JPS6240082B2 - - Google Patents
Info
- Publication number
- JPS6240082B2 JPS6240082B2 JP56049140A JP4914081A JPS6240082B2 JP S6240082 B2 JPS6240082 B2 JP S6240082B2 JP 56049140 A JP56049140 A JP 56049140A JP 4914081 A JP4914081 A JP 4914081A JP S6240082 B2 JPS6240082 B2 JP S6240082B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- plate
- pass
- angle
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005096 rolling process Methods 0.000 claims description 83
- 238000000034 method Methods 0.000 claims description 16
- 238000005259 measurement Methods 0.000 claims description 2
- 230000007547 defect Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Description
この発明は、厚板圧延における成品板平面形状
不良を是正する方法に関する。
周知の如く、厚板圧延は、通常リバース圧延で
行なわれ、スラブから板厚を圧下してゆき所定の
成品厚に仕上げるものであるが、この厚板圧延で
は、仕上平面形状が第1図の実線に示す如く菱
形、平行四辺形のような形状を呈することがあ
る。このような形状不良(以下、直角度不良とい
う)が、成品歩留り低下の大きな原因となること
は云う迄もない。
本発明は、厚板圧延におけるこの仕上形状不良
を可及的にならしめる圧延方法を提供しようとす
るものである。
本発明者らの実験の結果、上記形状不良発生の
主原因は、入側における圧延材のガイド不良によ
つて不可避的に発生する斜め噛み込みにあること
が確認された。このような斜め噛込みの生ずる原
因の1つとして以下の点が挙げられる。厚板圧延
では、圧延材をロールに噛み込ませる場合、第2
図に示す如く圧延材1を予め圧延材の最大巾に合
わせてセツトしたサイドガイド2,2によつて案
内しながらロール3に向かつて移動させるのだ
が、この際サイドガイド2,2によつて案内され
る圧延材の両側縁は、圧延中直線状には維持され
ずとくに巾出しパスで巾出しパス時の先後端部す
なわち仕上パス時の側縁部が次第に凸状に変化し
てゆくのが通例である。このため上記サイドガイ
ド2,2による圧延材1の案内が不確実となり、
その結果斜め噛み込みが生じることとなるもので
ある。
ところで、このような斜め圧延によつて圧延前
後の板形状変化が影響を受けるのは、一般的にも
広く知られるところであり、従来より圧延噛込み
角の変更で上記直角不良等の形状不良を修正する
ことは、実際にも試みられてきた。従来、圧延噛
込み角と圧延前後の形状変化の関係については、
僅かに、先に噛み込んだ側のコーナーが圧延後鋭
角方向へ変化するといつた程度の定性的なことの
み認知されていたに過ぎず、形状不良修正のため
の圧延噛込み角の設定も、従来はオペレータの経
験的な、いわば勘に基づく判断に頼つているのが
実状で、安定した効果は望むべくもなかつた。し
たがつてもし、圧延噛込み角と圧延前後の形状変
化の間の定量的な関係を見い出すことができたな
らば、その活用により、形状不良の発生防止上大
なる効果が期待できる。
本発明者は、上記両者間の定量的な関係を解き
明かすべく、幾何的検討を推し進めた結果、実際
とよく適合する後述の関係式(J)を得ることに成功
した。以下にその解析手法を示す。
まず、解析に当り、前提条件として第3図に示
す如く、
圧延前および圧延後の平面形状は、4本の直
線(a),(b),(c),(d)と(a′),(b′),(c′),
(d′)
でそれぞれ囲まれた四辺形とする。
圧延ロールでは巾拡がりを無視しすべて圧延
方向に伸ばされるものとする、とおく。
同図において、実線で示す平面形状の圧延材
が、一方の側縁辺(d)がロール軸に垂直な線(f)に対
しトツプ側の鈍角コーナー部1aが先に噛み込ま
れる方向にθ〓だけ傾斜する方向で圧延され、圧
延後破線で示す平面形状に移行すると想定する
と、
ΔθF=θ3−θ1 ……(A)
tanθ3=W1/L3 ……(B)
tanθ〓=W1/L2 ……(C)
但し、ΔθF:圧延後のトツプ側鈍角コーナー
部のコーナー角の直角に対する偏差
値、つまり直角不良度
θ1:圧延後の前縁辺(a′)のロール軸に対
する角
θ3:圧延後の側縁辺(d′)とロールに垂直
の線(f)のなす角
L2:圧延前の側縁辺(d)の圧延直角方向への
投影長さ
L3:圧延後の同上長さ
W1:圧延前または圧延後の側縁辺(d′)の
圧延方向への投影長さ
ここに、θ3,θ〓を微小として、(B),(C)より
W1を消去すると、
θ3≒L2/L3・θ〓 ……(D)
が成り立つ。また、
tanθ1=L1/W2 ……(E)
tanθ2=L0/W2 ……(F)
ただし、θ2:圧延前の前縁辺(a)のロール軸に
対する角
L0:同上辺の圧延直角方向への投影長さ
L1:圧延後の前縁辺(a′)の圧延直角方向へ
の投影長さ
で、θ1,θ2を微小と考えると、
θ1≒L1/L0・θ2=L1/L0・(θ〓−Δ
θP)……
(G)
ここで、ΔθP:圧延前のトツプ側鈍角コーナ
ー部1aの直角不良度
となる。上記(D)と(G)の関係式を冒頭の(A)に代入す
る。
また、
L1/L0=L3/L2=H0/H1 ……(H)
ここに、H0:圧延前板厚
H1:圧延後板厚
上記の関係を用いると、
ΔθF=H0/H1・ΔθP−(H0/H1−H1/
H0)・θ〓……(I)
となる。従つて、ΔθF=0とするためには、
この関係は、要するに圧延後の直角不良度Δθ
Fを0とするθ〓とΔθPの関係を示すものであ
る。この関係は、符号についてもそのままの形
で、ポトム側の鈍角コーナー1C及び他の2つの
コーナーにも適用できる。
以上の解析の妥当性を証明する実験例として
は、次のようなものがある。
〔実験例〕
(1) スラブ
下記,の寸法の鉛ミニチユアスラブ
20mm厚×150mm巾×200mm長
10mm厚×150mm巾×200mm長
(2) 使用圧延機
ワークロール:105mm直径×400mm胴長、バツク
アツプロール:330mm直径×400mm胴長の小型4段
圧延機。
(3) 圧延パススケジユール
