JPS6240294Y2 - - Google Patents

Info

Publication number
JPS6240294Y2
JPS6240294Y2 JP1980039411U JP3941180U JPS6240294Y2 JP S6240294 Y2 JPS6240294 Y2 JP S6240294Y2 JP 1980039411 U JP1980039411 U JP 1980039411U JP 3941180 U JP3941180 U JP 3941180U JP S6240294 Y2 JPS6240294 Y2 JP S6240294Y2
Authority
JP
Japan
Prior art keywords
valve
chamber
thermally responsive
stopper
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980039411U
Other languages
Japanese (ja)
Other versions
JPS56141266U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980039411U priority Critical patent/JPS6240294Y2/ja
Publication of JPS56141266U publication Critical patent/JPS56141266U/ja
Application granted granted Critical
Publication of JPS6240294Y2 publication Critical patent/JPS6240294Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【考案の詳細な説明】 本考案は電熱の温度に応動して供給する流量を
制御する熱電膨張弁において、安定な弁動作特性
を得ることを目的とするものである。
[Detailed Description of the Invention] The object of the present invention is to obtain stable valve operating characteristics in a thermoelectric expansion valve that controls the flow rate supplied in response to the temperature of electric heat.

従来、冷凍サイクルの制御機構として利用され
る熱電膨張弁は、冷凍サイクルの設定条件によつ
ては、チヤタリングを起し、これに伴つて圧力脈
動を誘発すると共に、冷凍サイクルの機能をそこ
なう恐れがある。
Conventionally, thermoelectric expansion valves used as a control mechanism for refrigeration cycles can cause chattering depending on the setting conditions of the refrigeration cycle, which can induce pressure pulsations and damage the function of the refrigeration cycle. be.

第3図は従来例の構成を示す断面図である。4
3は、ヒータ部42を装着した熱応動板を示し、
これをダイヤフラム49に接着して熱応動機構を
構成し、これを枠体50と枠体51とによつて液
密に形成された収納室48内に収納され、また弁
46はダイヤフラム49に密着されて、熱応動機
構の垂直変位を受けて、連動して動作すように構
成されている。弁46は弁閉止子45と、弁棒部
52を一体加工して成形されている。また弁棒部
52と枠体51の絞り部53とによつて、空隙を
狭め、二次室47の流体が収納室48への流入を
押えるように構成されている。したがつて冷媒は
入口部40から一次室41を経て、弁座44の開
口部で噴出して二次室47の出口部54に至る径
路を通る。
FIG. 3 is a sectional view showing the configuration of a conventional example. 4
3 shows a thermally responsive plate equipped with a heater section 42;
This is adhered to the diaphragm 49 to constitute a thermally responsive mechanism, which is housed in a storage chamber 48 that is liquid-tightly formed by a frame 50 and a frame 51, and the valve 46 is tightly attached to the diaphragm 49. and are configured to operate in conjunction with each other in response to vertical displacement of the thermally responsive mechanism. The valve 46 is formed by integrally processing the valve stopper 45 and the valve stem portion 52. Further, the valve stem portion 52 and the constriction portion 53 of the frame body 51 are configured to narrow the gap and prevent the fluid in the secondary chamber 47 from flowing into the storage chamber 48 . Therefore, the refrigerant passes through the primary chamber 41 from the inlet portion 40, is ejected at the opening of the valve seat 44, and passes through a path leading to the outlet portion 54 of the secondary chamber 47.

