲で
反応させて四ヨウ化チタンを生成することを特徴
とするチタン化合物の被覆方法。
[Claims] 1. Producing titanium tetraiodide and adding hydrocarbons to it,
It is characterized by introducing at least one type of nitriding gas, guiding the mixed gas onto the coated superhard alloy substrate, and producing a titanium compound at a temperature of 800 to 1200°C and under reduced pressure. Coating method of titanium compound. 2. The method for coating a titanium compound according to claim 1, characterized in that the pressure in the reaction system is under reduced pressure of 0.5 Torr or less. 3. A method for coating a titanium compound according to claim 1 or 2, characterized in that titanium and iodine are reacted in a temperature range of 200 to 350°C to produce titanium tetraiodide.
JP13226878A 1978-10-27 1978-10-27 Coating method for titanium compound Granted JPS5558365A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP13226878A JPS5558365A (en) 1978-10-27 1978-10-27 Coating method for titanium compound
US06/053,731 US4264682A (en) 1978-10-27 1979-07-02 Surface hafnium-titanium compound coated hard alloy material and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13226878A JPS5558365A (en) 1978-10-27 1978-10-27 Coating method for titanium compound

Publications (2)

Publication Number Publication Date
JPS5558365A JPS5558365A (en) 1980-05-01
JPS6240429B2 true JPS6240429B2 (en) 1987-08-28

Family

ID=15077300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13226878A Granted JPS5558365A (en) 1978-10-27 1978-10-27 Coating method for titanium compound

Country Status (1)

Country Link
JP (1) JPS5558365A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244572A (en) * 1985-08-21 1987-02-26 Hitachi Carbide Tools Ltd Surface coated tool
JPS62218576A (en) * 1986-03-19 1987-09-25 Kiichiro Kamata Plasma cvd method
US7390535B2 (en) 2003-07-03 2008-06-24 Aeromet Technologies, Inc. Simple chemical vapor deposition system and methods for depositing multiple-metal aluminide coatings
US10689405B2 (en) * 2017-11-30 2020-06-23 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Titanium-containing film forming compositions for vapor deposition of titanium-containing films

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983679A (en) * 1972-12-19 1974-08-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4983679A (en) * 1972-12-19 1974-08-12

Also Published As

Publication number Publication date
JPS5558365A (en) 1980-05-01

Similar Documents

Publication Publication Date Title
US4619866A (en) Method of making a coated cemented carbide body and resulting body
US4035541A (en) Sintered cemented carbide body coated with three layers
US3837896A (en) Sintered cemented carbide body coated with two layers
US4269899A (en) Surface hafnium-titanium carbide coated hard alloy and method
Archer The plasma-assisted chemical vapour deposition of TiC, TiN and TiCxN1− x
US6080477A (en) Titanium carbonitride coated stratified substrate and cutting inserts made from the same
US3977061A (en) Cutting insert and method of making the same
US3874900A (en) Article coated with titanium carbide and titanium nitride
US7887935B2 (en) Cutting insert having ceramic coating
EP0085240B1 (en) Multiple coated cutting tool and method for producing same
USRE29420E (en) Sintered cemented carbide body coated with two layers
US3964937A (en) Method of making a composite coating
US3368914A (en) Process for adherently depositing a metal carbide on a metal substrate
EP1157143B1 (en) Mt cvd process
US4264682A (en) Surface hafnium-titanium compound coated hard alloy material and method of producing the same
US3540920A (en) Process of simultaneously vapor depositing silicides of chromium and titanium
JPS6215484B2 (en)
JPWO2005121398A1 (en) Diamond thin film coating method and diamond-coated cemented carbide members
JPS6240429B2 (en)
JPS623234B2 (en)
JPH0643243B2 (en) Method for manufacturing tungsten carbide
JPS6354495B2 (en)
US6413628B1 (en) Titanium carbonitride coated cemented carbide and cutting inserts made from the same
JPH0120227B2 (en)
JPS5824501B2 (en) Method for manufacturing tungsten carbide coating layer