JPS6240349B2 - - Google Patents

Info

Publication number
JPS6240349B2
JPS6240349B2 JP58086609A JP8660983A JPS6240349B2 JP S6240349 B2 JPS6240349 B2 JP S6240349B2 JP 58086609 A JP58086609 A JP 58086609A JP 8660983 A JP8660983 A JP 8660983A JP S6240349 B2 JPS6240349 B2 JP S6240349B2
Authority
JP
Japan
Prior art keywords
formula
parts
group
reaction
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58086609A
Other languages
Japanese (ja)
Other versions
JPS59212449A (en
Inventor
Naoto Ito
Masumi Nishihara
Hiroshi Aiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP58086609A priority Critical patent/JPS59212449A/en
Publication of JPS59212449A publication Critical patent/JPS59212449A/en
Publication of JPS6240349B2 publication Critical patent/JPS6240349B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は、一般式() 〔式()中、R′は水素原子、アリル基、または
シアノ基、低級アルコキシ基、フエニル基で置換
されていてもよい低級アルキル基を表わし、ベン
ゼン環Aは、さらに低級アルキル基、低級アルコ
キシ、ハロゲン原子、もしくはアシルアミノ基で
置換されていてもよい。〕 で示されるベンゼン系アミンを、一般式() (R″)2SO4 () 〔式()中、R″は炭素数1〜4の飽和アルキル
基を表わす。〕 で示されるジアルキル硫酸を用いて、水溶媒中で
酸化マグネシウムまたは水酸化マグネシウムの存
在下に、60〜100℃の温度で反応させ、一般式
() 〔式()中、R′は、式()中のR′または式
()中のR″と同一の意味を表わし、R″は式
()中のR″と同一の意味を表わす。またベンゼ
ン環Aは式()と同一の意味を表わす。〕 で示される芳香族アミンのアルキル化方法に関す
る。 一般式()で示されるN−アルキルアミン類
はアゾ系分散染料の重要なカツプリング成分であ
り、従来、一般式()で示される化合物に種々
のアルキル化剤を、ソーダ灰、炭酸カリウム、酸
化マグネシウムなどの酸結合剤の存在下または不
存在下反応させて得られている。 これらの方法では、有機溶媒の存在下で行われ
ていたが、有機溶剤を使用した場合は、アルキル
化反応後の目的生成物の後処理や、排水の面で問
題があつた。 このため有機溶剤を使用せず、酸結合剤を用い
て100℃以下で水溶媒中でアルキル化反応を行う
方法も知られている。 特公昭53−20017号公報には、アルキル化剤と
して芳香族スルホン酸エステルを使用して、水溶
媒中で酸結合剤としてソーダ灰、炭酸カリウム、
酸化マグネシウムなどを用い、100℃以下の比較
的低温で実施されている。 しかしながら、前記特公昭53−20017号公報記
載のアルキル化剤を用いた場合は、100℃近くま
で昇温して、式()のアミンが水に溶解し難い
ので長時間水と共存させて反応を行うため、反応
中にアルキル化剤の一部が加水分解される。さら
には、水溶媒中でアルキル化反応を実施した場合
は、通常、アルキル化反応物を分離することなく
そのままカプラーに用いてアゾ染料の合成に供さ
れるが、その場合生成した染料がタール状となつ
たり、染料の色相が暗色になるほど製品の品質を
落すことがわかつた。その原因は、アルキル化剤
の芳香族スルホン酸エステルが、アルキル化反応
後芳香族スルホン酸塩となつて反応水溶液中に残
存し、これとジアゾ成分の一部とが反応した不純
物となり、アゾ染料中に含まれるものと推定され
る。 また芳香族スルホン酸エステルを用いた場合
は、排水中のCODも高く、公害対策上も好まし
くない。 本発明者らはこれらの点を鋭意検討の結果、本
発明に到達したものであり、アルキル化剤に、低
級ジアルキル硫酸を選択することにより、アルキ
ル化反応後得られるカツプリング成分をそのまま
アゾ染料製造に用いた場合に鮮明な染料が得ら
れ、しかも100℃近くの高温で長時間アルキル化
反応を行つても、酸結合剤に特定のマグネシウム
化合物を使用する限りにおいてはアルキル化剤の
分解を生ずることもなく、芳香族スルホン酸エス
テルを用いた場合より反応速度も早く、工業的に
非常に有利な製造方法であることがわかつた。 本発明方法においては、アルキル化剤にジアル
キル硫酸を用いて、水溶媒中で反応を行うので、
酸結合剤として、酸化マグネシウムまたは水酸化
マグネシウムを用いる必要がある。本発明方法で
は酸結合剤に、炭酸カリウムやソーダ灰など水に
容易に溶けて強アルカリを呈するものは好ましく
ない。有機溶媒を併用する場合はこれらの酸結合
剤の溶解度の小さい有機溶剤を選択、使用する通
常の方法により制御できるが、本発明方法では水
溶媒のみであるので酸結合剤を選択して反応を少
くとも弱アルカリ以下の中性に維持された水溶媒
中で行う必要があり、強アルカリ媒体中で行え
ば、ジアルキル硫酸は容易に相応するアルコール
へ加水分解される傾向にあり、収率が低下する。
したがつて本発明方法では、水難溶性であり、し
かも酸とは容易に反応する酸化マグネシウムまた
は水酸化マグネシウムを酸結合剤に用い、反応系
をほぼ中性に保つてアルキル化反応を行う。 これによりジアルキル硫酸を用いてもジアルキ
ル硫酸が分解することなく、アルキル化反応が優
先し、反応中遂次副生する硫酸またはモノアルキ
ル硫酸はこれらの酸結合剤と容易に反応して反応
を促進させる。 本発明では、これらのマグネシウム化合物を式
()化合物に対し、0.8〜2.0当量用い、水溶媒
中で、60〜100℃、好ましくは90〜95℃で実施す
る。 本発明の出発原料である一般式()で表わさ
れる化合物としては、例えば次のものがあげられ
る。 アニリン、m−トルイジン、m−クロルアニリ
ン、m−アセチルアミノアニリン、2−メトキシ
−5−アセチルアミノアニリン、m−ベンゾイル
アミノアニリン、m−プロピオニルアミノアニリ
ン、2−エトキシ−5−アセチルアミノアニリ
ン、2・5−ジメトキシアニリン、N−エチルア
ニリン、N−シアノエチルアニリン、N−(β−
メトキシエチル)アニリン、N−エチル−m−ト
ルイジン、N−シアノエチル−m−トルイジン、
N−(β−エトキシエチル)−アニリン、N−(β
−アセトキシエチル)−アニリン、N−ブチル−
アニリン、N−フエネチルアニリン、N−ブチル
−m−トルイジン、N−フエネチル−m−トルイ
ジン、N−(β−メトキシエチル)−m−トルイジ
ン、N−(β−エトキシエチル)−m−トルイジ
ン、N−(β−アセトキシエチル)−m−トルイジ
ン、N−エチル−m−クロルアニリン、N−ブチ
ル−m−クロルアニリン、N−シアノエチル−m
−クロルアニリン、N−(β−メトキシエチル)−
m−クロルアニリン、N−(β−エトキシエチ
ル)−m−クロルアニリン、N−(β−アセトキシ
エチル)−m−クロルアニリン、N−フエネチル
−m−クロルアニリン、3−(N−エチルアミ
ノ)−アセトアニリド、3−(N−シアノエチルア
ミノ)−アセトアニリド、3−(N−フエネチルア