従来の問題点を第3図で説明する。入口部40
より一次室41へ流入した冷媒は通電量に応じた
ヒータ部42とによつて、熱応動板43が撓み、
その垂直変位に応じて制御された弁座44と弁閉
止子45とによる狭い通路口から噴出される。し
かし一次室41の冷媒圧が弁46の下端面に弁可
動方向の力が作用するため、例えば流入する冷媒
圧力変動が大きい方へ変動した場合弁閉止子45
が閉じる方向に作用して、一時的に二次室47な
らびに収納室48の圧力が低下する。これにより
熱応動板43において収納室48の圧力がダイヤ
フラム49に作用する力は低下し、一方のダイヤ
フラム49の熱応動板43側の圧力の方は増大す
る。このため、ダイヤフラム49の作用する力の
差は熱応動板43の撓み力の増大をまねくと共に
弁46の開方向に働く。この結果再び二次室47
が圧力が上昇してダイヤフラム49の作用する力
が大きくなるため、先程と逆に熱応動板43が変
化して弁46を閉じる方向に作用する。すなわち
くり返し運動を起し、いわゆるチヤタリング現象
を招くことになる。さらに、収納室48の冷媒は
ヒータ熱によつて膨張し、収納室48内の圧力が
上昇するため、この結果弁46が閉止方向に作用
し、熱電膨張弁の機能が低下する場合がある。
The conventional problems will be explained with reference to FIG. Entrance section 40
The refrigerant that has flowed into the primary chamber 41 causes the thermally responsive plate 43 to bend due to the heater section 42 depending on the amount of electricity supplied.
The liquid is ejected from a narrow passage opening formed by the valve seat 44 and valve stopper 45, which are controlled according to the vertical displacement thereof. However, since the refrigerant pressure in the primary chamber 41 acts on the lower end surface of the valve 46 in the direction of valve movement, for example, if the inflowing refrigerant pressure fluctuates to a large extent, the valve stopper 45
acts in the closing direction, and the pressures in the secondary chamber 47 and the storage chamber 48 temporarily decrease. As a result, the force exerted by the pressure of the storage chamber 48 on the diaphragm 49 in the thermally responsive plate 43 decreases, and the pressure on the thermally responsive plate 43 side of one diaphragm 49 increases. Therefore, the difference in force exerted by the diaphragm 49 causes an increase in the bending force of the thermally responsive plate 43 and acts in the opening direction of the valve 46. As a result, the secondary chamber 47
However, as the pressure increases, the force acting on the diaphragm 49 becomes larger, so the thermally responsive plate 43 changes and acts in the direction of closing the valve 46, contrary to the previous step. In other words, repeated movements occur, resulting in a so-called chattering phenomenon. Furthermore, the refrigerant in the storage chamber 48 expands due to the heat of the heater, and the pressure within the storage chamber 48 increases, which may cause the valve 46 to act in the closing direction, reducing the function of the thermoelectric expansion valve.

本考案はかかる問題を解決し、安定した動作特
性を有する熱電膨張弁を提供するものである。
The present invention solves these problems and provides a thermoelectric expansion valve with stable operating characteristics.

以上本考案の実施例につき添付図面第1図およ
び第2図に沿つて詳細に説明する。
The embodiments of the present invention will be described in detail with reference to the accompanying drawings, FIGS. 1 and 2.

