JPS6240281B2 - - Google Patents

Info

Publication number
JPS6240281B2
JPS6240281B2 JP55018014A JP1801480A JPS6240281B2 JP S6240281 B2 JPS6240281 B2 JP S6240281B2 JP 55018014 A JP55018014 A JP 55018014A JP 1801480 A JP1801480 A JP 1801480A JP S6240281 B2 JPS6240281 B2 JP S6240281B2
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
hydride
storage
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55018014A
Other languages
Japanese (ja)
Other versions
JPS56114801A (en
Inventor
Seijiro Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1801480A priority Critical patent/JPS56114801A/en
Publication of JPS56114801A publication Critical patent/JPS56114801A/en
Publication of JPS6240281B2 publication Critical patent/JPS6240281B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 本発明は水素貯蔵方法、より詳しくは金属水素
化物を用いる水素貯蔵に際し、常温においても低
圧状態で水素を安定に貯蔵しうる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for storing hydrogen, and more particularly to a method for storing hydrogen using a metal hydride, which can stably store hydrogen at low pressure even at room temperature.

水素は将来のエネルギー源として期待が寄せら
れているものであり、その大量貯蔵をすることが
可能な手段の研究開発が各技術分野でなされてい
る。
Hydrogen is expected to be a future energy source, and research and development are being carried out in various technical fields to find ways to store large amounts of hydrogen.

従来から金属水素化物によつて水素を貯蔵する
方法は知られており、この方法を使用した発明な
いし装置も種々提案されている。これらのものに
おいては、金属水素化物として鉄−チタン水素化
物、ランタン−ニツケル水素化物、ミツシユメタ
ル−ニツケル−アルミニウム水素化物、チタン−
マンガン水素化物などを用いている。これらの金
属水素化物の水素の解離−吸蔵平衡圧差は常温に
おいて数気圧ないし数十気圧であり、また、その
平衡圧は温度の上昇に伴つて上昇する。そのた
め、その水素貯蔵容器は、使用温度における最大
平衡圧に耐えうるものでなければならない。
BACKGROUND ART A method of storing hydrogen using a metal hydride has been known, and various inventions and devices using this method have been proposed. In these metal hydrides, iron-titanium hydride, lanthanum-nickel hydride, Mitsushi metal-nickel-aluminum hydride, titanium-nickel hydride,
Manganese hydride is used. The dissociation-storage equilibrium pressure difference of hydrogen in these metal hydrides is several to several tens of atmospheres at room temperature, and the equilibrium pressure increases as the temperature rises. Therefore, the hydrogen storage container must be able to withstand the maximum equilibrium pressure at the operating temperature.

元来、金属水素化物を利用して水素の貯蔵をす
る方法は、水素ガスないし液体水素として貯蔵す
る物理的原理によるものに比べてそれが化学的原
理によるものであるから、貯蔵装置ないし貯蔵容
器を耐圧性の低いものにすることができることを
利点とする。
Originally, the method of storing hydrogen using metal hydrides was based on a chemical principle, compared to the physical principle of storing hydrogen gas or liquid hydrogen. The advantage is that it can be made with low pressure resistance.

しかるに、エネルギー源的貯蔵という観点から
すると、従来の金属水素化物を用いたのではその
装置に要求される耐圧性が、その平衡圧及び危険
防止などの環境的要素を考慮するとかなり高いも
のとなるため物理的原理によるものに対する優位
性を充分に発揮することができない。
However, from the perspective of storage as an energy source, using conventional metal hydrides requires a device with considerably high pressure resistance, taking into consideration environmental factors such as its equilibrium pressure and hazard prevention. Therefore, it cannot fully demonstrate its superiority over those based on physical principles.

このようなことから、最近では、水素の解離−
吸蔵平衡圧の低い金属水素化物の研究開発が各分
野で盛んに行なわれており、すでにそのような条
件を満足する金属水素化物が知られるに至つてい
る。
For this reason, recently, hydrogen dissociation -
Research and development of metal hydrides with low occlusion equilibrium pressures has been actively conducted in various fields, and metal hydrides that satisfy such conditions have already come to be known.

本発明者は、そのような金属水素化物すなわち
水素の解離−吸蔵平衡圧の低いものを利用して、
大容量の貯蔵も可能な水素貯蔵方法を得るために
鋭意研究を重ねた結果、本発明を完成するにいた
つた。
The present inventor utilized such a metal hydride, that is, one with a low hydrogen dissociation-storage equilibrium pressure, to
As a result of intensive research to obtain a hydrogen storage method that can store large amounts of hydrogen, we have completed the present invention.