ミノ)−アセトアニリド、N−アリルアニリン、
N−アリル−m−トルイジン、3−(N−アリル
アミノ)−アセトアニリド、3−(N−メトキシエ
チルアミノ)−アセトアニリド、3−(N−エトキ
シエチルアミノ)−アセトアニリド、3−(N−
iso−プロポキシエチルアミノ)−アセトアニリ
ド、3−(N−ブチルアミノ)−アセトアニリド、
3−(N−エチルアミノ)−プロピオニルアニリ
ド、3−(N−シアノエチルアミノ)−プロピオニ
ルアニリド3−(N−エチルアミノ)−ベンゾイル
アニリドなどであり、また式()で示されるジ
アルキル硫酸としてはジメチル硫酸、ジエチル硫
酸、ジブチル硫酸、などが挙げられる。 次に実施例をあげて本発明をさらに詳明に説明
するが、本発明はこれらに限定されるものではな
い。 実施例中、部とあるのは重量部を意味する。 実施例 1 水452部に、m−アミノ−プロピオニルアニリ
ド90.5部と酸化マグネシウム33部を加え、90℃に
昇温し、90〜95℃でジエチル硫酸254.1部を20分
間で加えた。さらに90〜95℃で1時間反応を続け
反応を終了した。室温に冷却し、3−(N・N.−
ジエチルアミノ)−プロピオニルアニリド113.5部
(収率94%)を含む水溶液を得た。 この水溶液に、2−シアノ−4−ニトロ−6−
ブロムアニリン124.9部を13%ニトロシル硫酸504
部にてジアゾ化したジアゾニウム塩を−5℃から
0℃にて加え同温度で1時間反応させ、過、水
洗、乾燥をして、C.I.デイスパースブルー183 を219部得た。 この染料原末の状態は、非常によく、助剤とし
てデモールN(花王アトラス社の製品)を用いて
製品化をすると、微粒化するための製品化時間は
1時間でよく、この染料で染色した染色布は、鮮
明な青色であつた。 比較例 アルキル化剤として、ジエチル硫酸に替えて、
P−トルエンスルホン酸エチルエステルを330部
用いて20分で添加後、さらに90〜95℃で6時間反
応させた外は、実施例1と全く同じ方法で行い、
3−(N・N.−ジエチルアミノ)−プロピオニル
アニリド105部(収率87%)を含む水溶液を得
た。 この水溶液に、実施例1と同様に、2−シアノ
−4−ニトロ−6−ブロムアニリン115.5部を13
%ニトロシル硫酸466部にてジアゾ化したジアゾ
ニウム塩を、−5℃から0℃にて加え、同温度で
1時間反応させ、過、水洗、乾燥をして、C.I.
デイスパースブルー183を201部得た。 この染料原末は、少しべたつき助剤としてデモ
ールN(花王アトラス社の製品)を用いて製品化
をすると微粒化の製品化時間に5時間かかり、こ
の染料で染色した染色布は少し暗色がかつた青色
であつた。 実施例 2 水452部に、3−(N−イソプロポキシエチルア
ミノ)−プロピオニルアニリド137.5部と酸化マグ
ネシウム16.7部を加え、90℃に昇温し、90℃から
95℃でジエチル硫酸127部を加えた。さらに90〜
95℃にて1時間反応させ、室温に冷却し、3−
(N−エチル−N−イソプロポキシエチルアミ
ノ)−プロピオニルアニリド140.7部(収率92%)
を含む水溶液を得た。 この水溶液は、そのままアゾ染料合成時のカツ
プラー溶液として使用できた。 実施例 3 水300部に、N−シアノエチルアニリン146部と
酸化マグネシウム30部を加え、90℃に昇温した。
90〜95℃にてジエチル硫酸154部を30分間で加
え、さらに85〜95℃で2時間反応した。室温に冷
却し、N−エチル−N−シアノエチル−アニリン
165部(収率95%)を含む水溶液を得た。 この水溶液は、そのままアゾ染料合成時のカツ
プラー溶液として使用できた。 実施例 4 水420部に、N−フエニルエチル−m−トルイ
ジン211.0部と酸化マグネシウム30部を加え、90
℃に昇温した。90〜95℃にて、ジエチル硫酸154
部を30分間で加え、さらに85〜95℃で2時間反応
した。室温に冷却し、N−エチル−N−フエネチ
ル−m−トルイジン217部(収率91%)を含む水
溶液を得た。 この水溶液は、そのままアゾ染料合成時のカツ
プラー溶液として使用できた。 実施例 5 水900部に、2−メトキシ−5−アセチルアミ
ノ−アニリン180部と酸化マグネシウム90部を加
え、90℃に昇温した。90〜95℃にて、ジエチル硫
酸、308部を30分間で加えた。さらに90〜95℃に
て3時間反応した後、室温に冷却しN・N.−ジ
エチル−2−メトキシ−5−アセチルアミノ−ア
ニリン224部(収率95%)を含む水溶液を得た。 この水溶液は、そのままアゾ染料合成時のカツ
プラー溶液として使用できた。 実施例 6〜10 実施例1と同様な方法で、式()で示される
化合物1と式()で示される化合物2を反応さ
せ、式()で示される化合物3を得た。 その結果を次表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the general formula () [In formula (), R' represents a hydrogen atom, an allyl group, or a lower alkyl group optionally substituted with a cyano group, a lower alkoxy group, or a phenyl group, and the benzene ring A further represents a lower alkyl group, a lower alkoxy , a halogen atom, or an acylamino group. ] A benzene-based amine represented by the general formula () (R″) 2 SO 4 () [In the formula (), R″ represents a saturated alkyl group having 1 to 4 carbon atoms. ] Using a dialkyl sulfuric acid represented by the formula (), a reaction is carried out at a temperature of 60 to 100°C in the presence of magnesium oxide or magnesium hydroxide in an aqueous solvent, and the general formula () is obtained. [In formula (), R′ represents the same meaning as R′ in formula () or R″ in formula (), and R″ represents the same meaning as R″ in formula (). Benzene ring A has the same meaning as the formula ().] This relates to a method for alkylating aromatic amines represented by the general formula (). N-alkylamines represented by the general formula () are important coupling components of azo disperse dyes. Conventionally, it has been obtained by reacting a compound represented by the general formula () with various alkylating agents in the presence or absence of an acid binder such as soda ash, potassium carbonate, or magnesium oxide. In this method, the process was carried out in the presence of an organic solvent, but when an organic solvent was used, there were problems in terms of post-treatment of the desired product after the alkylation reaction and drainage. A method is also known in which the alkylation reaction is carried out in an aqueous solvent at 100°C or lower using an acid binder without using an acid binder. Using soda ash, potassium carbonate, as acid binder in water solvent