第1図において、1はヒータ部2を装着した熱
応動板を示し、これをさらに変形自在の特殊成形
されたダイヤフラム3に装着して、熱に応動し
て、曲げ変形を生じせしめる熱応動機構を構成
し、これを枠体4と、枠体5とによつて形成する
収納室6に気密に収納し、熱応動板1の前後の部
屋は連通孔7a,7bによつて圧力的にバランス
させて構成されている。またスプリング8の押圧
によつて弁9をダイヤフラム3に密着せしめて、
弁9が熱応動板1の熱歪みに応じた垂直変位を連
動して受けるように構成されている。弁9は弁閉
止子10、弁摺動部11、弁棒部12で一体的に
成形され、その内部には収納室6、二次室13、
弁下端室14、それぞれに連通する連通路15を
設けている。さらに弁閉止子10の最大径と弁摺
動部11の外径とは、ほぼ等しくし、かつ弁座1
5の開口径は弁摺動部11の外径より、わずかに
小さく設定されている。また弁下端室14は弁摺
動部11と枠体摺動部16とを摺動可能にして、
かつ摺動部間空隙の通路抵抗を大きく設定して一
次室17からの流体流入が、ほぼ完全に遮断され
て構成されている。またヒータ2へには、枠体4
に固定された耐高圧性のターミナル端子部18と
通電線19を介して通電される構成になつてい
る。液冷媒は入口部20から流入し、通路を絞ぼ
られた弁座15から噴出されて膨張し、気化して
出口部21へに至る構成に成つている。つぎに第
1図に沿つて作用と効果を説明する。先ず、弁閉
止子10と、弁摺動部11の外径寸法が等しく設
定しているため、一次室17の冷媒圧が弁可動方
向の受圧面積に作用する力は、相殺されて零にな
る。すなわち、弁9に作用する上向きの力は弁閉
止子10の最大径の面に加わる圧力であり、下向
きの力は弁摺動部16の径に加わる圧力であるた
めに、弁閉止子10の最大径と弁摺動部16の径
とを同じくしておけば上向きの力と下向きの力は
等しくなる。また収納室6の圧力は連通孔7a,
7bによつてダイヤフラム3の前後面においてバ
ランスしている。このため、ヒータ部2の熱によ
る熱膨張圧や一次室17、二次室13の圧力変動
によつて収納室6内の圧力が変化しようとして
も、前に連通孔7a,7bによつてただちにダイ
ヤフラム3の前後にかかる圧力はバランスし、熱
電応動板1に作用しないことになる。さらに連通
路22によつて、弁下端室14、二次室13、収
納室6内の圧力は、バランスされて、ほぼ等しい
圧力状態を保つているめ、弁下端室14内の圧力
が弁閉止方向に作用する力と、二次室13の圧力
が弁座15の開口部から弁閉止子10に作用する
弁開放方向の力とが相殺されて、弁に作用する弁
可動方向の力が大巾に減少させることができる。
したがつてダイヤフラム3、あるいは弁9には流
体圧が何ら作用しないため、本考案の弁9は、ヒ
ータ部2の熱による熱応動板1の撓みのみに応じ
て動作するため、安定した動作特性を得ることが
できる効果を有するものである。
In FIG. 1, numeral 1 indicates a thermally responsive plate equipped with a heater section 2, which is further attached to a specially molded deformable diaphragm 3, and a thermally responsive mechanism that causes bending deformation in response to heat. is airtightly stored in a storage chamber 6 formed by a frame 4 and a frame 5, and the chambers before and after the thermally responsive plate 1 are pressure-balanced by communication holes 7a and 7b. It is made up of: Further, the valve 9 is brought into close contact with the diaphragm 3 by the pressure of the spring 8,
The valve 9 is configured to receive vertical displacement corresponding to the thermal strain of the thermally responsive plate 1 in conjunction with each other. The valve 9 is integrally formed with a valve stopper 10, a valve sliding part 11, and a valve stem part 12, and has a storage chamber 6, a secondary chamber 13,
A communication passage 15 communicating with each of the valve lower end chambers 14 is provided. Further, the maximum diameter of the valve stopper 10 and the outer diameter of the valve sliding portion 11 are made approximately equal, and the valve seat 1
The opening diameter of 5 is set slightly smaller than the outer diameter of the valve sliding portion 11. Further, the valve lower end chamber 14 allows the valve sliding part 11 and the frame sliding part 16 to slide,
In addition, the passage resistance of the gap between the sliding parts is set to be large so that the fluid inflow from the primary chamber 17 is almost completely blocked. In addition, the frame 4 is connected to the heater 2.
The structure is such that electricity is supplied through a high-voltage resistant terminal portion 18 fixed to and a current-carrying wire 19. The liquid refrigerant flows in from the inlet portion 20, is ejected from the valve seat 15 having a constricted passage, expands, vaporizes, and reaches the outlet portion 21. Next, the functions and effects will be explained with reference to FIG. First, since the outer diameter dimensions of the valve stopper 10 and the valve sliding portion 11 are set to be equal, the force exerted by the refrigerant pressure in the primary chamber 17 on the pressure receiving area in the valve movement direction is canceled out and becomes zero. . That is, the upward force acting on the valve 9 is the pressure applied to the maximum diameter surface of the valve stopper 10, and the downward force is the pressure applied to the diameter of the valve sliding part 16. If the maximum diameter and the diameter of the valve sliding portion 16 are made the same, the upward force and the downward force will be equal. Moreover, the pressure in the storage chamber 6 is controlled by the communication hole 7a,
7b balances the front and rear surfaces of the diaphragm 3. Therefore, even if the pressure inside the storage chamber 6 is about to change due to thermal expansion pressure caused by the heat of the heater section 2 or pressure fluctuations in the primary chamber 17 and secondary chamber 13, the communication holes 7a and 7b can immediately prevent the pressure from changing. The pressures applied before and after the diaphragm 3 are balanced and do not act on the thermoelectrically responsive plate 1. Furthermore, the pressures in the valve lower end chamber 14, the secondary chamber 13, and the storage chamber 6 are balanced by the communication passage 22 and maintained at approximately the same pressure state, so that the pressure in the valve lower end chamber 14 closes the valve. The force acting in the valve opening direction and the force in the valve opening direction in which the pressure in the secondary chamber 13 acts on the valve stopper 10 from the opening of the valve seat 15 cancel each other out, and the force acting on the valve in the valve movement direction becomes large. can be reduced to width.
Therefore, since no fluid pressure acts on the diaphragm 3 or the valve 9, the valve 9 of the present invention operates only in response to the deflection of the thermally responsive plate 1 due to the heat of the heater section 2, so it has stable operating characteristics. It has the effect of being able to obtain the following.

