JPS6240149A - Ion source for mass analysis device - Google Patents

Ion source for mass analysis device

Info

Publication number
JPS6240149A
JPS6240149A JP60180343A JP18034385A JPS6240149A JP S6240149 A JPS6240149 A JP S6240149A JP 60180343 A JP60180343 A JP 60180343A JP 18034385 A JP18034385 A JP 18034385A JP S6240149 A JPS6240149 A JP S6240149A
Authority
JP
Japan
Prior art keywords
ion source
liquid
chamber
mesh
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60180343A
Other languages
Japanese (ja)
Inventor
Norio Mizuno
水野 悳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP60180343A priority Critical patent/JPS6240149A/en
Publication of JPS6240149A publication Critical patent/JPS6240149A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To provide an ion source having a high sensitivity and capable of generating a large amount of sample ions, by ejecting a sample liquid from a nozzle in a low pressure chamber so as to cling to a porous member and permeate it to a high-vacuum-degree ion source chamber, and irradiating a primary particle ray upon the liquid on the chamber to ionize the liquid. CONSTITUTION:As the jet J of an outgoing liquid spurting from a nozzle 8 proceed toward a mesh 5 and clings thereto, the relatively easily evaporable solvent constituent of the outgoing liquid is evaporated first so that the concentration of a sample constituent is heightened. The concentration is more heightened if the temperature of the mesh 5 is raised beforehand. The liquid, the concentration of the sample constituent of which is thus heightened, is moved to an ion source chamber 1 through the mesh 5 by the pressure difference between a low pressure chamber 3 and the ion source chamber. The liquid having reached the surface of the mesh 5 on the ion source chamber 1 is irradiated with an argon atom beam A so that the liquid is ionized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は一次粒子線を試料に照射し、その衝撃で試料を
イオン化する方式の買足分析装置用イオン源に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ion source for a bulk analyzer that irradiates a sample with a primary particle beam and ionizes the sample by the impact of the beam.

[従来技術] 近時、高速度を与えた中性粒子ビーム又はイオンビーム
を試料にあて、その衝撃で試料をイオン化する方式のイ
オン源が注目されている。このイオン源は、高い質量の
試料をイオン化できるという特徴を持つ。
[Prior Art] Recently, an ion source that uses a method in which a high-velocity neutral particle beam or ion beam is applied to a sample and ionizes the sample by the impact has been attracting attention. This ion source has the characteristic of being able to ionize samples with high mass.

上記方式のイオン源では、通常、試料をターゲットに塗
りつけてイオン源内へ導入しているが、液体クロマトグ
ラフからの流出液を連続的にイオン化するような場合に
は、このような導入方法は採用できない。そこで、その
ような場合、特開昭58−119148号のようにベル
トに流出液を展開付着させてイオン源内に導入する方式
や、特開昭60−44号のように流出液を霧化器を通し
て分子線状試料として噴出し、この分子線状試料をスキ
マーを介して高真空のイオン化室5内に配置したターゲ
ットの表面に付着させる方式が提案されている。
In the ion source of the above method, the sample is usually introduced into the ion source by smearing it on the target, but this method of introduction is used when the effluent from a liquid chromatograph is continuously ionized. Can not. Therefore, in such a case, there is a method of spreading the effluent onto a belt and introducing it into the ion source as in JP-A-58-119148, or a method of atomizing the effluent as in JP-A-60-44. A method has been proposed in which a molecular linear sample is ejected through a skimmer and the molecular linear sample is attached to the surface of a target placed in a high vacuum ionization chamber 5 via a skimmer.

[発明が解決しようとする問題点] ところが、特開昭58−119148号の方式では、イ
オン源内の真空を維持しながらベルトを導入する機構に
難点があるし、ベルトの汚染の問題もある。
[Problems to be Solved by the Invention] However, the method disclosed in JP-A-58-119148 has drawbacks in its mechanism for introducing the belt while maintaining a vacuum within the ion source, and there is also the problem of contamination of the belt.