すなわち、本発明は所定温度における水素の解
離−吸蔵平衡圧が大気圧よりも低い金属水素化物
を不活性ガスにより大気圧ないしこれよりも少し
高い圧力下に保持することを特徴とする水素貯蔵
方法である。
That is, the present invention provides a hydrogen storage method characterized in that a metal hydride whose hydrogen dissociation-occlusion equilibrium pressure at a predetermined temperature is lower than atmospheric pressure is maintained at atmospheric pressure or slightly higher pressure with an inert gas. It is.

本発明において用いる金属水素化物としては、
その水素解離平衡圧ないし水素吸蔵平衡圧が所定
温度において大気圧よりも低いものであればよ
く、このようなものとしては、例えばマグネシウ
ム水素化物、マグネシウム−ニツケル水素化物、
マグネシウム−銅水素化物、チタン−コバルト水
素化物、チタン−ニツケル水素化物、ランタンニ
ツケルアルミニウム水素化物又はこれらを主成分
とするものなどを挙げることができる。これらの
金属水素化物はそのまま用いることもできるが、
その水素解離−吸蔵平衡圧が常温において大気圧
よりも低いので、そのときはバツクリング圧に耐
える容器を用いなければならない。但し、そのバ
ツクリング圧は常温において1気圧以下である。
また、金属水素化物のうち、マグネシウム系水素
化物はその単位重量当りの水素吸蔵率が従来のも
の(2重量%以下)に比べて高い(例えばマグネ
シウム水素化物は7重量%)。従つて、同一量の
水素を貯蔵する場合には、従来の金属水素化物を
利用したものより小型の容器にすることができ
る。
The metal hydride used in the present invention includes:
It is sufficient that the hydrogen dissociation equilibrium pressure or hydrogen absorption equilibrium pressure is lower than atmospheric pressure at a predetermined temperature, such as magnesium hydride, magnesium-nickel hydride,
Examples include magnesium-copper hydride, titanium-cobalt hydride, titanium-nickel hydride, lanthanum-nickel aluminum hydride, and those containing these as main components. These metal hydrides can be used as they are, but
Since its hydrogen dissociation-storage equilibrium pressure is lower than atmospheric pressure at room temperature, a container that can withstand buckling pressure must be used in that case. However, the buckling pressure is 1 atm or less at room temperature.
Furthermore, among metal hydrides, magnesium-based hydrides have a higher hydrogen storage rate per unit weight (for example, 7% by weight for magnesium hydrides) than conventional ones (2% by weight or less). Therefore, when storing the same amount of hydrogen, it is possible to use a smaller container than that using conventional metal hydrides.

本発明において用いる不活性ガスとしては例え
ばヘリウム、ネオン、アルゴン、クリプトン、キ
セノンもしくはラドン又はこれらの混合物などが
あり、これらによつて、金属水素化物は大気圧な
いしこれよりさらに少し高い圧力下に保持され
る。このようにすれば例えば容器などに保存され
る金属水素化物、水素などは、化学反応を起すお
それがなく、空気や水分などの不純物の容器への
圧入による金属水素化物の劣化を防止することが
でき、また、貯臓時に金属水素化物が水素を解離
することの防止を図ることができるために水素の
貯蔵期間の長期化を図ることもできる。
Inert gases used in the present invention include, for example, helium, neon, argon, krypton, xenon or radon, or mixtures thereof, whereby the metal hydride is maintained at atmospheric pressure or slightly higher pressure. be done. In this way, for example, metal hydrides, hydrogen, etc. stored in containers etc. will not be at risk of causing chemical reactions, and deterioration of metal hydrides due to impurities such as air and moisture being forced into the container can be prevented. Furthermore, since it is possible to prevent the metal hydride from dissociating hydrogen during storage, the storage period of hydrogen can be extended.

本発明方法を使用する場合、その容器ないし装
置の材料又は形状については特に制限がなく、例
えば材料として金属、ガラス、セラミツクス、ゴ
ム、プラスチツク、木、紙などをそのままもしく
はプラスチツクをコーテングした状態となし、形
状として箱形、球形、円筒形などにして用いる。
また、その構造としては、大気圧より過分の内圧
に耐えることを要するが、その過分は大気圧と大
差がないので、特別の工夫を必要とせず、例え
ば、外壁の肉厚を増すなどによつて容易に解決す
ることができる。
When using the method of the present invention, there are no particular restrictions on the material or shape of the container or device; for example, the material may be metal, glass, ceramics, rubber, plastic, wood, paper, etc. as is or coated with plastic. It is used in a box, spherical, cylindrical, etc. shape.
In addition, its structure needs to withstand internal pressure in excess of atmospheric pressure, but since this excess pressure is not much different from atmospheric pressure, no special measures are required; for example, by increasing the thickness of the outer wall, etc. This can be easily resolved.

なお、参考のために本発明の構成要素の温度変
化に対する圧力変化について付記する。
For reference, pressure changes with respect to temperature changes in the constituent elements of the present invention will be additionally described.