また第2図に示すように、弁閉止子10と弁摺
動部11を一様にして円筒型に一体成形した弁2
3の形状をすることによつても、一次室17の冷
媒圧が弁可動方向に作用する力は存在しないた
め、第1図に示す本考案の一実施例と同様に、安
定した動特性を得ることができるものである。な
お第2図に示す構成図において附記した符号と、
第1図で附記した符号とが一致する要素は第1図
に示した要素と同じ要素を示すものである。以上
説明から明らかなように本考案は冷媒の入口部を
有する一次室と、次媒の出口部を有する二次室
と、前記一次室と二次室を連通する開口部の開度
を調整する弁と、この弁を動作させる熱応動機構
と、この熱応動機構を内部に有する収納室とを備
え、前記収納室は通電により発熱するヒータ部を
装着した熱応動板とダイヤフラムにて2層に仕切
られ、前記熱応動板に設けた連通孔によつて連通
されているとともに、前記弁は前記開口部を閉止
する弁閉止子と、この弁閉止子と前記熱応動機構
とを連結する弁棒と、前記弁閉止子の下端に設け
られ左右方向への動きを規制する弁摺動部とを有
し、前記弁閉止子の最大径と、弁摺動部の径をほ
ぼ同一径とし、前記弁の内部に前記一次室と二次
室と収納室を連通する連通路を設けた構成とする
ことにより、温度を検出する感温筒やキヤピラリ
チユーブが不要であり、弁の取付位置が限定され
ないという熱電膨張弁の効果を損なうことなく冷
凍サイクルの圧力脈動が除去され、安定した弁動
作特性を得ることができる。また収納室におい
て、熱応動板とダイヤフラムにて2層に仕切ら
れ、しかも連通孔によつて連通しているため、一
次室、二次室の圧力が収納室内全体に作用するこ
とになり、熱応動板の変形あるいは一次室、二次
室の圧力変動が作用しても、熱応動板、ダイヤフ
ラムの前後にかかる圧力はバランスし、熱応動板
に作用することもなく、一層安定した弁動作特性
が得られる。
Further, as shown in FIG. 2, a valve 2 is integrally formed into a cylindrical shape with the valve stopper 10 and the valve sliding part 11 uniform.
3, there is no force exerted by the refrigerant pressure in the primary chamber 17 in the direction of valve movement, so stable dynamic characteristics can be maintained as in the embodiment of the present invention shown in FIG. It is something that can be obtained. Note that the numerals added in the configuration diagram shown in FIG. 2 and
Elements with matching reference numerals in FIG. 1 indicate the same elements as those shown in FIG. As is clear from the above description, the present invention adjusts the opening degree of a primary chamber having a refrigerant inlet, a secondary chamber having a secondary medium outlet, and an opening communicating the primary chamber and the secondary chamber. It is equipped with a valve, a thermally responsive mechanism for operating the valve, and a storage chamber containing the thermally responsive mechanism inside. The valve includes a valve stopper that closes the opening, and a valve stem that connects the valve stopper and the thermally responsive mechanism. and a valve sliding part provided at the lower end of the valve stopper to restrict movement in the left and right direction, the maximum diameter of the valve stopper and the diameter of the valve sliding part being approximately the same diameter, By providing a communication path inside the valve that communicates the primary chamber, secondary chamber, and storage chamber, there is no need for a temperature-sensing tube or capillary tube to detect temperature, and the mounting position of the valve is limited. Pressure pulsations in the refrigeration cycle are eliminated without impairing the effect of the thermoelectric expansion valve, and stable valve operating characteristics can be obtained. In addition, the storage chamber is divided into two layers by a heat-responsive plate and a diaphragm, and communicated through a communication hole, so the pressure in the primary and secondary chambers acts on the entire storage chamber, causing heat Even if the response plate is deformed or the pressure fluctuates in the primary and secondary chambers, the pressure applied to the front and back of the thermally responsive plate and diaphragm is balanced, and there is no effect on the thermally responsive plate, resulting in more stable valve operating characteristics. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例における熱電膨張弁の
断面図、第2図は他の実施例を示す断面図、第3
図は従来の熱電膨張弁の断面図である。 1……熱応動板、2……ヒータ部、3……ダイ
ヤフラム、9……弁、10……弁閉止子、11…
…弁摺動部、13……二次室、14……弁下端
室、15……弁座、16……枠体摺動部、17…
…一次室、20……入口部、21……出口部、2
2……連通路、23……弁。
Figure 1 is a sectional view of a thermoelectric expansion valve according to an embodiment of the present invention, Figure 2 is a sectional view showing another embodiment, and Figure 3 is a sectional view of a thermoelectric expansion valve according to an embodiment of the present invention.
The figure is a sectional view of a conventional thermoelectric expansion valve. DESCRIPTION OF SYMBOLS 1...Thermal response plate, 2...Heater part, 3...Diaphragm, 9...Valve, 10...Valve stopper, 11...
...Valve sliding part, 13...Secondary chamber, 14...Valve lower end chamber, 15...Valve seat, 16...Frame sliding part, 17...
...Primary chamber, 20...Entrance section, 21...Exit section, 2
2...Communication path, 23...Valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷媒の入口部を有する一次室と、次媒の出口部
を有する二次室と、前記一次室と二次室を連通す
る開口部の開度を調整する弁と、この弁を動作さ
せる熱応動機構と、この熱応動機構を内部に有す
る収納室とを備え、前記収納室は通電により発熱
するヒータ部を装着した熱応動板とダイヤフラム
にて2層に仕切られ、前記熱応動板に設けた連通
孔によつて連通されているとともに、前記弁は前
記開口部を閉止する弁閉止子と、この弁閉止子と
前記熱応動機構とを連結する弁棒と、前記弁閉止
子の下端に設けられ左右方向への動きを規制する
弁摺動部とを有し、前記弁閉止子の最大径と、弁
摺動部の径をほぼ同一径とし、前記弁の内部に前
記一次室と二次室と収納室を連通する連通路を設
けた熱電膨張弁。
A primary chamber having a refrigerant inlet portion, a secondary chamber having a secondary medium outlet portion, a valve for adjusting the opening degree of an opening communicating the primary chamber and the secondary chamber, and a thermal response for operating the valve. and a storage chamber containing the thermally responsive mechanism therein, the storage chamber being partitioned into two layers by a thermally responsive plate equipped with a heater section that generates heat when energized and a diaphragm, and provided in the thermally responsive plate. The valve includes a valve stopper that closes the opening, a valve stem that connects the valve stopper and the thermally responsive mechanism, and a valve stopper that is provided at the lower end of the valve stopper. and a valve sliding part that restricts movement in the left and right direction, and the maximum diameter of the valve stopper and the diameter of the valve sliding part are approximately the same diameter, and the primary chamber and the secondary chamber are provided inside the valve. A thermoelectric expansion valve with a communication path that communicates the chamber and storage chamber.
JP1980039411U 1980-03-24 1980-03-24 Expired JPS6240294Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980039411U JPS6240294Y2 (en) 1980-03-24 1980-03-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980039411U JPS6240294Y2 (en) 1980-03-24 1980-03-24