又、特開昭60−44号の方式では、霧化器から噴出し
た試料を極めて小さな径しか与えられていないスキマー
を介してイオン化室内へ導入しなければならないため、
霧化器から極めて細く先に行っても広がらない状態で(
分子線状で)、シかも方向性良く試料を噴出させなけれ
ばならない。
Furthermore, in the method of JP-A-60-44, the sample ejected from the atomizer must be introduced into the ionization chamber through a skimmer that has an extremely small diameter.
Even if you go from the atomizer to a very thin tip, it will not spread (
(in the form of molecular lines), the sample must be ejected in good direction.

そのような霧化器を作ることは極めて困難であるし、仮
にできたとしてもスキマーを介してターゲットに導入で
きる試料量は極めて少なく、高い感度を実現することは
困難である。
It is extremely difficult to create such an atomizer, and even if it were possible, the amount of sample that can be introduced into the target via the skimmer is extremely small, making it difficult to achieve high sensitivity.

本発明は上述した問題点に鑑みてなされたものであり、
これらの問題点を除くことのできる質量分析装置用イオ
ン源を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems, and
It is an object of the present invention to provide an ion source for a mass spectrometer that can eliminate these problems.

[問題点を解決するための手段] この目的を達成するため、本発明は、内部が高真空に保
たれるイオン源室と、該イオン源室内に配置され内部が
低真空に保たれる低圧室と、該低圧室とイオン源室との
間に設けられる多孔部材と、前記低圧室内に配置され上
記多孔部材に向けて試料液を噴出するノズルと、前記高
真空のイオン源室内に配置され前記多孔部材へ向けて一
次粒子線を照射するための粒子線発生部とを備えたこと
を特徴としている。
[Means for Solving the Problems] To achieve this object, the present invention provides an ion source chamber whose interior is kept at a high vacuum, and a low-pressure chamber which is placed inside the ion source chamber and whose interior is kept at a low vacuum. a porous member provided between the low pressure chamber and the ion source chamber; a nozzle disposed within the low pressure chamber for ejecting a sample liquid toward the porous member; and a nozzle disposed within the high vacuum ion source chamber. A particle beam generating section for irradiating a primary particle beam toward the porous member is characterized.

[作用] 低圧室内でノズルから噴出した試料液は多孔部材に付着
する。この多孔部材を通って高真空のイオン源室側に滲
み出て来た試料液は一次粒子線の照射を受けてイオン化
される。
[Operation] The sample liquid ejected from the nozzle in the low pressure chamber adheres to the porous member. The sample liquid that has seeped out into the high-vacuum ion source chamber through this porous member is ionized by irradiation with the primary particle beam.

以下、図面を用いて本発明の一実施例を詳説する。Hereinafter, one embodiment of the present invention will be explained in detail using the drawings.

[実施例] 第1図は本発明を実施したイオン源の一例を示す概略図
である。図において1はイオン源室で、その内部は油拡
散ポンプ2により例えば104〜10’Torr程度の
高真空に保たれている。3はイオン源室1内に配置され
る低圧室で、その内部は油回転ポンプ4により1〜10
−’Torr程度の低真空に保たれている。5はイオン
源室1と低圧室3を連通ずる孔に両者を仕切るようなか
たちで嵌め込まれる全屈メツシュ、6はこのメツシュを
周囲と絶縁するための碍子、7はメツシュに適宜なりベ
ラ電圧を印加するための電源である。
[Example] FIG. 1 is a schematic diagram showing an example of an ion source implementing the present invention. In the figure, reference numeral 1 denotes an ion source chamber, the interior of which is maintained at a high vacuum of, for example, about 10@4 to 10' Torr by an oil diffusion pump 2. 3 is a low pressure chamber arranged in the ion source chamber 1, and the interior thereof is operated by an oil rotary pump 4 to
- It is maintained at a low vacuum of about Torr. 5 is a fully bent mesh that is fitted into a hole that communicates the ion source chamber 1 and the low pressure chamber 3 to partition them, 6 is an insulator for insulating this mesh from the surroundings, and 7 is an appropriate voltage applied to the mesh. This is a power source for applying voltage.

