JPS6240151Y2 - - Google Patents

Info

Publication number
JPS6240151Y2
JPS6240151Y2 JP1983008353U JP835383U JPS6240151Y2 JP S6240151 Y2 JPS6240151 Y2 JP S6240151Y2 JP 1983008353 U JP1983008353 U JP 1983008353U JP 835383 U JP835383 U JP 835383U JP S6240151 Y2 JPS6240151 Y2 JP S6240151Y2
Authority
JP
Japan
Prior art keywords
oil
groove
side end
face
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983008353U
Other languages
Japanese (ja)
Other versions
JPS59115889U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP835383U priority Critical patent/JPS59115889U/en
Publication of JPS59115889U publication Critical patent/JPS59115889U/en
Application granted granted Critical
Publication of JPS6240151Y2 publication Critical patent/JPS6240151Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea] 【産業上の利用分野】[Industrial application field]

本考案は油冷式スクリユ圧縮機の摺動弁構造の
改良に関する。
The present invention relates to an improvement in the sliding valve structure of an oil-cooled screw compressor.

【技術的背景】[Technical background]

冷凍装置用圧縮機として、近年圧縮気体容量を
調整する摺動弁を備えた油冷式スクリユ圧縮機が
多く用いられるようになつた。摺動弁を内蔵する
スクリユ圧縮機は古くから知られている。その基
本的な構造と機能を図面第1図及び第2図、第3
図によつて説明する。 第1図及び第2図において、平行に配置した二
つの中空円筒1,2は、それぞれの軸直角断面の
円形の一部分の点3,4で互いに重合して、ひよ
うたん形断面の筒状孔5−6の作動空間8を有す
るケーシング7を形成している。筒状孔5−6の
作動空間8内に、互いにかみ合う二つのスクリユ
ロータ、すなわちオスロータ9及びメスロータ1
0を収容し、第2図のようにそれぞれのロータの
両端の軸を軸受11,12,13,14,15及
び16によつて回転自在に支承する。 オスロータ9の駆動側軸部17にはメカニカル
シール18を配置し、軸受部潤滑油の漏れを防止
する。反対側軸端19にはバランスピストン20
を設け、オスロータ9の軸方向の推力を軽減せし
める構造である。 第1図において、オスロータ9及びメスロータ
10のかみ合いの下部で、ケーシング7の下部内
壁の一部を切欠き、その下部に軸直角断面でほぼ
半円形の内壁23を形成する。その中に筒状孔5
−6の重合する点4を先端とし、その両側傾斜曲
面21,22を作動空間8の内壁の1部とし、ロ
ータ軸に平行にかつケーシング7の下部内壁23
に摺動自在の摺動弁24を設けている。 第3図において、ケーシング7の筒状孔の作動
空間8の左端に吸入口25を、右端に吐出口26
を備えている。吸入口25は吸入室27の開口2
8に連通し、吐出口26は吐出室29及び排出口
30に連通している。 気体は吸入室開口28より吸入室27を通つ
て、ロータの回転に伴い吸入口25を経て作動空
間8に吸入される。ロータ9,10のかみ合いみ
ぞと筒状孔5−6で区画された容積をロータの回
転により逐次縮小して気体を圧縮し吐出口26よ
り吐出室29を経て排出口30に吐出する。 摺動弁24はロツド31の一端に固定し、ロツ
ド31の他端はピストン32に固定している。吐
出ガスの消費の変動に伴い、その圧力又は温度の
検知器の信号に応じて(図示せず)、油圧シリン
ダ33の両端に設けた油供給孔34,35を介し
てピストン32の一方に油圧を加え、ピストン3
2を左右何れかの方向に移動させ、ロツド31を
介して摺動弁24を移動させる。摺動弁24の底
部に軸線方向に案内溝36を設け、この案内溝3
6は吐出側端面37から少し離れた位置より始ま
り、吸入側端面38を突切つている。この案内溝
36に嵌合摺動する案内片39を配置し、案内片
39は、ケーシング7の下方に設けた保持ピン4
0に保持され、摺動弁の円周方向の位置を正確に
保持させる役目をする。尚7′はケーシング7の
吐出側端壁に保持せしめた断面弧形の樋状のガイ
ドで、摺動弁24が吐出室29内へ進退移動した
とき、これを支持するものである。 摺動弁24が第3図の一点鎖線で示す位置に移
動すると、摺動弁24の吸入側端面38が、ケー
シング7の筒状孔5−6の切欠き端面41から離
れ、作動空間8に開口42ができる、吸入口25
からロータみぞ内に吸入された気体はこの開口4
2の軸方向区間を通過する間は、戻り室43を介
して吸入室27に戻るため圧縮作用は行われな
い。ロータみぞの歯先線が摺動弁24の一点鎖線
で示す端部38′に達して始めて圧縮工程が始ま
る。圧縮工程の範囲はこの場合端面38′とケー
シング7の吐出口26に達するまでの長さLの範
囲内で行うことになり、圧縮気体の容量は全負荷
時より減少する。 このように圧力又は温度の変動により、摺動弁
24の位置を摺動させて吸入締め切り位置を変え
て、吐出ガスの容量を自動的に調整する。
In recent years, oil-cooled screw compressors equipped with a sliding valve that adjusts the compressed gas capacity have come into widespread use as compressors for refrigeration equipment. Screw compressors with built-in sliding valves have been known for a long time. Its basic structure and functions are shown in the drawings Figures 1, 2, and 3.
This will be explained using figures. In FIGS. 1 and 2, two hollow cylinders 1 and 2 arranged in parallel overlap each other at points 3 and 4 of a circular part of each axis-perpendicular cross section, and form a cylindrical shape with a gourd-shaped cross section. A casing 7 is formed having a working space 8 of holes 5-6. In the working space 8 of the cylindrical hole 5-6, there are two screw rotors that mesh with each other, namely a male rotor 9 and a female rotor 1.
0, and the shafts at both ends of each rotor are rotatably supported by bearings 11, 12, 13, 14, 15 and 16 as shown in FIG. A mechanical seal 18 is disposed on the drive side shaft portion 17 of the male rotor 9 to prevent leakage of lubricating oil from the bearing portion. A balance piston 20 is located at the opposite shaft end 19.
This structure reduces the thrust of the male rotor 9 in the axial direction. In FIG. 1, a part of the lower inner wall of the casing 7 is cut out at the lower part of the mesh between the male rotor 9 and the female rotor 10, and an inner wall 23 having a substantially semicircular cross section perpendicular to the axis is formed in the lower part. Cylindrical hole 5 in it
The overlapping point 4 of -6 is the tip, and the inclined curved surfaces 21 and 22 on both sides are part of the inner wall of the working space 8, and the lower inner wall 23 of the casing 7 is parallel to the rotor axis.
A slide valve 24 that can freely slide is provided. In FIG. 3, the suction port 25 is located at the left end of the working space 8 of the cylindrical hole of the casing 7, and the discharge port 26 is located at the right end.
It is equipped with The suction port 25 is the opening 2 of the suction chamber 27.
8, and the discharge port 26 communicates with a discharge chamber 29 and a discharge port 30. Gas is sucked into the working space 8 from the suction chamber opening 28 through the suction chamber 27 and through the suction port 25 as the rotor rotates. The volume defined by the meshing grooves of the rotors 9 and 10 and the cylindrical hole 5-6 is sequentially reduced by the rotation of the rotors to compress the gas and discharge it from the discharge port 26 through the discharge chamber 29 to the discharge port 30. The slide valve 24 is fixed to one end of a rod 31, and the other end of the rod 31 is fixed to a piston 32. As the discharge gas consumption fluctuates, hydraulic pressure is applied to one side of the piston 32 via oil supply holes 34 and 35 provided at both ends of the hydraulic cylinder 33 in response to a signal from a pressure or temperature detector (not shown). and piston 3
2 in either the left or right direction, and the slide valve 24 is moved via the rod 31. A guide groove 36 is provided in the bottom of the slide valve 24 in the axial direction.
6 starts at a position slightly away from the discharge side end face 37 and cuts through the suction side end face 38. A guide piece 39 that fits and slides in this guide groove 36 is arranged, and the guide piece 39 is connected to the holding pin 4 provided below the casing 7.
0, and serves to accurately maintain the circumferential position of the slide valve. Reference numeral 7' denotes a gutter-shaped guide with an arcuate cross section held on the discharge side end wall of the casing 7, which supports the slide valve 24 when it moves forward and backward into the discharge chamber 29. When the slide valve 24 moves to the position shown by the dashed line in FIG. Inlet 25 with opening 42
The gas sucked into the rotor groove from the opening 4
While passing through the second axial section, the compression action is not performed because the air returns to the suction chamber 27 via the return chamber 43. The compression process begins only when the tip line of the rotor groove reaches the end 38' of the sliding valve 24, which is indicated by a dash-dot line. In this case, the compression process is performed within the length L between the end face 38' and the discharge port 26 of the casing 7, and the capacity of the compressed gas is reduced compared to when the load is full. In this manner, due to pressure or temperature fluctuations, the position of the slide valve 24 is changed to change the suction cut-off position, thereby automatically adjusting the volume of discharged gas.