It is carried out at relatively low temperatures below 100°C using materials such as magnesium oxide. However, when using the alkylating agent described in the above-mentioned Japanese Patent Publication No. 53-20017, the temperature is raised to nearly 100°C, and the amine of formula () is difficult to dissolve in water, so the reaction must be allowed to coexist with water for a long time. During the reaction, a portion of the alkylating agent is hydrolyzed. Furthermore, when the alkylation reaction is carried out in an aqueous solvent, the alkylated reaction product is usually used as a coupler for the synthesis of an azo dye without being separated; however, in this case, the resulting dye is tar-like. It was found that the darker the hue of the dye, the lower the quality of the product. The reason for this is that the aromatic sulfonic acid ester of the alkylating agent becomes an aromatic sulfonic acid salt after the alkylation reaction and remains in the reaction aqueous solution, and this reacts with a part of the diazo component to form an impurity. It is estimated that it is contained in Furthermore, when aromatic sulfonic acid esters are used, the COD in wastewater is also high, which is not preferable in terms of pollution control. The present inventors have arrived at the present invention as a result of intensive studies on these points, and by selecting lower dialkyl sulfuric acid as the alkylating agent, the coupling component obtained after the alkylation reaction can be directly used in the production of azo dyes. A clear dye can be obtained when used as an acid binder, and even if the alkylation reaction is carried out for a long time at a high temperature of nearly 100℃, the alkylating agent will decompose as long as a specific magnesium compound is used as the acid binder. It was found that the reaction rate was faster than when aromatic sulfonic acid esters were used, and that the production method was industrially very advantageous. In the method of the present invention, dialkyl sulfuric acid is used as an alkylating agent and the reaction is carried out in an aqueous solvent.
As acid binder it is necessary to use magnesium oxide or magnesium hydroxide. In the method of the present invention, acid binders such as potassium carbonate and soda ash which easily dissolve in water and exhibit strong alkalinity are not preferred. If an organic solvent is used in combination, the reaction can be controlled by the usual method of selecting and using an organic solvent with low solubility for these acid binders, but since the method of the present invention uses only an aqueous solvent, it is difficult to select an acid binder and carry out the reaction. It is necessary to carry out the process in an aqueous medium that is kept neutral to at least weakly alkaline or below; if carried out in a strongly alkaline medium, the dialkyl sulfuric acid tends to be easily hydrolyzed to the corresponding alcohol, resulting in a decrease in yield. do.