8は前記低圧室3内に配置されるノズルで、液体クロマ
トグラフ9からの流出液がスプリッタ10を介して供給
され、この流出液は前記メツシュ5へ向けてジェットJ
として噴出する。
8 is a nozzle arranged in the low pressure chamber 3, to which the effluent from the liquid chromatograph 9 is supplied via the splitter 10, and this effluent is directed to the mesh 5 by the jet J.
erupts as.

11は高真空のイオン源室内に配置された粒子ビーム発
生器で、発生する一次粒子線例えば高速のアルゴン原子
ビームAは、前記メツシュ5のイオン源室側表面に照射
される。12はアルゴン原子ビームA照射によりメツシ
ュ表面から発生した試料イオンIを引出し、図示しない
質量分析部へ向けて集束させる集束電極である。
Reference numeral 11 denotes a particle beam generator disposed in a high vacuum ion source chamber, and a generated primary particle beam, such as a high-speed argon atomic beam A, is irradiated onto the surface of the mesh 5 on the ion source chamber side. Reference numeral 12 denotes a focusing electrode that extracts sample ions I generated from the mesh surface by irradiation with the argon atomic beam A and focuses them toward a mass spectrometer (not shown).

上述の如き構成において、微小径が与えられたノズル8
から噴出する流出液のジェットJはメツシュ5に向けて
飛行し、付着する。この過程で、流出液に含まれる比較
的蒸発し易い溶媒成分が先に蒸発するため、試料成分の
濃度が高められる。
In the configuration as described above, the nozzle 8 given a minute diameter
A jet J of effluent ejected from the mesh 5 flies toward the mesh 5 and adheres thereto. In this process, the solvent components contained in the effluent that are relatively easy to evaporate evaporate first, so that the concentration of the sample components is increased.

又、メツシュ5の温度を高めておけば、メツシュに付着
した後も流出液からは溶媒成分が蒸発し、試料成分の濃
度が更に高められる。蒸発した溶媒成分は、油回転ポン
プ4によって排気される。
Furthermore, if the temperature of the mesh 5 is raised, the solvent component will evaporate from the effluent even after adhering to the mesh, and the concentration of the sample component will be further increased. The evaporated solvent components are exhausted by the oil rotary pump 4.

このようにして相対的に試料成分の濃度が高められた流
出液は、低圧室3とイオン源室1との間の圧力差により
メツシュを通ってイオン源室側へ移動する。そして、メ
ツシュのイオン源室側表面に到着した流出液は、アルゴ
ン原子ビームAの照射を受けてイオン化される。生成さ
れた試料イオンIはメツシュに印加されているリベラ電
圧によりすみやかにメツシュ表面から離れ、集束電極1
2を介して質量分析部へ導入される。
The effluent, in which the concentration of sample components is relatively increased in this manner, moves through the mesh toward the ion source chamber due to the pressure difference between the low pressure chamber 3 and the ion source chamber 1. The effluent that has arrived at the surface of the mesh on the ion source chamber side is ionized by irradiation with the argon atomic beam A. The generated sample ions I quickly leave the mesh surface due to the liberating voltage applied to the mesh, and the focusing electrode 1
2 to the mass spectrometer.

尚、上記実施例では低圧室とイオン源室を仕切る部材と
してメツシュを用いたが、メツシュに限らず、多孔性で
低圧室とイオン源室との間の圧力差により流出液が低圧
室からイオン源室側へ滲み出るような部材であれば使用
できる。
In the above example, a mesh was used as a member to partition the low-pressure chamber and the ion source chamber, but the mesh is not limited to the mesh. Due to the porous nature of the material, the outflow liquid is separated from the low-pressure chamber by ions due to the pressure difference between the low-pressure chamber and the ion source chamber. Any material that leaks into the source chamber can be used.