本発明において用いる金属水素化物の水素解離
−吸蔵平衡圧力はフアントホツフ(Van’t−
Hoff)の経験式にほぼ従つて変化し、また、不
活性ガスについては、理想気体の状態方程式を適
用することができる。
The hydrogen dissociation-storage equilibrium pressure of the metal hydride used in the present invention is Van't-
Hoff's empirical formula, and for inert gases, the ideal gas equation of state can be applied.

またマグネシウム系水素化物の水素解離−吸蔵
平衡圧は常温において数mmHg以下であり、150℃
においてもマグネシウム水素化物が5mmHg、マ
グネシウム−ニツケル水素化物が20mmHg、マグ
ネシウム−銅水素化物が25mmHgである。
Furthermore, the hydrogen dissociation-storage equilibrium pressure of magnesium-based hydrides is several mmHg or less at room temperature, and at 150°C
Also, magnesium hydride is 5 mmHg, magnesium-nickel hydride is 20 mmHg, and magnesium-copper hydride is 25 mmHg.

従つて、本発明方法における定容圧力変化は、
例えば、温度が30℃から100℃にまで変化して
も、200mmHgに満たない上昇を示すものであり、
内圧を2気圧にまで高めるには、その温度を300
℃以上にしなければならない。このような温度に
まで上昇するとは、通常の貯蔵ないし輸送時にお
いて考えられない。
Therefore, the constant volume pressure change in the method of the present invention is
For example, even if the temperature changes from 30℃ to 100℃, the increase will be less than 200mmHg.
To increase the internal pressure to 2 atmospheres, increase the temperature to 300
Must be above ℃. It is unthinkable that the temperature would rise to such a temperature during normal storage or transportation.

本発明によれば、輸送に簡便な小型の水素貯蔵
装置ないし容器から大量に貯蔵することができる
大型のものまでを得ることができ、しかも、その
維持管理に特別の設備ないし施設を必要とせず、
長期間屋外に放置しておくことができる。また、
常温ないしその近傍温度において温度が変化して
も、1気圧以下の内圧変化をするだけであるから
装置に要求される耐圧性は通常の使用状態におい
て1気圧以下であり、従つてその製造費用が安価
になるなどの利点を有する。
According to the present invention, it is possible to obtain hydrogen storage devices or containers ranging from small-sized hydrogen storage devices or containers that are easy to transport to large-sized devices that can store large amounts of hydrogen, and in addition, no special equipment or facilities are required for their maintenance and management. ,
Can be left outdoors for long periods of time. Also,
Even if the temperature changes at or near room temperature, the internal pressure will only change by 1 atm or less, so the pressure resistance required of the device under normal usage is 1 atm or less, and therefore the manufacturing cost is low. It has advantages such as being inexpensive.

次に実施例により本発明をさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 電気炉内にマグネシウム−ニツケル合金を封入
し、真空ポンプによつて1mmHg以下に減圧した
のち300℃の温度において20気圧ほどの圧力で水
素ガスを導入してマグネシウム−ニツケル水素化
物にする操作と350℃において水素を放出する操
作とを十回繰り返し行なつた。このような処理を
して得たマグネシウム−ニツケル水素化物の約5
Kgを市販の生ビール用ブリキ缶5容量のものを
改造した容器に入れ、この容器の上部の2ケ所に
あらかじめ配設しておいた銅パイプの一方から脱
気しながら他方からヘリウムガスを導入し内圧を
約1000mmHgにしたのちヘリウムガスの導入を止
め両パイプを密封した。そして、このものを戸外
に放置する方法で曝露試験を行なつた。約6ケ月
後に、容器を開き内容物を取り出してその状態及
び水素の放出量を調べた。この結果、該金属水素
化物の色状態は、封入時の状態と同様の茶褐色を
示し変色していなかつた。また、水素の放出量に
ついては、該金属水素化物の1g当り約0.5の
水素ガスを放出した。この数値は4.5重量%の水
素吸蔵率を意味し、これは封入時の値と同じであ
る。このことから、該金属水素化物は何ら変質し
ていないことがわかつた。
Example 1 A magnesium-nickel alloy is sealed in an electric furnace, the pressure is reduced to 1 mmHg or less using a vacuum pump, and then hydrogen gas is introduced at a temperature of 300°C and a pressure of about 20 atmospheres to form a magnesium-nickel hydride. The operation and the operation of releasing hydrogen at 350°C were repeated ten times. About 5% of the magnesium-nickel hydride obtained by such treatment
Kg was placed in a container modified from a commercially available 5-capacity tin can for draft beer, and while degassing from one side of the copper pipes placed in advance at two locations on the top of the container, helium gas was introduced from the other side. After reducing the internal pressure to approximately 1000 mmHg, the introduction of helium gas was stopped and both pipes were sealed. An exposure test was then conducted by leaving this product outdoors. After about 6 months, the container was opened and the contents were taken out to examine its condition and the amount of hydrogen released. As a result, the color state of the metal hydride was brownish-brown, which was the same as the state at the time of encapsulation, and there was no discoloration. Regarding the amount of hydrogen released, approximately 0.5 hydrogen gas was released per 1 g of the metal hydride. This value means a hydrogen absorption rate of 4.5% by weight, which is the same as the value when encapsulated. This revealed that the metal hydride was not altered in any way.