【従来技術及び問題点】[Prior art and problems]

以上のような摺動弁を有する油冷式スクリユ圧
縮機において、摺動弁の移動を容易にするため、
摺動弁の外周に油溝を設け、これに軸受や作動空
間内に噴射供給する潤滑油の一部を導入したもの
がある。 第4図は従来の摺動弁の摺動部分を展開し、底
部の方向から見た図で、油溝の配置を示すもので
ある。 吐出側端面37近くに円周方向に油溝44を設
け、案内溝36をはさんで両側に軸線方向に前記
油溝44と連通する軸線上の油溝45,46,4
5′,46′を設け、油溜給油溝49より摺動弁2
4内の油通路47,48を通つて、作動空間8に
向かつて噴射する油の一部を油溜給油溝49より
分岐し、軸線上の油溝45,46,45′,4
6′に導入して、摺動面の潤滑を行い強制潤滑し
ている。 このように摺動面は円滑に摺動可能となるが、
潤滑する油の中には圧縮気体が溶け込んでおり、
摺動弁の吐出側近辺は高圧のため、油溝44は充
分に潤滑とシールの効果を発揮するが、吸入側近
傍では低圧となり、潤滑油中の気体が膨張して、
摺動面の隙間より戻り室43あるいは開口42を
経て吸入側に戻り、吸入室開口28からの吸入量
を減少させ、圧縮機の性能を低下させている。 特に冷凍機に使用する圧縮機にあつては、冷媒
が油の中に相当量溶け込んでおり、油圧低下によ
り油中より気体が多く発生し、これが吸入側に廻
つて再圧縮を行い、新規の吸入ガスの減少をもた
らし、圧縮機の性能を著しく悪くしている。 そこで、かかる欠陥を解消すべく、特公昭57−
19316号にかかる考案では、第5図及び第6図に
示すように、摺動弁54の吐出側端面37近くに
円周方向に油溝50を設け、潤滑油の油溜給油溝
49に連通し、前記油溝50は摺動弁54の円周
方向両端縁で、軸線方向に摺動弁54のほぼ中央
51,51′迄延長せしめ、一次側油溝50を形
成する。一次側油溝50の両端51,51′より
少し離れて、吸入側端面38へ向かつて油溝5
2,52′を設け、吸入側端面38近くで、円周
方向にこれらの油溝52,52′を曲折形成し、
さらに案内溝36の両側に沿つて軸線方向にこれ
らの油溝を延設し、一次側油溝50と案内溝36
の吐出側端縁近傍との間で端部を連結せしめて形
成した二次側油溝53を配置し、さらにこの二次
側油溝53を油溜給油溝55に連通せしめる。油
溜給油溝55は摺動弁54内を貫通し、作動空間
8に通ずる回収通路56と連通する。第5図にお
いて、摺動弁54に設けた油溜給油溝55は摺動
弁54が移動してもケーシング7の通路57と常
に連通して、軸受潤滑後の油も含めて回収できる
ように大きな溝とした。 また前記作動空間8に滑油を摺動弁54から回
収する回収通路56は摺動弁54の傾斜曲面22
に開口し、その開孔60の位置は摺動弁の移動に
かかわらず常に吸入締め切り後の圧縮室に通ずる
ように構成することにより摺動弁54の摺動面潤
滑後の油を二次側油溝53、回収通路56を介し
て吸入締め切り後の圧縮室に回収し、圧縮機の吸
入体積効率の低下をなくすと共に摺動弁上面の吸
入側端面38と吐出側端面37の圧力差に対応さ
せて摺動弁下面の一次側油溝50を高圧に二次側
油溝53を低圧として両者の圧力分布を均等にす
ることによつて、摺動弁を水平に保持し、摺動弁
の浮き上がりによるロータ外周との部分接触を回
避している。 このように、特公昭57−19316号の考案におい
ては、吸入体積効率の改善を図ることができると
共に摺動弁の浮き上がりを防止することができる
が、摺動弁の外周に設けた回収用二次側油溝と分
離されている油溝の吐出側端面においては、供給
される潤滑油は、軸受や圧縮室へ噴射供給される
油の一部で圧縮気体の吐出圧力よりも高圧の圧力
油であるため、摺動弁の浮き上がりによるロータ
外周との部分接触が生じこのため、摺動弁とロー
タとが接触し、ロータ及び又は摺動弁が損傷する
ことがあつた。
In an oil-cooled screw compressor having a sliding valve as described above, in order to facilitate the movement of the sliding valve,
Some slide valves have an oil groove on the outer periphery, into which a portion of the lubricating oil is injected and supplied into the bearing or working space. FIG. 4 is an exploded view of the sliding portion of a conventional sliding valve, viewed from the bottom, showing the arrangement of oil grooves. An oil groove 44 is provided in the circumferential direction near the discharge side end face 37, and oil grooves 45, 46, 4 on the axis communicate with the oil groove 44 in the axial direction on both sides with the guide groove 36 in between.
5' and 46' are provided, and the sliding valve 2 is inserted from the oil sump oil supply groove 49.
A part of the oil that is injected toward the working space 8 through the oil passages 47 and 48 in the oil reservoir 4 is branched from the oil sump oil supply groove 49 and flows into the oil grooves 45, 46, 45', and 4 on the axis.
6' for forced lubrication of the sliding surfaces. In this way, the sliding surface can slide smoothly,
Compressed gas is dissolved in the lubricating oil,
Since the pressure near the discharge side of the slide valve is high, the oil groove 44 can sufficiently provide lubrication and sealing effects, but the pressure is low near the suction side, and the gas in the lubricating oil expands.
The air returns to the suction side through the gap between the sliding surfaces through the return chamber 43 or the opening 42, reducing the amount of suction from the suction chamber opening 28 and deteriorating the performance of the compressor. Particularly in the case of compressors used in refrigerators, a considerable amount of refrigerant is dissolved in the oil, and when the oil pressure drops, more gas is generated from the oil, which goes to the suction side and recompresses, causing a new This results in a decrease in suction gas and significantly deteriorates the performance of the compressor. Therefore, in order to eliminate such defects,