The present invention relates to a method for correcting defects in the planar shape of a finished plate during thick plate rolling. As is well known, thick plate rolling is usually performed by reverse rolling, in which the thickness of the plate is reduced from the slab and finished to a predetermined thickness. As shown by the solid line, it may take on a rhombic or parallelogram-like shape. It goes without saying that such a shape defect (hereinafter referred to as a perpendicularity defect) is a major cause of a decrease in product yield. The present invention aims to provide a rolling method that minimizes this defective finished shape during thick plate rolling. As a result of experiments conducted by the present inventors, it has been confirmed that the main cause of the above-mentioned shape defects is oblique jamming that inevitably occurs due to poor guidance of the rolled material on the entry side. One of the causes of such diagonal jamming is as follows. In thick plate rolling, when the rolled material is bitten by the rolls, the second
As shown in the figure, the rolled material 1 is moved toward the roll 3 while being guided by the side guides 2, 2, which have been set in advance to match the maximum width of the rolled material. The edges on both sides of the rolled material being guided are not maintained in a straight line during rolling, but in particular, the leading and trailing edges during the width-out pass, that is, the side edges during the finishing pass, gradually change into a convex shape. is customary. For this reason, the guidance of the rolled material 1 by the side guides 2, 2 becomes uncertain,
As a result, diagonal jamming occurs. By the way, it is widely known that the shape change of the plate before and after rolling is affected by such oblique rolling, and it has been conventionally known that shape defects such as the above-mentioned perpendicularity defects can be corrected by changing the rolling bite angle. Attempts have actually been made to correct this. Conventionally, regarding the relationship between rolling bite angle and shape change before and after rolling,
Only a few qualitative facts were recognized, such as that the corner on the side that was bitten first changed to an acute angle after rolling, and the setting of the rolling bite angle to correct shape defects was also difficult. In the past, the actual situation was that operators relied on their experiential, so to speak, intuition-based judgments, and stable results could not be expected. Therefore, if a quantitative relationship between the rolling bite angle and the change in shape before and after rolling can be found, its utilization can be expected to be highly effective in preventing the occurrence of shape defects. The present inventor carried out geometric studies in order to elucidate the quantitative relationship between the two, and as a result, succeeded in obtaining a relational expression (J) described below that is well suited to reality. The analysis method is shown below. First, as a prerequisite for the analysis, as shown in Figure 3, the planar shape before and after rolling is formed by four straight lines (a), (b), (c), (d) and (a'). , (b′), (c′),
(d′)
Let each be a quadrilateral surrounded by . For rolling rolls, width expansion is ignored and it is assumed that all rolls are stretched in the rolling direction. In the same figure, a flat rolled material shown by a solid line has one side edge (d) facing a line (f) perpendicular to the roll axis in the direction in which the obtuse corner portion 1a on the top side is bitten first. Δθ F =θ 3 −θ 1 ...(A) tanθ 3 =W 1 /L 3 ...(B) tanθ〓= W 1 /L 2 ...