Therefore, in the method of the present invention, magnesium oxide or magnesium hydroxide, which is poorly soluble in water and easily reacts with acids, is used as an acid binder, and the alkylation reaction is carried out while the reaction system is kept approximately neutral. As a result, even when dialkyl sulfuric acid is used, the dialkyl sulfuric acid does not decompose, and the alkylation reaction takes priority, and the sulfuric acid or monoalkyl sulfuric acid that is successively produced as a by-product during the reaction easily reacts with these acid binders to promote the reaction. let In the present invention, these magnesium compounds are used in an amount of 0.8 to 2.0 equivalents relative to the compound of formula (), and the reaction is carried out at 60 to 100°C, preferably 90 to 95°C, in an aqueous solvent. Examples of the compound represented by the general formula () which is the starting material of the present invention include the following. Aniline, m-toluidine, m-chloroaniline, m-acetylaminoaniline, 2-methoxy-5-acetylaminoaniline, m-benzoylaminoaniline, m-propionylaminoaniline, 2-ethoxy-5-acetylaminoaniline, 2・5-dimethoxyaniline, N-ethylaniline, N-cyanoethylaniline, N-(β-
methoxyethyl)aniline, N-ethyl-m-toluidine, N-cyanoethyl-m-toluidine,
N-(β-ethoxyethyl)-aniline, N-(β-ethoxyethyl)-aniline, N-(β-ethoxyethyl)-aniline,
-acetoxyethyl)-aniline, N-butyl-
Aniline, N-phenethylaniline, N-butyl-m-toluidine, N-phenethyl-m-toluidine, N-(β-methoxyethyl)-m-toluidine, N-(β-ethoxyethyl)-m-toluidine , N-(β-acetoxyethyl)-m-toluidine, N-ethyl-m-chloroaniline, N-butyl-m-chloroaniline, N-cyanoethyl-m
-Chloraniline, N-(β-methoxyethyl)-
m-Chloraniline, N-(β-ethoxyethyl)-m-chloroaniline, N-(β-acetoxyethyl)-m-chloroaniline, N-phenethyl-m-chloroaniline, 3-(N-ethylamino) -acetanilide, 3-(N-cyanoethylamino)-acetanilide, 3-(N-phenethylamino)-acetanilide, N-allylaniline,
N-allyl-m-toluidine, 3-(N-allylamino)-acetanilide, 3-(N-methoxyethylamino)-acetanilide, 3-(N-ethoxyethylamino)-acetanilide, 3-(N-
iso-propoxyethylamino)-acetanilide, 3-(N-butylamino)-acetanilide,
3-(N-ethylamino)-propionylanilide, 3-(N-cyanoethylamino)-propionylanilide, 3-(N-ethylamino)-benzoylanilide, and the dialkyl sulfate represented by formula () is dimethyl. Examples include sulfuric acid, diethyl sulfate, dibutyl sulfate, and the like. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. In the examples, parts mean parts by weight. Example 1 90.5 parts of m-amino-propionylanilide and 33 parts of magnesium oxide were added to 452 parts of water, the temperature was raised to 90°C, and 254.1 parts of diethyl sulfate was added over 20 minutes at 90-95°C. The reaction was further continued at 90 to 95°C for 1 hour to complete the reaction. Cool to room temperature, 3-(N・N.-
An aqueous solution containing 113.5 parts (yield 94%) of (diethylamino)-propionylanilide was obtained. To this aqueous solution, 2-cyano-4-nitro-6-
Bromoaniline 124.9 parts 13% nitrosyl sulfate 504
Add the diazonium salt diazotized in the section at -5°C to 0°C, react at the same temperature for 1 hour, filter, wash with water, dry, and prepare CI Disperse Blue 183. Obtained 219 copies. The condition of this raw dye powder is very good, and when it is commercialized using Demol N (a product of Kao Atlas Co., Ltd.) as an auxiliary agent, it only takes one hour to make it into a fine powder, and dyeing with this dye The dyed cloth was a clear blue color. Comparative example: As an alkylating agent, instead of diethyl sulfate,