In the device according to No. 19316, as shown in FIGS. 5 and 6, an oil groove 50 is provided in the circumferential direction near the discharge side end surface 37 of the sliding valve 54, and communicates with the oil sump oil supply groove 49 for lubricating oil. The oil groove 50 is extended in the axial direction to substantially the center 51, 51' of the slide valve 54 at both ends of the slide valve 54 in the circumferential direction, thereby forming a primary oil groove 50. The oil groove 5 is located slightly away from both ends 51 and 51' of the primary oil groove 50 and faces toward the suction side end surface 38.
2, 52' are provided, and these oil grooves 52, 52' are bent in the circumferential direction near the suction side end surface 38,
Furthermore, these oil grooves are extended in the axial direction along both sides of the guide groove 36, and the primary side oil groove 50 and the guide groove 36 are
A secondary oil groove 53 formed by connecting an end to the vicinity of the discharge side edge of the secondary oil groove 53 is disposed, and the secondary oil groove 53 is communicated with the oil sump oil supply groove 55. The oil sump oil supply groove 55 passes through the inside of the slide valve 54 and communicates with a recovery passage 56 that communicates with the working space 8 . In FIG. 5, the oil reservoir oil supply groove 55 provided in the slide valve 54 is always in communication with the passage 57 of the casing 7 even when the slide valve 54 moves, so that oil including oil after bearing lubrication can be collected. It was a big groove. A recovery passage 56 for recovering oil from the slide valve 54 into the working space 8 is connected to the inclined curved surface 22 of the slide valve 54.
By configuring the opening 60 so that it always communicates with the compression chamber after suction is closed regardless of the movement of the slide valve, the oil after lubricating the sliding surface of the slide valve 54 is transferred to the secondary side. The oil is collected through the oil groove 53 and recovery passage 56 into the compression chamber after the suction is closed, thereby eliminating a decrease in the suction volumetric efficiency of the compressor and responding to the pressure difference between the suction side end surface 38 and the discharge side end surface 37 of the upper surface of the sliding valve. By setting the primary oil groove 50 on the lower surface of the sliding valve to high pressure and the secondary oil groove 53 to low pressure to equalize the pressure distribution between the two, the sliding valve is held horizontally and the sliding valve is Partial contact with the outer periphery of the rotor due to lifting is avoided. In this way, in the invention of Japanese Patent Publication No. 57-19316, it is possible to improve the suction volumetric efficiency and prevent the sliding valve from floating. At the discharge end of the oil groove that is separated from the next oil groove, the supplied lubricating oil is part of the oil that is injected and supplied to the bearings and compression chambers, and is a pressure oil with a higher pressure than the discharge pressure of the compressed gas. Therefore, the sliding valve floats up and comes into partial contact with the outer periphery of the rotor, resulting in contact between the sliding valve and the rotor, resulting in damage to the rotor and/or the sliding valve.

【目 的】【the purpose】

本考案は、上記摺動弁の浮き上がりをより確実
に防止するため前記摺動弁の吐出端側の油溝にか
かる加圧された噴射用供給油による摺動弁の浮き
上げ方向の力を無くし、摺動弁上部とロータ外周
との部分接触を皆無とし、両者の間隙をできる限
り狭くすることを可能にして、圧縮効率を高め且
つ吸入体積効率の向上を計つて、動力消費を軽減
し圧縮機の性能の向上を図ることを目的とするも
のである。
In order to more reliably prevent the sliding valve from floating, the present invention eliminates the force in the lifting direction of the sliding valve due to the pressurized injection supply oil applied to the oil groove on the discharge end side of the sliding valve. , there is no partial contact between the upper part of the sliding valve and the outer periphery of the rotor, making it possible to narrow the gap between the two as much as possible, increasing compression efficiency and suction volume efficiency, reducing power consumption and improving compression. The purpose is to improve the performance of the machine.