(C) However, Δθ F : Deviation value from the right angle of the corner angle of the top side obtuse corner after rolling, that is, the degree of perpendicularity θ 1 : Roll of the leading edge (a') after rolling Angle with respect to the axis θ 3 : Angle between the side edge (d') after rolling and a line (f) perpendicular to the roll L 2 : Projected length of the side edge (d) before rolling in the direction perpendicular to rolling L 3 : Same length after rolling W 1 : Projected length of the side edge (d') in the rolling direction before or after rolling Here, assuming θ 3 and θ〓 to be minute, from (B) and (C)
When W 1 is eliminated, θ 3 ≒L 2 /L 3・θ〓 ...(D) holds true. Also, tanθ 1 =L 1 /W 2 ...(E) tanθ 2 =L 0 /W 2 ...(F) However, θ 2 : Angle of front edge (a) before rolling with respect to the roll axis L 0 : Same as above Projected length of the side in the direction perpendicular to the rolling direction L 1 : Projected length of the leading edge side (a') after rolling in the direction perpendicular to the rolling direction. Considering θ 1 and θ 2 to be minute, θ 1 ≒ L 1 / L 0・θ 2 =L 1 /L 0・(θ〓−Δ
θ P )... (G) Here, Δθ P is the degree of perpendicularity of the top side obtuse corner portion 1a before rolling. Substitute the relational expressions of (D) and (G) above into (A) at the beginning. Also, L 1 /L 0 =L 3 /L 2 =H 0 /H 1 ...(H) where, H 0 : Thickness before rolling H 1 : Thickness after rolling Using the above relationship, Δθ F =H 0 /H 1・Δθ P −(H 0 /H 1 −H 1 /
H 0 )・θ〓...(I). Therefore, in order to set Δθ F =0, In short, this relationship is based on the degree of perpendicularity Δθ after rolling.
This shows the relationship between θ〓 and Δθ P where F is 0. This relationship can also be applied to the obtuse corner 1C on the bottom side and the other two corners, with the same sign. Examples of experiments that prove the validity of the above analysis include the following. [Experiment example] (1) Slab Miniature lead slab with the following dimensions: 20 mm thick x 150 mm wide x 200 mm long 10 mm thick x 150 mm wide x 200 mm long (2) Rolling machine used Work roll: 105 mm diameter x 400 mm body length, back-up roll : A small 4-high rolling mill with a diameter of 330mm and a length of 400mm. (3) Rolling pass schedule
【表】【table】
【表】
θ〓の正、負の符号については、第4図に示す
方向への傾斜を正とおいた。
パス方向:A,Bとは、第5図の如くスラブ長
手方向に互いに逆の方向を云う。
上記,およびの条件で、圧延を行なつ
た。この際、各パス終了後に板平面四隅の直角不
良度を実測した。実測に当り、第6図に示す手法
を用いた。すなわち、圧延後板形状は実際には同
図のように各辺が端部で曲線状になつたので、こ
のとき、四隅の曲線部は無視して4辺の中央部に
沿つて直線を描き、それらの直線で囲まれるとこ
ろを板平面形状と想定して直角不良度を測定する
方法によつた。また、直角不良度の符号は鈍角の
場合に正、鋭角の場合は負と定義した。
他方、前記(1)式を用いて、前掲の圧延パススケ
ジユール及び各パス圧延前の実測直角不良度(Δ
θP)から、各パス圧延終了毎の板平面四隅コー
ナー部の直角不良度(ΔθF)を予想した。トツ
プ側、ボトム側(ここに云うトツプ、ボトムと
は、当該パスにおいて先に噛込む側をトツプ、そ
の反対側をボトムとした。)のそれぞれ2つのコ
ーナーにおけるパス前の実測直角不良度から、そ
の絶対値の平均を出し、これに、トツプ側では圧
延方向に向かつて右のコーナー、ボトム側では同
じく左のコーナーのそれぞれの直角不良度の値の
もつ符号を与え、これらをそれぞれトツプ側、ボ
トム側の直角不良度として代表させ、これを各々
()式に代入して、圧延後のトツプ・ボトムに
おける直角不良度を求めた。
この計算予測値と対応させるため、前記各パス
終了毎に実測した平面4隅の直角不良度を基に、
上記の圧延パス前直角不良度を求めたのと同じ手
法で、トツプ側、ボトム側のそれぞれ2つの値を
まとめた。算出値と実測値を比較して第7図に示
した。同図中、白記号は各パスの圧延トツプ側、
黒記号は各パスの圧延ボトム側で、記号の形はス
ラブNo.を示しており、△:No.1、□:No.2、◇:
No.3、〇:No.4を各々表わしている。
同図においては、45゜に引いた直線上に記号が
乗れば、計算予測値と実測値が一致していること
を示すが、同図から両者の値は可成りの精度でよ
く一致することが判る。すなわち(1)式の妥当性が
確められた。
したがつて、圧延後の直角不良度ΔθFを0と
なすθ〓とΔθPの関係を示す(J)式が、実用上十
分通用するものであると云える。この(l)式を用い
る前提に立てば、圧延途中において板平面形状の
実測値を基に、予定圧延スケジユールをつかつて
圧延後の直角不良を解消するに必要な進入角θ〓
を予測的に逆算できるということになる。
すなわち、本発明は、厚板の圧延において、圧
延途中の板平面4隅の全部または一部について直
角不良度ΔθPを実測し、この実測値に基いて下
式によりθ〓を算出し、板を水平面内で正規の圧