The process was carried out in exactly the same manner as in Example 1, except that 330 parts of P-toluenesulfonic acid ethyl ester was added over 20 minutes, and the reaction was further carried out at 90 to 95°C for 6 hours.
An aqueous solution containing 105 parts (yield: 87%) of 3-(N·N.-diethylamino)-propionylanilide was obtained. In the same manner as in Example 1, 115.5 parts of 2-cyano-4-nitro-6-bromoaniline was added to this aqueous solution at 13
A diazonium salt diazotized with 466 parts of nitrosyl sulfuric acid was added at -5°C to 0°C, reacted at the same temperature for 1 hour, filtered, washed with water, dried, and purified with CI.
I got 201 copies of Disperse Blue 183. When this dye powder is commercialized using Demol N (a product of Kao Atlas Co., Ltd.) as a slightly sticky agent, it takes 5 hours to atomize it into a product, and the dyed fabric dyed with this dye has a slightly dark color. It was a warm blue color. Example 2 137.5 parts of 3-(N-isopropoxyethylamino)-propionylanilide and 16.7 parts of magnesium oxide were added to 452 parts of water, and the temperature was raised to 90°C.
At 95°C 127 parts of diethyl sulfate was added. Another 90~
React at 95°C for 1 hour, cool to room temperature, and add 3-
(N-ethyl-N-isopropoxyethylamino)-propionylanilide 140.7 parts (yield 92%)
An aqueous solution was obtained. This aqueous solution could be used as it is as a coupler solution during azo dye synthesis. Example 3 146 parts of N-cyanoethylaniline and 30 parts of magnesium oxide were added to 300 parts of water, and the temperature was raised to 90°C.
154 parts of diethyl sulfate was added over 30 minutes at 90-95°C, and the mixture was further reacted at 85-95°C for 2 hours. Cool to room temperature and add N-ethyl-N-cyanoethyl-aniline.
An aqueous solution containing 165 parts (95% yield) was obtained. This aqueous solution could be used as it is as a coupler solution during azo dye synthesis. Example 4 211.0 parts of N-phenylethyl-m-toluidine and 30 parts of magnesium oxide were added to 420 parts of water.
The temperature was raised to ℃. Diethyl sulfate 154 at 90-95℃
of the mixture was added over 30 minutes, and the reaction was further carried out at 85-95°C for 2 hours. The mixture was cooled to room temperature to obtain an aqueous solution containing 217 parts of N-ethyl-N-phenethyl-m-toluidine (yield 91%). This aqueous solution could be used as it is as a coupler solution during azo dye synthesis. Example 5 180 parts of 2-methoxy-5-acetylamino-aniline and 90 parts of magnesium oxide were added to 900 parts of water, and the mixture was heated to 90°C. At 90-95°C, 308 parts of diethyl sulfate was added over 30 minutes. After further reacting at 90 to 95°C for 3 hours, the reaction mixture was cooled to room temperature to obtain an aqueous solution containing 224 parts of N.N.-diethyl-2-methoxy-5-acetylamino-aniline (yield: 95%). This aqueous solution could be used as it is as a coupler solution during azo dye synthesis. Examples 6 to 10 Compound 1 represented by formula () and compound 2 represented by formula () were reacted in the same manner as in Example 1 to obtain compound 3 represented by formula (). The results are shown in the table below. 【table】