【構 成】【composition】

本考案の上記目的を達成するための構成を図示
の実施例にもとづき説明すると、平行に配置した
2つの中空円筒1,2のそれぞれの軸直角断面に
形成される円形の一部分3,4で互いに重合する
筒状孔5−6を形成した作動空間8を、一端に吸
入口25を、他端に吐出口26を有するケーシン
グ7内に形成し、前記筒状孔5−6内で互いに噛
合回転する二つのスクリユロータ9,10を配
し、且つ前記ケーシング7内の二つの筒状孔5−
6の重合する下方位置で作動空間8壁の一部を形
成するようロータ軸に平行にケーシング7下部に
設けられ、底面の軸線方向で吸入側端面38より
吐出側端面37の近傍に至り穿設された案内溝3
6を介して摺動自在に配設され、作動空間8の締
め切り位置を変化して圧縮気体容量を調整する摺
動弁94を有する油冷式スクリユ圧縮機におい
て、前記摺動弁94のケーシング7との摺動面
に、該摺動面の吐出側端面37近傍で円周方向の
略全長に至り設けた油溝71の両端を該摺動面の
軸線方向両側縁近傍に沿つて吸入側端面38近傍
に延設し、ついで、この油溝72,73を吸入側
端面38近傍で円周方向に曲折形成し、さらに、
この油溝74,75を前記案内溝36の両側縁近
傍に沿つて延設し、油溝74′,75′を形成し、
この油溝74′,75′を前記吐出側端面37近傍
の円周方向の略全長に至り設けた油溝71に連結
して一連の回収溝70を形成すると共に、この回
収溝70を摺動弁94内を貫通する回収通路56
を介して常にケーシング7内の吸入締め切り後の
圧縮室へ連通すると共に、前記回収溝70と交叉
しない位置に、ケーシング7の加圧された潤滑油
供給通路58に連通する摺動面の軸線方向に細長
の油溜給油溝49a,49bを設け、且つ該油溜
給油溝49a,49bを摺動弁94内を貫通する
回収通路47,48,81′を介して常に吸入締
め切り後の圧縮室に連通するよう設けると共に前
記案内溝36の両側縁と、該両側縁の近傍に沿つ
て設けた油溝74′,76′間に、それぞれ吸入側
端面38に突き抜け、他端が前記吐出側端面37
近傍の円周方向の略全長に至り設けた油溝71の
近傍に位置する逃げ溝91,92を形成したこと
を特徴とする。
The structure for achieving the above object of the present invention will be explained based on the illustrated embodiment. Two hollow cylinders 1 and 2 arranged in parallel are connected to each other by circular portions 3 and 4 formed in the cross sections perpendicular to the respective axes. A working space 8 in which overlapping cylindrical holes 5-6 are formed is formed in a casing 7 having an inlet 25 at one end and a discharge port 26 at the other end, and the working space 8 is formed in a casing 7 having an inlet 25 at one end and a discharge port 26 at the other end, and the working space 8 is interlocked with and rotates within the cylindrical holes 5-6. Two screw rotors 9 and 10 are arranged, and two cylindrical holes 5- in the casing 7 are arranged.
It is provided in the lower part of the casing 7 parallel to the rotor axis so as to form a part of the wall of the working space 8 at the lower position where the parts 6 overlap, and is perforated from the suction side end surface 38 to the vicinity of the discharge side end surface 37 in the axial direction of the bottom surface. guide groove 3
In the oil-cooled screw compressor, the oil-cooled screw compressor has a sliding valve 94 that is slidably disposed through the casing 7 of the sliding valve 94 and adjusts the compressed gas capacity by changing the closing position of the working space 8. Both ends of an oil groove 71 extending approximately the entire length in the circumferential direction near the discharge side end face 37 of the sliding face are connected to the suction side end face along the vicinity of both axial edges of the sliding face. 38, and then the oil grooves 72 and 73 are bent in the circumferential direction near the suction side end surface 38, and
These oil grooves 74, 75 are extended along the vicinity of both side edges of the guide groove 36 to form oil grooves 74', 75',
These oil grooves 74' and 75' are connected to an oil groove 71 provided near the discharge side end face 37 extending approximately the entire length in the circumferential direction to form a series of collection grooves 70, and this collection groove 70 is slidable. Recovery passage 56 passing through valve 94
is always in communication with the compression chamber in the casing 7 after suction is closed, and in the axial direction of the sliding surface that communicates with the pressurized lubricating oil supply passage 58 of the casing 7 at a position that does not intersect with the recovery groove 70. Elongated oil sump oil supply grooves 49a, 49b are provided in the oil sump oil supply grooves 49a, 49b, and the oil sump oil supply grooves 49a, 49b are always connected to the compression chamber after the suction is closed via recovery passages 47, 48, 81' passing through the inside of the slide valve 94. The oil grooves 74' and 76' are provided so as to communicate with each other and are provided along both side edges of the guide groove 36 and the vicinity of the both side edges.
It is characterized in that escape grooves 91 and 92 are formed in the vicinity of the oil groove 71, which extends approximately the entire length in the circumferential direction.

【作 用】[Effect]

従つて、本考案によれば、ケーシング7の加圧
された潤滑油供給通路58に連通する摺動面の軸
線方向に細長の油溜給油溝49a,49bから摺
動面全体に潤滑油が供給され、摺動面の略全体に
配置した一連の回収溝70から摺動弁94内を貫
通する回収通路56を介して常にケーシング7内
の吸入締め切り後の圧縮室へ回収され、吐出側端
面においても、摺動弁94全体が浮き上がること
がなく、かつ前記回収溝に導入された潤滑油中に
溶解する冷媒が分離、膨張することなく、確実に
前記一連の回収溝70から吸入締め切り後の圧縮
室へ常に回収されることになる。さらに、逃げ溝
91,92の一端が吸入側端面38に突き抜け連
通するため摺動弁94下面に作用する圧力はより
吸入圧力(大気圧)に近くなり作動空間8の圧縮
圧力により、摺動弁を下方へ押し付ける力が働き
摺動弁94が浮き上がる方向への力を相殺する。
Therefore, according to the present invention, lubricating oil is supplied to the entire sliding surface from the oil reservoir oil supply grooves 49a, 49b which are elongated in the axial direction of the sliding surface and communicate with the pressurized lubricating oil supply passage 58 of the casing 7. is constantly collected into the compression chamber after suction is closed in the casing 7 through a series of collection grooves 70 arranged on almost the entire sliding surface and through a collection passage 56 penetrating the inside of the sliding valve 94, and is constantly collected into the compression chamber after suction is closed in the casing 7. Also, the entire sliding valve 94 does not float up, and the refrigerant dissolved in the lubricating oil introduced into the collection groove does not separate or expand, ensuring that the compression after suction is closed from the series of collection grooves 70 is ensured. They will always be collected back into the room. Furthermore, since one end of the relief grooves 91 and 92 penetrates and communicates with the suction side end surface 38, the pressure acting on the lower surface of the slide valve 94 becomes closer to the suction pressure (atmospheric pressure), and the compression pressure in the working space 8 causes the slide valve to A force pushing the slide valve 94 downward cancels out the force in the direction of lifting the slide valve 94.