延方向に対し鈍角コーナー部が先に噛込まれる方
向に前記θ〓だけ傾けて圧延することを特徴とす
る厚板圧延における板平面形状制御方法、
ここで、H0:当該圧延パス入側板厚
H1:圧延スケジユールによる当該圧延パ
ス出側予想板厚
ΔΘP:1/m・Σ|ΔθP|
m:ΔθPの実測数(m=1〜4)
Σ|ΔθP|:m個の実測値ΔθPの絶対値の和
を要旨とする。前記“正規の圧延方向”として
は、厳密には、板両側縁辺の中心線の方向がロー
ル軸と直角をなす方向であるが、実際には板両側
縁辺の何れか一辺をロール軸と直角となす方向と
規定しても効果上実質的な差はみられない。Δθ
Pの実測は、無論、板平面4隅全部について行う
のが好ましいが、その一部だけを対象にしても、
さほど大差のない結果が得られるものである。
本発明の制御方法の一具体的実施例を、第8図
のブロツク図を参照に説明すれば、次のとおりで
ある。
まず、圧延の特定パスについて、入側におい
て例えばテレビカメラ4を利用した画像処理装
置5等によつて板平面4隅のコーナー角を実測
する。この際、同時に板の長さ(L)と板巾(W)
も測定しておく。
次に、演算機6では、上記コーナー角の出力
値を受けて、各対応する直角不良度の絶対値|
ΔθP|を算出してその平均(ΔΘP)を出し、
更にプロセス計算機7から、そこに予め圧延ス
ケジユールに基いてセツトしておいた当該圧延
前板厚H0と同じく圧延後板厚H1の値を受けて
前記(K)式にてθ〓を求め、また同時にこのθ〓
を進入角としたときに必要なサイドガイド巾(B)
を下式により算出する。(第8図参照)
B=L・sinθ〓+W・cos(θ〓−ΔΘP)
……(L)
なお、第8図は、鋼板が平行四辺形の場合を
示している。
上記演算機による算出値(θ〓)と(B)を、次
いで制御装置8に入力し、この制御装置8から
駆動装置9及び10に指令信号を送り、この信
号に基いて一方の駆動装置9によりサイドガイ
ド2,2の開度を調節して上記算出値に一致さ
せるとともに、他方の駆動装置10では圧延板
の乗つたターンテーブル11により圧延板を正
規の圧延姿勢に対しθ〓だけ鈍角コーナーから
噛込まれる方向に傾むけ、この状態で圧延板を
前記サイドガイド2,2に案内させながら送
り、圧延を実施する。
かかる傾斜圧延の実施段階としては、とくに
限定するものではない。しかしながら、仕上げ
パスの後半では圧延板の長さが長くなつて上記
サイドガイド巾(B)の算出値が設備の最大値を越
えてしまうようなこともあり、こうした事態を
避ける意味から巾出しパス乃至は仕上げパスの
前半が適当と云える。云う迄もないが、本発明
方法に基く圧延は、その実施回数の多い方が板
平面形状の修正上、有効である。なお、本発明
の方法は、厚板圧延の他に、例えば熱間粗圧延
への適用では、クロツプ形状の改善に効果があ
る。
以上、詳細に説明したとおり本発明の方法によ
れば、厚板圧延における成品板の平面コーナーの
直角不良発生をきわめて効果的に解消することが
可能であり、厚板圧延における成品歩留りの著し
い改善が達成される。[Table] Regarding the positive and negative signs of θ〓, the slope in the direction shown in FIG. 4 is assumed to be positive. Pass directions: A and B refer to mutually opposite directions in the longitudinal direction of the slab, as shown in FIG. Rolling was carried out under the above conditions. At this time, the degree of perpendicularity of the four corners of the plate plane was actually measured after each pass. For actual measurements, the method shown in FIG. 6 was used. In other words, after rolling, each side of the sheet shape was actually curved at the end as shown in the same figure, so at this time, draw a straight line along the center of the four sides, ignoring the curved parts at the four corners. , a method was adopted in which the degree of perpendicularity was measured by assuming that the area surrounded by these straight lines was the planar shape of the plate. In addition, the sign of the degree of perpendicularity was defined as positive in the case of an obtuse angle and negative in the case of an acute angle. On the other hand, using the above formula (1), the above rolling pass schedule and the measured perpendicularity defect (Δ
From θ P ), the degree of perpendicularity (Δθ F ) of the four corners of the plate plane at the end of each rolling pass was predicted. From the measured squareness defects before the pass at each of the two corners on the top side and the bottom side (here, the top and bottom refer to the side that bites first in the pass as the top and the opposite side as the bottom), Calculate the average of the absolute values, give the sign of the squareness value of the right corner in the rolling direction on the top side, and the left corner on the bottom side, and calculate these values for the top side, the left corner, and the bottom side. This was represented as the degree of right angle defect on the bottom side, and this was substituted into each equation () to determine the degree of right angle defect at the top and bottom after rolling. In order to correspond to this calculated predicted value, based on the degree of perpendicularity of the four corners of the plane actually measured at the end of each pass,