又、イオン化の際、グリセリン等のマトリクスを試料成
分と共に存在させることが望ましい。そのためには、予
め液体クロマトグラフの溶媒中にグリセリンを混入して
おくか、液体クロマトグラフから出て来た流出液にグリ
セリンを混入するようにすれば良い。
Further, during ionization, it is desirable that a matrix such as glycerin be present together with the sample components. For this purpose, glycerin may be mixed in advance into the solvent of the liquid chromatograph, or glycerin may be mixed into the effluent coming out of the liquid chromatograph.

あるいは、第2図に示すようにノズル13を付は加え、
このノズル13からグリセリン(適宜な溶媒に溶かして
)のジェットをメツシュ5へ向けて噴出し、メツシュ5
の上でノズル8から送られて来る流出液と混合するよう
にしても良い。
Alternatively, as shown in FIG. 2, a nozzle 13 is added,
A jet of glycerin (dissolved in an appropriate solvent) is ejected from this nozzle 13 toward the mesh 5.
It may also be mixed with the effluent sent from the nozzle 8 above the effluent.

尚、得られる試料イオンを増し感度を高めるためには、
ノズル8からメツシュ5に付着させる流出液の量を増加
させれば良いが、そうすると低圧室内で気化する溶媒の
凶も増加するため、低圧室を排気する油回転ポンプの数
を増加したりして排気能力を向上させる必要があること
は言うまでもない。
In addition, in order to increase the number of sample ions obtained and increase the sensitivity,
It would be better to increase the amount of effluent that adheres to the mesh 5 from the nozzle 8, but this will increase the amount of solvent vaporized in the low pressure chamber, so the number of oil rotary pumps used to exhaust the low pressure chamber may be increased. Needless to say, it is necessary to improve the exhaust capacity.

[発明の効果] 以上詳述した如く、本発明によれば、ベルト方式のよう
なM点がないし、ノズルが低圧室内に配置されるためス
キマーが不要で、スキマーを通過させることに伴う萌述
した問題点が解消されるため、多量の試料イオンを作成
でき感度的にすぐれたイオン源を実現できる。
[Effects of the Invention] As described in detail above, according to the present invention, there is no M point unlike the belt method, there is no need for a skimmer because the nozzle is placed in a low pressure chamber, and there is no need for a skimmer to pass through the skimmer. Since the above problems are solved, a large amount of sample ions can be created and an ion source with excellent sensitivity can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施したイオン源の一例を示す概略図
、第2図は本発明の他の実施例を示す要部側略図である
。 1:イオン源室  2:油拡散ポンプ 3:低圧室    4:油回転ポンプ 5:金属メツシュ 6:碍子 7:電源     8:ノズル 9:液体クロマトグラフ 11:粒子ビーム発生器 口
FIG. 1 is a schematic view showing an example of an ion source embodying the present invention, and FIG. 2 is a schematic side view of a main part showing another embodiment of the present invention. 1: Ion source chamber 2: Oil diffusion pump 3: Low pressure chamber 4: Oil rotary pump 5: Metal mesh 6: Insulator 7: Power supply 8: Nozzle 9: Liquid chromatograph 11: Particle beam generator port

Claims (3)