【実施例】【Example】

以下図示の実施例にもとづき本考案の詳細を説
明する(尚、油冷式スクリユ圧縮機全体の構成に
ついては前述のものと同様であるので説明を省略
する) 第7図及び第8図において、摺動弁94の底面
中央軸線上には、その軸線方向で吸入側端面38
より吐出側端面37の近傍に至り、案内溝36が
穿設されている。摺動弁94の吐出側端面37の
近傍には、この端面37の側縁に沿つてその円周
方向の略全長に至り油溝71が設けられ、該油溝
71の両端を摺動弁94の軸線方向両側縁の近傍
に沿つて吸入側端面38の近傍まで延長し、この
油溝72,73をさらに前記吸入側端面38の近
傍に沿つて前記案内溝36の長手方向両側縁近傍
方向へ屈曲し、次いでこの吸入側端面38の近傍
に形成した油溝74,75をさらに前記案内溝3
6の両側縁近傍に沿つてそれぞれ該案内溝36の
先端へ延設し、さらに先端を前記吐出側端面の近
傍に形成した油溝71へ連結して、一連の回収溝
70を形成する。 同図実施例において、摺動弁94の摺動面に潤
滑油を供給する油溜給油溝が、二個所設けられて
いる。即ち、油溝72及び74′間に油溜給油溝
49aが油溝75′及び73間に油溜給油溝49
bが、それぞれ前記油溝間の長手方向に、摺動弁
94の移動時にも潤滑油を受給できるように摺動
弁94の移動方向に長辺を配した細長い略楕円状
に形成され、配設されている。 また、案内溝36の両側縁と、該案内溝36の
両側縁近傍に沿つて形成された油溝74′,7
5′の間すなわち摺動弁94の中心軸線の左右均
等の位置には、摺動面の長手方向に沿つて逃げ溝
91及び92をそれぞれ配設する。この逃げ溝9
1,92の一端は摺動弁94の吸入側端面に突き
抜け連通するよう設け、且つ他端は、摺動面の吐
出側端面37近傍に形成した油溝71の近傍に至
るように穿設して形成される。 油溜給油溝49a及び49bには、摺動弁94
内を貫通する通路の一端たる開口78,79,8
2が設けられている。すなわち、油溜給油溝49
aに開口78が臨み、回収通路47を介して作動
空間の吸入締め切り後の圧縮室へ加圧された潤滑
油を噴射供給し、また油溜給油溝49aの開口7
9に摺動弁94を貫通する回収通路48が設けら
れている。尚、第10図に示すように回収通路4
7,48は、摺動弁94の上面の両傾斜曲面2
1,22に分岐開口している。油溜給油溝49a
には、叙上のように、摺動弁94内を貫通する通
路が二本設けられてはいるが、該油溜給油溝49
aに至るケーシング7内を貫通する潤滑油供給通
路は一本である(符号58)。 また、油溜給油溝49b側には、摺動弁94内
を貫通し摺動弁94内で回収通路47,48に連
通する通路81′の開口82が臨み、さらに該油
溜給油溝49bはケーシング7に設けた吸入締め
切り後の圧縮室に開口連通する噴射通路80に連
通し、一方潤滑油供給通路58はケーシング7に
設けた吸入締め切り後の圧縮室に開口連通する他
の噴射通路83に連通し、潤滑油供給通路58に
供給される油は回収通路47,48,噴射通路8
0,83の開口から常に吸入締め切り後の圧縮室
内に噴射供給される。また、回収溝70より摺動
弁94を貫通する回収通路56を介して、潤滑油
を作動空間の吸入締め切り後の圧縮室へ常に回収
する前記回収通路56の開口77が、油溝75′
の吐出側端面寄りに形成された回収凹部76内に
臨んでいる。 摺動弁94上面の傾斜曲面21,22に開口す
る、回収溝70と連通する回収通路56及び油溜
給油溝49aと連通する回収通路47,48の前
記開口位置を、摺動弁94の移動にかかわらず常
に吸入締め切り後の圧縮室に通ずる位置と成るよ
う設ける。 上記実施例においてケーシング7内の潤滑油供
給通路58を介して供給された加圧潤滑油は、油
溜給油溝49a及び摺動弁94内で回収通路4
7,48に連通する通路81′を介して油溜給油
溝49bに至り、該部より溢出し、摺動面に浸透
した潤滑油により摺動面を潤滑し、回収溝70へ
流入する。以上により、摺動弁下面に作用する圧
力はより吸入圧力(大気圧)に近くなり作動空間
の圧縮圧力により、摺動弁を下方へ押し付ける力
が働き確実に摺動弁の浮き上がりを阻止する。 さらに潤滑油供給通路58より供給された潤滑
油は油溜給油溝49a及びこの油溜給油溝49a
に通路81′を介して連通する油溜給油溝49b
に設けた開口78又は79より摺動弁内を貫通す
る回収通路47,48を通り又、噴射通路80,
83を介して摺動弁94の上方で相互に噛合して
回転する二つのスクリユロータ9,10で作動空
間8内に形成される吸入締め切り後の圧縮室に噴
射供給され、ケーシング7内で潤滑、冷却密封の
各作用を果たした後、圧縮気体と共に、第3図に
示す吐出口29を経て排出口30に吐出する。 一方、前記一連の回収溝70に回収された潤滑
油は、該溝70に連通して設けた回収凹部76よ
り摺動弁94内を貫通する回収通路56を介して
作動空間8の吸入締め切り後の圧縮室へ常に回収
され作動空間8の吸入締め切り後の圧縮室の冷却
効果、密封効果を向上することができる。 尚、油冷式スクリユ圧縮機の全体の作用につい
ては技術的背景の項において前述したものと同様
であるので、説明を省略する。
The details of the present invention will be explained below based on the illustrated embodiments (the overall structure of the oil-cooled screw compressor is the same as that described above, so the explanation will be omitted). In FIGS. 7 and 8, On the central axis of the bottom surface of the slide valve 94, there is a suction side end surface 38 in the axial direction.
A guide groove 36 is formed closer to the discharge side end face 37 . An oil groove 71 is provided in the vicinity of the discharge side end face 37 of the slide valve 94 along the side edge of the end face 37 and extends approximately the entire length in the circumferential direction. The oil grooves 72 and 73 are extended along the vicinity of both axial edges of the guide groove 36 to the vicinity of the suction side end face 38, and the oil grooves 72, 73 are further extended along the vicinity of the suction side end face 38 toward the vicinity of both longitudinal sides of the guide groove 36. Then, the oil grooves 74 and 75 formed near the suction side end face 38 are further connected to the guide groove 3.
A series of recovery grooves 70 are formed by extending along the vicinity of both side edges of the guide grooves 36 to the tips of the guide grooves 36, and further connecting the tips to oil grooves 71 formed near the discharge side end face. In the embodiment shown in the figure, two oil reservoir oil supply grooves are provided for supplying lubricating oil to the sliding surface of the sliding valve 94. That is, the oil sump oil supply groove 49a is located between the oil grooves 72 and 74', and the oil sump oil supply groove 49a is located between the oil grooves 75' and 73'.
b are each formed in the longitudinal direction between the oil grooves in an elongated substantially elliptical shape with a long side arranged in the direction of movement of the slide valve 94 so that lubricating oil can be received even when the slide valve 94 moves. It is set up. Further, oil grooves 74', 7 formed along both side edges of the guide groove 36 and the vicinity of both side edges of the guide groove 36.
Relief grooves 91 and 92 are provided along the longitudinal direction of the sliding surface between 5', that is, at equal positions on the left and right sides of the central axis of the sliding valve 94, respectively. This relief groove 9
One end of 1,92 is provided so as to pass through and communicate with the suction side end face of the sliding valve 94, and the other end is bored so as to reach the vicinity of the oil groove 71 formed near the discharge side end face 37 of the sliding face. It is formed by A sliding valve 94 is provided in the oil sump oil supply grooves 49a and 49b.