Claims (1)

【特許請求の範囲】 1 一般式() 〔式()中、R′は水素原子、アリル基、または
シアノ基、低級アルコキシ基、フエニル基で置換
されていてもよい低級アルキル基を表わし、ベン
ゼン環Aは、さらに低級アルキル基、低級アルコ
キシ基、ハロゲン原子、もしくはアシルアミノ基
で置換されていてもよい。〕 で示されるベンゼン系アミンを一般式() (R″)2SO4 () 〔式()中、R″は炭素数1〜4の飽和アルキル
基を表わす。〕 で示されるジアルキル硫酸を用いて、水溶媒中
で、酸化マグネシウムまたは水酸化マグネシウム
の存在下に、60〜100℃の温度で反応させること
を特徴とする、一般式() 〔式()中、R′は、式()中のR′または式
()中のR″と同一の意味を表わし、R″は式
()中のR″と同一の意味を表わす。またベンゼ
ン環Aは式()と同一の意味を表わす。〕 で示される芳香族アミンのアルキル化方法。
[Claims] 1 General formula () [In formula (), R' represents a hydrogen atom, an allyl group, or a lower alkyl group optionally substituted with a cyano group, a lower alkoxy group, or a phenyl group, and the benzene ring A further represents a lower alkyl group, a lower alkoxy It may be substituted with a group, a halogen atom, or an acylamino group. ] A benzene-based amine represented by the general formula () (R″) 2 SO 4 () [In the formula (), R″ represents a saturated alkyl group having 1 to 4 carbon atoms. ] The general formula () is characterized in that the dialkyl sulfuric acid represented by is reacted in an aqueous solvent in the presence of magnesium oxide or magnesium hydroxide at a temperature of 60 to 100°C. [In formula (), R′ represents the same meaning as R′ in formula () or R″ in formula (), and R″ represents the same meaning as R″ in formula (). Benzene ring A has the same meaning as the formula ().] A method for alkylating an aromatic amine represented by the following.
JP58086609A 1983-05-19 1983-05-19 Method for alkylating aromatic amine Granted JPS59212449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086609A JPS59212449A (en) 1983-05-19 1983-05-19 Method for alkylating aromatic amine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086609A JPS59212449A (en) 1983-05-19 1983-05-19 Method for alkylating aromatic amine