Two values each for the top side and the bottom side were compiled using the same method used to determine the degree of perpendicularity before the rolling pass described above. Figure 7 shows a comparison between the calculated values and the measured values. In the figure, white symbols indicate the rolling top side of each pass,
The black symbols are on the rolling bottom side of each pass, and the shape of the symbol indicates the slab number, △: No.1, □: No.2, ◇:
No. 3, 〇: Represents No. 4, respectively. In the same figure, if a symbol lies on a straight line drawn at 45°, it indicates that the calculated predicted value and the actual measured value match, but from the same figure it can be seen that the two values agree well with a fair degree of accuracy. I understand. In other words, the validity of equation (1) was confirmed. Therefore, it can be said that Equation (J), which represents the relationship between θ〓 and Δθ P , which makes the degree of perpendicularity Δθ F after rolling 0, is sufficiently applicable in practice. Based on the premise of using this formula (l), the approach angle θ required to eliminate the perpendicularity defect after rolling while maintaining the planned rolling schedule is calculated based on the actual value of the planar shape of the plate during rolling.
This means that it is possible to calculate backwards predictively. That is, in the rolling of a thick plate, the present invention actually measures the degree of perpendicularity Δθ P for all or part of the four corners of the plate plane during rolling, calculates θ〓 by the following formula based on this measured value, and A method for controlling the planar shape of a plate in thick plate rolling, characterized in that the plate is rolled in a horizontal plane with the obtuse corner portion tilted by the angle θ in the direction in which the obtuse corner portion is first bitten with respect to the normal rolling direction. Here, H 0 : Thickness at the entrance of the rolling pass H 1 : Expected thickness at the outlet of the rolling pass based on the rolling schedule ΔΘ P : 1/m・Σ | Δθ P | m: Actual number of Δθ P (m=1 to 4) Σ|Δθ P |: The gist is the sum of the absolute values of m actual measured values Δθ P. Strictly speaking, the above-mentioned "regular rolling direction" is a direction in which the center line of both side edges of the plate is perpendicular to the roll axis, but in reality, any one of the side edges of the plate is perpendicular to the roll axis. There is no substantial difference in effectiveness even if the direction is defined as . Δθ
Of course, it is preferable to measure P at all four corners of the plate plane, but even if you measure only a part of it,
The results obtained are not very different. A specific embodiment of the control method of the present invention will be described below with reference to the block diagram of FIG. First, for a specific pass of rolling, the corner angles of the four corners of the plate plane are actually measured on the entry side using, for example, an image processing device 5 using a television camera 4. At this time, the length (L) and width (W) of the board are determined at the same time.