Openings 78, 79, 8 which are one end of a passage passing through the interior.
2 is provided. That is, the oil sump oil supply groove 49
An opening 78 faces the opening 7a, which injects and supplies pressurized lubricating oil to the compression chamber after the intake of the working space is closed through the recovery passage 47, and also opens the opening 7 of the oil sump oil supply groove 49a.
9 is provided with a recovery passage 48 that passes through the slide valve 94. In addition, as shown in FIG.
7 and 48 are both inclined curved surfaces 2 on the upper surface of the sliding valve 94
There are branch openings at 1 and 22. Oil sump oil supply groove 49a
As mentioned above, there are two passages penetrating through the slide valve 94, but the oil sump oil supply groove 49
There is one lubricating oil supply passage passing through the inside of the casing 7 leading to the point a (reference numeral 58). Furthermore, an opening 82 of a passage 81' that passes through the slide valve 94 and communicates with the recovery passages 47 and 48 within the slide valve 94 faces the oil sump oil supply groove 49b side, and the oil sump oil supply groove 49b The lubricating oil supply passage 58 communicates with an injection passage 80 which is provided in the casing 7 and is in open communication with the compression chamber after the suction is closed, while the lubricating oil supply passage 58 is connected to another injection passage 83 which is provided in the casing 7 and which is in open communication with the compression chamber after the suction is closed. The oil supplied to the lubricating oil supply passage 58 is communicated with the recovery passages 47 and 48 and the injection passage 8.
It is always injected and supplied into the compression chamber after suction is closed through the openings 0 and 83. Further, the opening 77 of the recovery passage 56, which always recovers lubricating oil from the recovery groove 70 to the compression chamber after the suction of the working space is closed, via the recovery passage 56 penetrating the slide valve 94, is located in the oil groove 75'.
It faces into the collection recess 76 formed near the discharge side end surface of the cylinder. Movement of the slide valve 94 changes the opening positions of the recovery passage 56 communicating with the recovery groove 70 and the recovery passages 47 and 48 communicating with the oil sump oil supply groove 49a, which open on the inclined curved surfaces 21 and 22 on the upper surface of the slide valve 94. Regardless of the situation, it is always located in a position that communicates with the compression chamber after suction is closed. In the above embodiment, the pressurized lubricating oil supplied through the lubricating oil supply passage 58 in the casing 7 is transferred to the recovery passage 4 within the oil sump oil supply groove 49a and the slide valve 94.
The lubricating oil overflows from the oil sump oil supply groove 49b through a passage 81' communicating with the oil supply grooves 7 and 48, lubricates the sliding surface with the lubricating oil that permeates the sliding surface, and flows into the collection groove 70. As a result, the pressure acting on the lower surface of the slide valve becomes closer to the suction pressure (atmospheric pressure), and the compression pressure in the working space creates a force that presses the slide valve downward to reliably prevent the slide valve from floating. Furthermore, the lubricating oil supplied from the lubricating oil supply passage 58 is transferred to the oil sump oil groove 49a and this oil sump oil groove 49a.
An oil sump oil supply groove 49b that communicates with the oil sump through a passage 81'.
It passes through the recovery passages 47, 48 penetrating the inside of the slide valve through the opening 78 or 79 provided in the opening 78 or 79 provided in the
The oil is injected and supplied to the compression chamber after suction closure, which is formed in the working space 8 by the two screw rotors 9 and 10 that rotate in mesh with each other above the slide valve 94 through the casing 7. After each function of cooling and sealing is achieved, it is discharged together with the compressed gas to the discharge port 30 via the discharge port 29 shown in FIG. 3. On the other hand, the lubricating oil collected in the series of collection grooves 70 is transferred from a collection recess 76 provided in communication with the grooves 70 to a collection passage 56 penetrating inside the slide valve 94 after the suction of the working space 8 is closed. The cooling effect and sealing effect of the compression chamber can be improved after the suction of the working space 8 is closed. The overall operation of the oil-cooled screw compressor is the same as that described above in the technical background section, so a description thereof will be omitted.