【特許請求の範囲】[Claims] (1)内部が高真空に保たれるイオン源室と、該イオン
源室内に配置され内部が低真空に保たれる低圧室と、該
低圧室とイオン源室との間に設けられる多孔部材と、前
記低圧室内に配置され上記多孔部材に向けて試料液を噴
出するノズルと、前記高真空のイオン源室内に配置され
前記多孔部材へ向けて一次粒子線を照射するための粒子
線発生部とを備えたことを特徴とする質量分析装置用イ
オン源。
(1) An ion source chamber whose interior is maintained at a high vacuum, a low pressure chamber located within the ion source chamber whose interior is maintained at a low vacuum, and a porous member provided between the low pressure chamber and the ion source chamber. a nozzle arranged in the low-pressure chamber to eject a sample liquid toward the porous member; and a particle beam generator arranged in the high-vacuum ion source chamber to irradiate a primary particle beam toward the porous member. An ion source for a mass spectrometer, comprising:
(2)前記多孔部材を周囲と絶縁すると共に、所望の電
圧を印加できるようにしたことを特徴とする特許請求の
範囲第1項記載の質量分析装置用イオン源。
(2) The ion source for a mass spectrometer according to claim 1, wherein the porous member is insulated from the surroundings and a desired voltage can be applied thereto.
(3)前記多孔部材は金属メッシュで形成される特許請
求の範囲第2項記載の質量分析装置用イオン源。
(3) The ion source for a mass spectrometer according to claim 2, wherein the porous member is formed of a metal mesh.
JP60180343A 1985-08-16 1985-08-16 Ion source for mass analysis device Pending JPS6240149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60180343A JPS6240149A (en) 1985-08-16 1985-08-16 Ion source for mass analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60180343A JPS6240149A (en) 1985-08-16 1985-08-16 Ion source for mass analysis device

Publications (1)

Publication Number Publication Date
JPS6240149A true JPS6240149A (en) 1987-02-21

Family

ID=16081562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60180343A Pending JPS6240149A (en) 1985-08-16 1985-08-16 Ion source for mass analysis device

Country Status (1)

Country Link
JP (1) JPS6240149A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252244A (en) * 1987-03-06 1988-10-19 ウオーターズ・インヴエストメンツ・リミテツド Method and device for introducing effluent to mass spectrophotometer and other gaseous phase or particle detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252244A (en) * 1987-03-06 1988-10-19 ウオーターズ・インヴエストメンツ・リミテツド Method and device for introducing effluent to mass spectrophotometer and other gaseous phase or particle detector

Similar Documents

Publication Publication Date Title
US7723678B2 (en) Method and apparatus for surface desorption ionization by charged particles
US9412574B2 (en) Parallel elemental and molecular mass spectrometry analysis with laser ablation sampling
US7525105B2 (en) Laser desorption—electrospray ion (ESI) source for mass spectrometers
DE19652021B4 (en) Ion source and ionization process
US8704170B2 (en) Method and apparatus for generating and analyzing ions
US20150357173A1 (en) Laser ablation atmospheric pressure ionization mass spectrometry
JP2569570B2 (en) Solid chromatography mass spectrometry
DE19637480C2 (en) Device for mass spectrometric analysis of surfaces
JPS6240149A (en) Ion source for mass analysis device
EP0308680A1 (en) Cathode sputtering apparatus
DE102021105327B3 (en) Desorption ion source with post-desorption ionization in transmission geometry
JPS6235255A (en) Liquid chromatograph mass spectrometer
CN114068288A (en) Desorption ion source with dopant gas assisted ionization
JPS6044A (en) Secondary ionized mass spectrometer
JPH0437542B2 (en)
JP2000106127A (en) Atmospheric pressure ion source
US20060038122A1 (en) Ion source with adjustable ion source pressure combining ESI-, FI-, FD-, LIFDI- and MALDI-elements as well as hybrid intermediates between ionization techniques for mass spectrometry and/or electron paramagnetic resonance spectrometry
JPS63168958A (en) Ion source for mass spectrometer
JP2975899B2 (en) Sample surface treatment equipment using ion gun
RU2174676C1 (en) Method of analysis of solid bodies with use of ion source of glow discharge with hollow cathode
RU2135633C1 (en) Method of vacuum deposition of thin films
JPS6324538A (en) Ion source for mass spectrometer
DE19655304B4 (en) Electro-spray ion source for ionisation of esp. high molecular weight thermally labile samples for mass spectrometry - has particle generator disposed w.r.t. extraction chamber entrance orifice such that most particles in generated stream have velocity whose component parallel to linear deflected trajectory is smaller than perpendicular component
JP2023549819A (en) Interface between liquid chromatography, ionization device, and mass spectrometer and sample analysis method using the same
RU2071138C1 (en) Field-effect ion source