Publications (2)

Publication Number Publication Date
JPS59212449A JPS59212449A (en) 1984-12-01
JPS6240349B2 true JPS6240349B2 (en) 1987-08-27

Family

ID=13891753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086609A Granted JPS59212449A (en) 1983-05-19 1983-05-19 Method for alkylating aromatic amine

Country Status (1)

Country Link
JP (1) JPS59212449A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180375A (en) * 1988-12-30 1990-07-13 Aisin Aw Co Ltd Actuator for friction engaging device
JPH0396471A (en) * 1989-09-06 1991-04-22 Daifuku Co Ltd Electric car for carriage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320017A (en) * 1976-08-05 1978-02-23 Nissan Motor Co Ltd Exhaust reflux controller
JPS5738755A (en) * 1980-08-14 1982-03-03 Mitsubishi Chem Ind Ltd Alkylating method of aniline

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320017A (en) * 1976-08-05 1978-02-23 Nissan Motor Co Ltd Exhaust reflux controller
JPS5738755A (en) * 1980-08-14 1982-03-03 Mitsubishi Chem Ind Ltd Alkylating method of aniline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180375A (en) * 1988-12-30 1990-07-13 Aisin Aw Co Ltd Actuator for friction engaging device
JPH0396471A (en) * 1989-09-06 1991-04-22 Daifuku Co Ltd Electric car for carriage

Also Published As

Publication number Publication date
JPS59212449A (en) 1984-12-01

Similar Documents

Publication Publication Date Title
KR20120104356A (en) Disperse azo dyes, a process for the preparation thereof and the use thereof
WO2008090042A1 (en) Dispersion dye, the production and use thereof
KR20110086103A (en) Azo dyes, a process for the preparation thereof and the use thereof
JPS6261617B2 (en)
DE1943799A1 (en) Process for the alkylation of benzothiazole azo compounds
JPS6240349B2 (en)
US3337525A (en) (hydroxyethyl polyethyleneoxyamino)-phenylazo naphthalen-1, 8-diols
JPS58157863A (en) Production of monoazo dye
DE2210074A1 (en) PROCESS FOR THE PREPARATION OF OXAZINE DYES
US4257943A (en) Disperse azo dyestuffs and process for preparation and their use
DE2840121C2 (en) Process for the preparation of chlorzinc salts of thiazolium azo dyes
JPH01284560A (en) Isothiazole azo dye
JPS6240350B2 (en)
DE1644129C3 (en) Water-insoluble monoazo dyes and processes for dyeing polyester fibers
DE2531445B2 (en) SULFOGROUP-FREE WATER-SOLUBLE AZO DYES AND THEIR USE FOR COLORING AND / OR PRINTING SYNTHETIC TEXTILE FIBERS
US2078387A (en) Diazo amino compounds
JPS58152056A (en) Preparation of monoazo compound
RU1804079C (en) Process for preparing aromatic 2-bromosubstituted diazo constituents
KR100551601B1 (en) Disperse dyes
DE2408012C2 (en) 4-Amino-1,8-naphthalimide-3-sulfonic acids, process for their preparation and their use as dyes for dyeing natural or synthetic polyamide fibers
JPS58124747A (en) 4-alkyl-2-trifluoromethyl-aniline
KR950007218B1 (en) Process for the production of arylaminonitro-phenyl-hydroxyethyl sulphones
DE2205062A1 (en) NEW, HYDRO-INSOLUBLE AZO DYES AND METHODS FOR THEIR PRODUCTION
DE2458195A1 (en) Azo-insoluble water-insoluble dyes, process for their manufacture and their use
JPH01141953A (en) Azo dye