【効 果】【effect】

叙上のように本考案は、ケーシング内の二つの
筒状孔の重合する下方位置で作動空間壁の一部を
形成するようロータ軸に平行にケーシング下部に
設けられ、底面の軸線方向で吸入側端面より吐出
側端面の近傍に至り穿設された案内溝を介して摺
動自在に配設され、作動空間の締め切り位置を変
化して圧縮気体容量を調整する摺動弁ケーシング
との摺動面に、該摺動面の吐出側端面近傍で円周
方向の略全長に至り設けた油溝の両端を該摺動面
の軸線方向両側縁近傍に沿つて吸入側端面近傍に
延設し、ついで、この吸入側端面近傍で円周方向
に曲折形成し、さらに、前記案内溝の両側縁近傍
に沿つて延設して、前記吐出側端面近傍の円周方
向の略全長に至り設けた油溝に連結して一連に形
成すると共に、この回収溝を摺動弁内を貫通する
通路を介して常にケーシング内の吸入締め切り後
の圧縮室へ連通すると共に、前記回収溝と交叉し
ない位置に、ケーシングの加圧された潤滑油供給
通路に連通する摺動面の軸線方向に細長の油溜給
油溝を設け、且つ該油溜給油溝を摺動弁内を貫通
する通路を介して常に吸入締め切り後の圧縮室に
連通するよう設けると共に前記案内溝の両側縁
と、該両側縁の近傍に沿つて設けた油溝間に、そ
れぞれ一端が吸入側端面に突き抜け、他端が前記
吐出側端面近傍の円周方向の略全長に至り設けた
油溝の近傍に位置する逃げ溝を形成したから、摺
動面の吐出側端面も、回収溝の一部となつてお
り、摺動面を潤滑する加圧された油により、摺動
弁が浮き上がることがなく、摺動弁の上部とスク
リユロータ外周との接触を確実に防止することが
できると共に、摺動弁の摺動面を潤滑した後の回
収油を吸入締め切り後の圧縮室に回収することが
でき吸入体積効率の低下をなくし、動力消費を軽
減し、圧縮機の効率を向上せしめることができ
る。また、前記案内溝の両側縁と、該両側縁の近
傍に沿つて設けた油溝間に、それぞれ一端が吸入
側端面に突き抜け、他端が前記吐出側端面近傍の
円周方向の略全長に至り設けた油溝の近傍に位置
する逃げ溝を形成したから、摺動弁の吸入側端面
において該摺動弁下面に作用する圧力を従来以上
に緩和せしめ、摺動弁の浮き上がりを阻止するこ
とができる。これにより、摺動弁上部とスクリユ
ロータ外周とが前記吸入側端面において部分接触
する虞れを解消することが可能である。
As mentioned above, the present invention is provided in the lower part of the casing parallel to the rotor axis so as to form a part of the working space wall at the lower position where the two cylindrical holes in the casing overlap, and the suction is drawn in the axial direction of the bottom surface. Sliding with the sliding valve casing, which is slidably disposed through a guide groove drilled from the side end face to the vicinity of the discharge end face, and adjusts the compressed gas capacity by changing the closing position of the working space. Both ends of an oil groove are provided in the surface near the discharge side end face of the sliding face and extend to the vicinity of the suction side end face along the vicinity of both axially opposite edges of the sliding face, Next, the oil is bent in the circumferential direction near the suction side end face, and further extended along the vicinity of both side edges of the guide groove to reach approximately the entire length in the circumferential direction near the discharge side end face. The recovery groove is connected to the groove and formed in series, and the recovery groove is always communicated with the compression chamber after suction is closed in the casing via a passage passing through the inside of the sliding valve, and at a position that does not intersect with the recovery groove. An elongated oil sump oil supply groove is provided in the axial direction of the sliding surface that communicates with the pressurized lubricant supply passage of the casing, and the oil sump oil supply groove is always closed to suction via a passage that penetrates inside the slide valve. An oil groove is provided so as to communicate with the rear compression chamber, and between both side edges of the guide groove and an oil groove provided along the vicinity of the both side edges, one end of which penetrates into the suction side end face, and the other end of which is located near the discharge side end face. Since the escape groove is formed near the oil groove that extends approximately the entire length in the circumferential direction, the discharge side end face of the sliding surface also becomes part of the recovery groove, and lubricates the sliding surface. The pressurized oil prevents the sliding valve from floating up, making it possible to reliably prevent contact between the upper part of the sliding valve and the outer periphery of the screw rotor, and also to prevent recovery after the sliding surface of the sliding valve has been lubricated. The oil can be recovered into the compression chamber after suction is closed, thereby eliminating a drop in suction volumetric efficiency, reducing power consumption, and improving compressor efficiency. Further, between the both side edges of the guide groove and the oil groove provided along the vicinity of the both side edges, one end penetrates into the suction side end face, and the other end extends approximately the entire length in the circumferential direction near the discharge side end face. Since the relief groove is formed near the oil groove, the pressure acting on the lower surface of the slide valve at the suction side end face of the slide valve is more relaxed than before, and the slide valve is prevented from floating. I can do it. Thereby, it is possible to eliminate the possibility that the upper part of the slide valve and the outer periphery of the screw rotor will partially contact each other at the suction side end surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の摺動弁付油冷式スクリユ圧縮機
の横断面図で第3図−線断面図、第2図は第
1図の−線平面断面図、第3図は第1図の
−線縦断面図、第4図は従来の摺動弁24の摺
動面の展開図、第5図は第6図の摺動弁54の摺
動面の展開図、第6図は第5図−線断面図
で、共に従来例にかかるものである。第7図及び
第8図は本考案の実施例を示すもので、第7図は
第8図に示す摺動弁の摺動面の展開図、第8図は
第7図の−線断面図である。 1,2……中空円筒、5,6……筒状孔、7…
…ケーシング、8……作動空間、9……オスロー
タ、10……メスロータ、23……下部内壁、2
5……吸入口、26……吐出口、47,48……
回収通路、49a,b……油溜給油溝、56……
回収通路、57,58……潤滑油供給通路、70
……回収溝、71〜75,74′,75′……油
溝、80,83……噴射通路、91,92……逃
げ溝、94……摺動弁。
Fig. 1 is a cross-sectional view of a conventional oil-cooled screw compressor with a sliding valve, Fig. 3 is a sectional view taken along the - line, Fig. 2 is a plan sectional view taken along the - line of Fig. 1, and Fig. 3 is a cross-sectional view taken along the - line of Fig. 1. 4 is a developed view of the sliding surface of the conventional sliding valve 24, FIG. 5 is a developed view of the sliding surface of the sliding valve 54 of FIG. 6, and FIG. FIG. 5 is a sectional view taken along the line, both of which are related to the conventional example. 7 and 8 show an embodiment of the present invention, FIG. 7 is a developed view of the sliding surface of the sliding valve shown in FIG. 8, and FIG. 8 is a sectional view taken along the line -- in FIG. 7. It is. 1, 2...Hollow cylinder, 5, 6... Cylindrical hole, 7...
...Casing, 8... Working space, 9... Male rotor, 10... Female rotor, 23... Lower inner wall, 2
5... Suction port, 26... Discharge port, 47, 48...
Recovery passageway, 49a, b...oil sump oil supply groove, 56...
Recovery passageway, 57, 58... Lubricating oil supply passageway, 70
... Recovery groove, 71 to 75, 74', 75' ... Oil groove, 80, 83 ... Injection passage, 91, 92 ... Relief groove, 94 ... Sliding valve.