なお、曝露試験を自然状態下に行なつたので、
該容器は18℃〜35℃の温度範囲において直射日
光、雨などに曝され、該容器の表面最高温度は80
℃にまでなつた。
Furthermore, since the exposure test was conducted under natural conditions,
The container is exposed to direct sunlight, rain, etc. in the temperature range of 18℃ to 35℃, and the maximum surface temperature of the container is 80℃.
It got down to ℃.

Claims (1)

【特許請求の範囲】[Claims] 1 所定温度における水素の解離−吸蔵平衡圧が
大気圧よりも低い金属水素化物を不活性ガスによ
り大気圧ないしこれよりも少し高い圧力下に保持
することを特徴とする水素貯蔵方法。
1. A hydrogen storage method characterized in that a metal hydride whose hydrogen dissociation-storage equilibrium pressure at a predetermined temperature is lower than atmospheric pressure is maintained at atmospheric pressure or slightly higher pressure with an inert gas.
JP1801480A 1980-02-16 1980-02-16 Storage of hydrogen Granted JPS56114801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1801480A JPS56114801A (en) 1980-02-16 1980-02-16 Storage of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1801480A JPS56114801A (en) 1980-02-16 1980-02-16 Storage of hydrogen

Publications (2)

Publication Number Publication Date
JPS56114801A JPS56114801A (en) 1981-09-09
JPS6240281B2 true JPS6240281B2 (en) 1987-08-27

Family

ID=11959809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1801480A Granted JPS56114801A (en) 1980-02-16 1980-02-16 Storage of hydrogen

Country Status (1)

Country Link
JP (1) JPS56114801A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015041A (en) 1996-04-01 2000-01-18 Westinghouse Savannah River Company Apparatus and methods for storing and releasing hydrogen
EP1338044A2 (en) 2000-11-27 2003-08-27 Koninklijke Philips Electronics N.V. Metal hydride battery material with high storage capacity
JP2006503688A (en) 2002-10-21 2006-02-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ High storage hydrogen storage material
JP2006097785A (en) * 2004-09-29 2006-04-13 Toyota Industries Corp Hydrogen storage tank and cap
GB0503738D0 (en) 2005-02-23 2005-03-30 Optinose As Powder delivery devices
US8079464B2 (en) 2010-12-30 2011-12-20 Ford Global Technologies, Llc Hydrogen storage materials

Also Published As

Publication number Publication date
JPS56114801A (en) 1981-09-09

Similar Documents

Publication Publication Date Title
US3516263A (en) Method of storing hydrogen
US4216274A (en) Battery with hydrogen absorbing material of the formula LnM5
US3967465A (en) Container for storing and transporting a liquefied gas
Reilly Jr et al. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4
Sandrock et al. Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates
US4134491A (en) Hydride storage containment
US4396576A (en) Alloy for occlusion of hydrogen
US3508414A (en) Method of storing hydrogen
JPS6240281B2 (en)
US4000246A (en) Removal of gases from an enclosed space using metal hydrocarbyl oxides
US4147536A (en) Alloy for occlusion of hydrogen
CA1088913A (en) Method for storing hydrogen in nickel-calcium
US4222770A (en) Alloy for occlusion of hydrogen
US4069303A (en) Alloy useful as hydrogen storage material
Guichard et al. Hydrolysis of lithium hydride under low relative humidity
KR0146288B1 (en) Getter materials for the vacuum insulation of liquid hydrogen storage vessels of transport lines
Klatt et al. Use of FeTi-Crystals for Production and Storage of Suprapure Hydrogen
Konishi et al. Equilibrium hydrogen pressure on the solid solutions of ZrCo HfCo intermetallic compounds
Lupu et al. Hydrogen absorption in beryllium substituted Mg2Ni
JPH05213601A (en) Method for activating or stabilizing metallic material
Ghezzi et al. Pressure-concentration-temperature characterization of St909 getter alloy with hydrogen
Lundin et al. Solid state hydrogen storage materials for application to energy needs
JPS55149101A (en) Novel hydrogen absorbent
Paul-Boncour et al. Introduction to hydrogen storage methods
JPH04265213A (en) Storage method for phosphorus pentafloride