Also measure. Next, the calculator 6 receives the output value of the corner angle and receives the absolute value of each corresponding degree of squareness |
Calculate Δθ P | and find the average (ΔΘ P ),
Furthermore, the value of the plate thickness H 1 after rolling is received from the process calculator 7, which is the same as the plate thickness H 0 before rolling, which has been set in advance based on the rolling schedule, and θ〓 is calculated using the above formula (K). , and at the same time this θ〓
Required side guide width (B) when approach angle is
is calculated using the formula below. (See Figure 8) B=L・sinθ〓+W・cos(θ〓− ΔΘP )
...(L) Note that Figure 8 shows the case where the steel plate is a parallelogram. The values (θ〓) and (B) calculated by the computer are then input to the control device 8, and the control device 8 sends command signals to the drive devices 9 and 10. Based on this signal, one of the drive devices 9 The opening degree of the side guides 2, 2 is adjusted to match the above calculated value, and the other drive device 10 uses the turntable 11 on which the rolled plate is placed to turn the rolled plate into an obtuse angle corner by θ〓 with respect to the normal rolling attitude. In this state, the rolling plate is fed while being guided by the side guides 2, 2, and rolling is performed. The implementation stage of such inclined rolling is not particularly limited. However, in the latter half of the finishing pass, the length of the rolled plate becomes longer and the calculated value of the side guide width (B) described above may exceed the maximum value of the equipment. Or, it can be said that the first half of the finishing pass is appropriate. Needless to say, the more times rolling is performed according to the method of the present invention, the more effective it is in correcting the planar shape of the plate. Note that the method of the present invention is effective in improving crop shape when applied to, for example, hot rough rolling in addition to thick plate rolling. As explained above in detail, according to the method of the present invention, it is possible to very effectively eliminate the occurrence of squareness defects in the planar corners of finished plates during thick plate rolling, and the product yield in thick plate rolling can be significantly improved. is achieved.
第1図は厚板圧延における成品平面形状不良発
生状況を示す平面図、第2図は通常の厚板圧延状
態を示す平面図、第3図は本発明に用いる関係式
の幾何解析を説明する説明図、第4図乃至第6図
は本発明方法の実施例を説明するための模式図
で、第4図は圧延時の進入角(θ〓)のとる方向
を、第5図は圧延方向を、第6図は直角度の測定
方法を、それぞれ示している。第7図は第3図で
得られた関係式による予想直角不良度と実測によ
る直角不良度との比較を示す図表、第8図は本発
明方法実施のための装置例を示すブロツク図、第
9図は本発明実施に当つてのサイドガイド巾(B)の
設定方法を説明する平面図である。
図中、1:圧延板、2:サイドガイド、3:圧
延ロール、4:テレビカメラ、5:画像処理装
置、6:演算機、7:プロセス計算機、8:制御
装置、9,10:駆動装置、11:ターンテーブ
ル。
Fig. 1 is a plan view showing the occurrence of defects in the planar shape of products during thick plate rolling, Fig. 2 is a plan view showing normal thick plate rolling conditions, and Fig. 3 explains the geometric analysis of the relational expression used in the present invention. The explanatory drawings, FIGS. 4 to 6 are schematic diagrams for explaining the embodiment of the method of the present invention. FIG. 4 shows the direction taken by the approach angle (θ〓) during rolling, and FIG. 5 shows the rolling direction. and FIG. 6 respectively show the method of measuring the squareness. FIG. 7 is a chart showing a comparison between the predicted perpendicularity according to the relational expression obtained in FIG. 3 and the actually measured perpendicularity; FIG. FIG. 9 is a plan view illustrating a method of setting the side guide width (B) in implementing the present invention. In the figure, 1: Rolled plate, 2: Side guide, 3: Roll roll, 4: Television camera, 5: Image processing device, 6: Arithmetic machine, 7: Process computer, 8: Control device, 9, 10: Drive device , 11: Turntable.