Claims (1)

【実用新案登録請求の範囲】 平行に配置した2つの中空円筒のそれぞれの軸
直角断面に形成される円形の一部分で互いに重合
する筒状孔を形成した作動空間を、一端に吸入口
を、他端に吐出口を有するケーシング内に形成
し、前記筒状孔内で互いに噛合回転する二つのス
クリユロータを配し、且つ前記ケーシング内の二
つの筒状孔の重合する下方位置で作動空間壁の一
部を形成するようロータ軸に平行にケーシング下
部に設けられ、底面の軸線方向で吸入側端面より
吐出側端面の近傍に至り穿設された案内溝を介し
て摺動自在に配設され、作動空間の締め切り位置
を変化して圧縮気体容量を調整する摺動弁を有す
る油冷式スクリユ圧縮機において、 前記摺動弁のケーシングとの摺動面に、該摺動
面の吐出側端面近傍で円周方向の略全長に至り設
けた油溝の両端を該摺動面の軸線方向両側縁近傍
に沿つて吸入側端面近傍に延設し、ついで、この
吸入側端面近傍で円周方向に曲折形成し、さら
に、前記案内溝の両側縁近傍に沿つて延設して、
前記吐出側端面近傍の円周方向の略全長に至り設
けた油溝に連結して一連の回収溝を形成すると共
に、この回収溝を摺動弁内を貫通する回収通路を
介して常にケーシング内の吸入締め切り後の圧縮
室へ連通すると共に、前記回収溝と交叉しない位
置に、ケーシングの加圧された潤滑油供給通路に
連通する摺動面の軸線方向に細長の油溜給油溝を
設け、且つ該油溜給油溝を摺動弁内を貫通する回
収通路を介して常に吸入締め切り後の圧縮室に連
通するよう設けると共に前記案内溝の両側縁と、
該両側縁の近傍に沿つて設けた油溝間に、それぞ
れ一端が吸入側端面に突き抜け、他端が前記吐出
側端面近傍の円周方向の略全長に至り設けた油溝
の近傍に位置する逃げ溝を形成したことを特徴と
する油冷式スクリユ圧縮機の摺動弁構造。
[Claims for Utility Model Registration] A working space is formed by forming a cylindrical hole that overlaps with each other in a circular part formed in a cross section perpendicular to the axis of each of two hollow cylinders arranged in parallel, with an inlet at one end and an inlet at the other end. Two screw rotors are formed in a casing having a discharge port at an end and rotate in mesh with each other in the cylindrical hole, and a part of the working space wall is disposed at a lower position where the two cylindrical holes overlap in the casing. It is provided in the lower part of the casing parallel to the rotor axis so as to form a section, and is slidably disposed through a guide groove bored from the suction side end face to the vicinity of the discharge side end face in the axial direction of the bottom surface. In an oil-cooled screw compressor having a sliding valve that adjusts the compressed gas capacity by changing the closing position of the space, on the sliding surface of the sliding valve with the casing, near the discharge side end surface of the sliding surface. Both ends of the oil groove, which is provided almost the entire length in the circumferential direction, are extended along the vicinity of both axial edges of the sliding surface to the vicinity of the suction side end face, and then bent in the circumferential direction near the suction side end face. and further extending near both side edges of the guide groove,
A series of recovery grooves are formed by connecting to the oil groove extending approximately the entire length in the circumferential direction near the discharge side end face, and this recovery groove is constantly connected to the inside of the casing via a recovery passage passing through the inside of the slide valve. An elongated oil sump oil supply groove is provided in the axial direction of the sliding surface that communicates with the pressurized lubricating oil supply passage of the casing at a position that communicates with the compression chamber after suction is closed and does not intersect with the recovery groove, The oil reservoir oil supply groove is provided so as to always communicate with the compression chamber after suction is closed via a recovery passage passing through the inside of the slide valve, and both side edges of the guide groove,
The oil grooves are located between the oil grooves provided along the vicinity of both side edges, with one end penetrating through the suction side end face and the other end extending approximately the entire length in the circumferential direction near the discharge side end face. A sliding valve structure for an oil-cooled screw compressor characterized by the formation of relief grooves.
JP835383U 1983-01-26 1983-01-26 Sliding valve structure of oil-cooled screw compressor Granted JPS59115889U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP835383U JPS59115889U (en) 1983-01-26 1983-01-26 Sliding valve structure of oil-cooled screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP835383U JPS59115889U (en) 1983-01-26 1983-01-26 Sliding valve structure of oil-cooled screw compressor

Publications (2)

Publication Number Publication Date
JPS59115889U JPS59115889U (en) 1984-08-04
JPS6240151Y2 true JPS6240151Y2 (en) 1987-10-14

Family

ID=30139842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP835383U Granted JPS59115889U (en) 1983-01-26 1983-01-26 Sliding valve structure of oil-cooled screw compressor

Country Status (1)

Country Link
JP (1) JPS59115889U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7141918B2 (en) * 2018-11-08 2022-09-26 株式会社日立産機システム Feed screw compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596392A (en) * 1979-01-18 1980-07-22 Hokuetsu Kogyo Co Ltd Sealing device for sliding valve in oil cooling type screw compressor
JPS57195889A (en) * 1981-05-26 1982-12-01 Hokuetsu Kogyo Co Ltd Screw compressor provided with slide valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596392A (en) * 1979-01-18 1980-07-22 Hokuetsu Kogyo Co Ltd Sealing device for sliding valve in oil cooling type screw compressor
JPS57195889A (en) * 1981-05-26 1982-12-01 Hokuetsu Kogyo Co Ltd Screw compressor provided with slide valve

Also Published As

Publication number Publication date
JPS59115889U (en) 1984-08-04

Similar Documents

Publication Publication Date Title
JPS62101895A (en) Rotary compressor with blade slot pressure groove
JP3731068B2 (en) Rotary compressor
JP2561093B2 (en) Vane type compressor
JP2963888B2 (en) Rotary compressor with discharge chamber pressure relief groove
CN210152898U (en) Rotary compressor with groove for oil supply
JPH0140237B2 (en)
US5577903A (en) Rotary compressor
JPS6240151Y2 (en)
JP2004052675A (en) Gas compressor
JPS6215514Y2 (en)
CN219733637U (en) Bearing for compressor, compressor and temperature regulating system
CN218816988U (en) Rotating shaft assembly for compressor, compressor and temperature adjusting system
CN218816987U (en) Cylinder, compressor and temperature regulation system
JPH027272Y2 (en)
JPH0346236Y2 (en)
JPH0579481A (en) Rotary compressor
CN218235484U (en) Sliding vane for compressor, compressor and temperature adjusting system
JPS638868Y2 (en)
CN218118046U (en) Bearing for compressor, compressor and temperature adjusting system
JPS5836194B2 (en) vane compressor
CN116906328B (en) Integral type swing rotor formula pump body subassembly
CN218816975U (en) Compressor pump body and compressor
JP2769177B2 (en) Rotary compressor
JPH08159071A (en) Rotary compressor
JPS6123392B2 (en)