JPS6239898B2 - - Google Patents
Info
- Publication number
- JPS6239898B2 JPS6239898B2 JP14688780A JP14688780A JPS6239898B2 JP S6239898 B2 JPS6239898 B2 JP S6239898B2 JP 14688780 A JP14688780 A JP 14688780A JP 14688780 A JP14688780 A JP 14688780A JP S6239898 B2 JPS6239898 B2 JP S6239898B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- pinhole
- plate member
- thin plate
- detection device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 42
- 238000005286 illumination Methods 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 description 18
- 239000010959 steel Substances 0.000 description 18
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
- G01N21/892—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
- G01N21/894—Pinholes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/89—Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
- G01N21/8901—Optical details; Scanning details
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Description
【発明の詳細な説明】 この発明はピンホール検出装置に関する。[Detailed description of the invention] This invention relates to a pinhole detection device.
一般に、薄板鋼板のような薄板部材の製造ライ
ンには走行中の薄板鋼板のピンホールを検出する
ピンホール検出装置が設けられている。このよう
なピンホール検出装置として例えば第1図に示す
ものがある。1は基台であり、この基台には図示
しないモーターに回転させられるラブストリツプ
2が回転自在に支持されている。ラブストリツプ
2に載置されている薄板鋼板3はラブストリツプ
2の回転によつて図中例えば紙面方向に移動させ
られる。また、基台1の上部には薄板鋼板3を照
射する照明部4が、下部つまり薄板鋼板3の下方
にはピンホールを検出する光電変換器を有した検
出部5が設けられている。そして、検出部5でピ
ンホール検出を確実にするため薄板鋼板3と隣接
するラブストリツプ2とともに暗室を形成するシ
ヤツター6が薄板鋼板3の両端部を包むように設
けられている。したがつて、このような従来のピ
ンホール検出装置ではシヤツター6に覆われた端
部が不感帯として存在することになる。そのた
め、従来この不感帯を解消すべく端部検査専用の
ピンホール検査装置を製造ラインに別途設けてい
た。また、端部のみを照射してピンホールを検出
するエツジピンホール検出器を従来のピンホール
検出装置に組込んで薄板鋼板全体を1つの装置で
検査できるピンホール検出装置が最近実用化され
ている。ところが、薄板鋼板3はラブストリツプ
2上を移動する際その幅方向にも移動する。した
がつて、端部を照射する投光部やピンホール検出
部は、端部のこの動きに追従する必要があるとこ
ろから投光部や検出部を含めて装置全体が一体と
して追従する構造となつていた。そのため、追従
機構が複雑となり装置全体が大形化し高価なもの
となるという問題点があつた。 Generally, a production line for thin plate members such as thin steel plates is equipped with a pinhole detection device that detects pinholes in the running thin steel plates. An example of such a pinhole detection device is shown in FIG. Reference numeral 1 denotes a base, and a love strip 2, which is rotated by a motor (not shown), is rotatably supported on this base. The thin steel plate 3 placed on the rub strip 2 is moved, for example, in the direction of the paper in the drawing by the rotation of the rub strip 2. Further, an illumination section 4 for illuminating the thin steel plate 3 is provided at the upper part of the base 1, and a detection section 5 having a photoelectric converter for detecting pinholes is provided at the lower part, that is, below the thin steel plate 3. In order to ensure pinhole detection by the detection unit 5, a shutter 6 is provided so as to surround both ends of the thin steel plate 3, forming a dark room together with the thin steel plate 3 and the adjacent love strip 2. Therefore, in such a conventional pinhole detection device, the end portion covered by the shutter 6 exists as a dead zone. Therefore, in order to eliminate this dead zone, a pinhole inspection device dedicated to edge inspection has conventionally been separately installed on the production line. In addition, a pinhole detection device that can inspect the entire thin steel plate with one device has recently been put into practical use by incorporating an edge pinhole detector that detects pinholes by irradiating only the edges into a conventional pinhole detection device. There is. However, when the thin steel plate 3 moves on the rub strip 2, it also moves in the width direction. Therefore, the light emitter and pinhole detector that illuminates the edge need to follow this movement of the edge, so the entire device including the light emitter and detector must follow this movement as one unit. I was getting used to it. Therefore, there was a problem that the following mechanism became complicated and the entire device became large and expensive.
この発明はこのような従来の問題点に着目して
なされたもので、光源と、この光源からの光線を
収束して薄板部材の端部に光点を結ばせこの光点
を走査させる光点走査ユニツトと、この端部に対
向配置され、光点走査ユニツトの出力光線を端部
の方向に反射させる反射ミラー及び端部のピンホ
ールを通過した光線を検知して電気信号に変換す
る光電変換器とを有して端部の動きに追従する検
出ヘツドを従来のピンホール検出装置に設けるこ
とによつて上述の問題点を解決することを目的と
している。 This invention was made by focusing on such conventional problems, and includes a light source, a light point that converges the light rays from the light source, connects the light point to the end of a thin plate member, and scans this light point. A scanning unit, a reflecting mirror that is placed opposite to this end and reflects the output beam of the light spot scanning unit toward the end, and a photoelectric conversion that detects the light that has passed through the pinhole at the end and converts it into an electrical signal. It is an object of the present invention to solve the above-mentioned problems by providing a conventional pinhole detection device with a detection head that follows the movement of the end portion.