Publications (2)

Publication Number Publication Date
JPS56141266U JPS56141266U (en) 1981-10-24
JPS6240294Y2 true JPS6240294Y2 (en) 1987-10-15

Family

ID=29634872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980039411U Expired JPS6240294Y2 (en) 1980-03-24 1980-03-24

Country Status (1)

Country Link
JP (1) JPS6240294Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648214Y2 (en) * 1986-11-28 1994-12-12 株式会社鷺宮製作所 Condensation pressure control valve
JP2723533B2 (en) * 1988-04-27 1998-03-09 日本電信電話株式会社 Heat motor type condensing pressure regulating valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527052A (en) * 1975-07-08 1977-01-19 Fuji Koki Seisakusho:Kk Expansion valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527052A (en) * 1975-07-08 1977-01-19 Fuji Koki Seisakusho:Kk Expansion valve

Also Published As

Publication number Publication date
JPS56141266U (en) 1981-10-24

Similar Documents

Publication Publication Date Title
US3967781A (en) Electrically operated expansion valve for refrigeration control
US6708945B2 (en) Flow rate control valve
US5983926A (en) Flow control valve
JP3785229B2 (en) Expansion valve
KR100496203B1 (en) Thermal expansion valve
JPS6240294Y2 (en)
WO2020203040A1 (en) Thermostat device
US3662949A (en) Pressure temperature relief valve
US5065595A (en) Thermostatic expansion valve
US4431132A (en) Control valve systems for gas water heaters
US5931377A (en) Air conditioning system for a vehicle incorporating therein a block type expansion valve
JP2000186870A (en) Control valve for refrigeration cycle
JP3942848B2 (en) Expansion valve unit
JPS5810623B2 (en) Expansion valve using shape memory alloy
JPH0451260Y2 (en)
JP4139452B2 (en) Constant flow valve
JP3292862B2 (en) Heat exchange device using temperature sensing valve
WO2020060523A2 (en) A valve structure minimazing force required for valve control and a thermostat assembly therefor
JP3273345B2 (en) Temperature sensing valve
KR100466102B1 (en) gas governor
JPH0435712Y2 (en)
JPS595267Y2 (en) Automatic expansion valve for refrigerator
JPS5942890B2 (en) control valve device
JPH08210734A (en) Temperature type expansion valve
JP3291024B2 (en) Adjustment method of pressure control valve