Claims (1)
全部または一部についてコーナー角の直角に対す
る偏差値(ΔθP)を実測し、この実測値に基い
て下式によりθ〓を算出し、板を正規の圧延方向
に対し鈍角コーナー部が先に噛込まれる方向に前
記θ〓だけ水平面内で傾けて圧延することを特徴
とする厚板圧延における板平面形状制御方法。 ここで、H0:当該圧延パス入測板厚 H1:圧延スケジユールによる当該圧
延パス出側予想板厚 ΔΘP:1/m・Σ|ΔθP| m:ΔθPの実測数 Σ|ΔθP|:m個の実測ΔθPの絶対値の和[Claims] 1. In rolling a thick plate, the deviation value (Δθ P ) of the corner angle with respect to the right angle is actually measured for all or part of the four corners of the plate plane during rolling, and based on this measured value, θ〓 is determined by the following formula. A method for controlling the planar shape of a plate in thick plate rolling, characterized in that the plate is tilted within a horizontal plane by θ〓 in a direction in which the obtuse corner portion is first bitten with respect to the normal rolling direction. Here, H 0 : Measured plate thickness at the entrance of the relevant rolling pass H 1 : Expected plate thickness at the exit side of the relevant rolling pass based on the rolling schedule ΔΘ P : 1/m・Σ | Δθ P | m: Actual measurement number of Δθ P Σ | Δθ P |: Sum of absolute values of m actually measured Δθ P
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56049140A JPS57165109A (en) | 1981-03-31 | 1981-03-31 | Controlling method of plane form in thick plate rolling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56049140A JPS57165109A (en) | 1981-03-31 | 1981-03-31 | Controlling method of plane form in thick plate rolling |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57165109A JPS57165109A (en) | 1982-10-12 |
JPS6240082B2 true JPS6240082B2 (en) | 1987-08-26 |
Family
ID=12822768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56049140A Granted JPS57165109A (en) | 1981-03-31 | 1981-03-31 | Controlling method of plane form in thick plate rolling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57165109A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106269859B (en) * | 2015-05-18 | 2018-09-04 | 宝山钢铁股份有限公司 | A kind of heavy plate rolling method |
-
1981
- 1981-03-31 JP JP56049140A patent/JPS57165109A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS57165109A (en) | 1982-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01249220A (en) | Strain straightening method | |
JPS6284829A (en) | Automatic straightening device for welding h shape steel | |
JPS6240082B2 (en) | ||
JP3332712B2 (en) | Planar shape control method and planar shape control device | |
JPH03169419A (en) | Method for controlling side guide of down coiler | |
JPH09192740A (en) | Controller for downward warpage straightening machine | |
TWI808914B (en) | Steel strip measurement method between mill inter-stands | |
JPS6393401A (en) | Cross rolling method | |
JPS59229201A (en) | Method for correcting squareness of rolling material | |
JPH07265953A (en) | Method and device for controlling position of guide in roll straightening machine for metal rod | |
JPH049207A (en) | Control method of bend and wedge of rolled stock in hot rough rolling and hot rough rolling equipment | |
JPS63104712A (en) | Finish rolling method for thick steel plate by reversible horizontal rolling mill | |
JPS6024725B2 (en) | Hot rolling mill strip width control method and device | |
JPH0910810A (en) | Method for controlling rolling force in temper rolling of steel strip | |
JPH0890333A (en) | Shearing method of metal belt | |
CN116993795A (en) | Detection method and device for camber of steel plate and electronic equipment | |
JPS6293018A (en) | Control method for rolling shape | |
JPH11226604A (en) | Straightening device for deformation of shape steel tip by rolling mill | |
JPS59156515A (en) | Correcting method of flatness of thick steel plate | |
JPH01134204A (en) | Curvature detecting method for stock to be rolled | |
JPH02251302A (en) | Method for controlling forming of end parts of thick steel plate | |
JPS59183901A (en) | Rolling method in edging | |
JPH06142729A (en) | Plate crown controller for rolled stock | |
JPS59199103A (en) | Edger between stands | |
JPH01219507A (en) | Method for detecting flat shape of metallic plate |