以下、この発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.
第2図、第3図および第4図はこの発明の一実
施例を示す図である。まず、構成を説明する。な
お、第1図と同一部分には同一符号を付してその
説明を省略する。11はレーザ光源、12は光点
走査ユニツトであり、このレーザ光源11と光点
走査ユニツト12とは対向して基台1に取り付け
られている。光点走査ユニツト12はピエゾ光学
効果結晶体とコリメータとを内蔵し、これらによ
つてレーザ光線を揺動収束させるものである。1
3は遮光板であり、この遮光板13には、第3図
に詳示するように、スリツト14,15が設けら
れている。17は薄板鋼板3端部のエツジ、18
は、光点走査ユニツト12でレーザ光線16が走
査される走査範囲である。スリツト14は走査範
囲18でカバーできず、かつ、遮光板13に覆わ
れた薄板鋼板の端部を照明部4により照射させ不
感帯をなくするためのものである。なお、この遮
光板13は従来のシヤツター6と同一機能、すな
わち、暗室を形成するようになされている。第2
図に戻つて19は前記遮光板13を一体に構成し
た、検出ヘツドであり、この検出ヘツド19は反
射板20と検出部21とを有して歯車機構22に
より薄板鋼板3の幅方向に移動自在になされてい
る。第4図において、反射板20には反射ミラー
23が張り付けられている。また、検出部21に
はレンズ24、フイルター25、光電変換器26
およびコネクタ27が組み込まれている。第5図
および第6図にピンホール検出信号の処理回路の
構成例および各部の信号波形を示す。28は増幅
器であり、この増幅器28にはコネクタ27に出
力された検出部21の出力信号a,b,cが入力
される。aはピンホールが存在しない場合、bは
ピンホール(矢印)が存在する場合、およびcは
薄板鋼板の端部が幅方向に移動して端部のエツジ
と遮光板13との位置関係がΔtずれている場合
の出力波形を示している。そして、このずれΔ
t、つまり、端部の幅方向への動きを検出して追
従すべく検出ヘツド19は前述のように移動自在
になされている。検出部21からの出力信号aが
入力された増幅器28の出力は、弁別回路29と
微分回路30に入力される。弁別回路29の出力
eは一致回路32の一方の入力となり、微分回路
30の出力は遅延回路31に出力される。一致回
路32は遅延回路31の出力dを他方の入力とし
て、ピンホール検出信号fを出力している。 FIG. 2, FIG. 3, and FIG. 4 are diagrams showing an embodiment of the present invention. First, the configuration will be explained. Note that the same parts as in FIG. 1 are designated by the same reference numerals and their explanations will be omitted. 11 is a laser light source, and 12 is a light spot scanning unit. The laser light source 11 and the light spot scanning unit 12 are mounted on the base 1 facing each other. The light spot scanning unit 12 includes a piezo optical effect crystal and a collimator, and uses these to oscillate and converge the laser beam. 1
3 is a light-shielding plate, and this light-shielding plate 13 is provided with slits 14 and 15, as shown in detail in FIG. 17 is the edge of the third end of the thin steel plate, 18
is a scanning range over which the laser beam 16 is scanned by the light spot scanning unit 12. The slit 14 is provided to eliminate a dead zone by irradiating the edge of the thin steel plate that cannot be covered by the scanning range 18 and is covered by the light shielding plate 13 with the illumination unit 4. The light shielding plate 13 has the same function as the conventional shutter 6, that is, it forms a dark room. Second
Returning to the figure, reference numeral 19 denotes a detection head that is integrated with the light shielding plate 13, and this detection head 19 has a reflection plate 20 and a detection section 21, and is moved in the width direction of the thin steel plate 3 by a gear mechanism 22. It is done freely. In FIG. 4, a reflecting mirror 23 is attached to the reflecting plate 20. As shown in FIG. The detection unit 21 also includes a lens 24, a filter 25, and a photoelectric converter 26.
and a connector 27 are incorporated. FIGS. 5 and 6 show an example of the configuration of a pinhole detection signal processing circuit and signal waveforms of each part. 28 is an amplifier, and output signals a, b, and c of the detection section 21 outputted to the connector 27 are input to this amplifier 28. a is when there is no pinhole, b is when there is a pinhole (arrow), and c is when the edge of the thin steel plate moves in the width direction and the positional relationship between the edge of the edge and the light shielding plate 13 is Δt. It shows the output waveform when there is a deviation. And this deviation Δ
t, that is, the movement of the end in the width direction, the detection head 19 is movable as described above in order to detect and follow the movement of the end portion in the width direction. The output of the amplifier 28 to which the output signal a from the detection section 21 is input is input to the discrimination circuit 29 and the differentiation circuit 30. The output e of the discrimination circuit 29 becomes one input of the coincidence circuit 32, and the output of the differentiation circuit 30 is outputted to the delay circuit 31. The coincidence circuit 32 uses the output d of the delay circuit 31 as its other input, and outputs a pinhole detection signal f.
次に、作用を説明する。 Next, the effect will be explained.
光点走査ユニツト12で揺動収束させられたレ
ーザ光線16は反射ミラー23に反射されスリツ
ト15を通り端部表面に光点を結ばされる。この
光点はスリツト15に沿つてスリツト15の開口
側から閉止側に向つて移動し端部表面を走査させ
られる。そして、この走査スピードは光点走査ユ
ニツト12に内蔵されているピエゾ光学効果結晶
体に印加される超音波のエネルギーに依存す。し
たがつて、薄板鋼板3の移動速度に合せて走査ス
ピードを設定することができる。第6図におい
て、Tは光点が端部表面を走査している期間であ
り、この期間T内では通常検出部21にレーザ光
線16は伝達されない。ところが、この期間T内
で薄板鋼板3にピンホールがあると、波形bに示
すスパイク状の波形(矢印)が観測される。この
波形bが第5図に示す処理回路で処理され、ピン
ホール検出信号fが出力される。なお、第2図に
おいて、検出ヘツド35の反射ミラー37をハー
フミラーとする、あるいは、レーザ光線33、光
点走査ユニツト34、検出ヘツド35および遮光
板36を設ければ薄板鋼板3の両端を検査でき
る。さらに、第7図に示すように、光点走査ユニ
ツトの代わりに回転ミラー41、あるいは振動ミ
ラーなどを使用し、この回転ミラー41で走査さ
れたレーザ光を反射板43で端部方向へ反射させ
るようにしてもよい。42はレンズである。 The laser beam 16 oscillated and converged by the light spot scanning unit 12 is reflected by the reflecting mirror 23, passes through the slit 15, and forms a light spot on the end surface. This light spot moves along the slit 15 from the open side of the slit 15 to the closed side and scans the end surface. The scanning speed depends on the energy of the ultrasonic wave applied to the piezo optical effect crystal built in the light spot scanning unit 12. Therefore, the scanning speed can be set in accordance with the moving speed of the thin steel plate 3. In FIG. 6, T is a period during which the light spot scans the end surface, and the laser beam 16 is not normally transmitted to the detection section 21 within this period T. However, if there is a pinhole in the thin steel plate 3 within this period T, a spike-like waveform (arrow) shown in waveform b is observed. This waveform b is processed by the processing circuit shown in FIG. 5, and a pinhole detection signal f is output. In addition, in FIG. 2, if the reflection mirror 37 of the detection head 35 is a half mirror, or if a laser beam 33, a light spot scanning unit 34, a detection head 35, and a light shielding plate 36 are provided, both ends of the thin steel plate 3 can be inspected. can. Furthermore, as shown in FIG. 7, a rotating mirror 41 or a vibrating mirror is used instead of the light spot scanning unit, and the laser beam scanned by the rotating mirror 41 is reflected toward the end by a reflecting plate 43. You can do it like this. 42 is a lens.
次に、第6図cに示す(Δt)の利用方法を説
明する。まず、遮光板と端部のエツジとの相対的
な位置ずれ量(ΔW)を次式により求めることが
できる。 Next, a method of using (Δt) shown in FIG. 6c will be explained. First, the relative positional deviation amount (ΔW) between the light shielding plate and the edge of the end portion can be determined by the following equation.
ΔW=K・Δt/T ……(1)
ここで
K:常数(mm)、T:光点の走査周期(秒)
Δt:出力波形のずれ(秒)
次いで、この(ΔW)から薄板鋼板の全幅
(W)を次式により求める。 ΔW=K・Δt/T...(1) where K: constant (mm), T: scanning period of light spot (seconds) Δt: deviation of output waveform (seconds) Next, from this (ΔW), calculate the thickness of the thin steel plate. The total width (W) is determined by the following formula.
W=W0+(ΔW1+ΔW2) ……(2)
ここで
W0:遮光板の位置(mm)
ΔW1、ΔW2:(1)式より求まる位置ずれ量
そして、(1)式によつて端部の動きに追従する検
出ヘツドあるいは、遮光板の位置検出を行なうこ
とができる。 W = W 0 + (ΔW 1 + ΔW 2 ) ...(2) Here, W 0 : Position of the light shielding plate (mm) ΔW 1 , ΔW 2 : Amount of positional deviation determined from equation (1) Then, in equation (1) Therefore, it is possible to detect the position of the detection head or the light shielding plate that follows the movement of the end portion.
以上説明してきたように、この発明によれば、
ピンホール検出装置を複雑化、大型化させること
なく、あるいは端部検出用ピンホール検出装置を
別に設けることなく薄板部材の端部を含めた全幅
を同一環境下で簡単に検査することができる。 As explained above, according to this invention,
The entire width of the thin plate member including the end can be easily inspected under the same environment without complicating or increasing the size of the pinhole detection device or without separately providing a pinhole detection device for end detection.
第1図は従来のピンホール検出装置を示すその
一部断面図、第2図はこの発明に係るピンホール
検出装置の一実施例を示すその一部断面図、第3
図はこの発明に係るピンホール検出装置の遮光板
を示すその平面図、第4図はこの発明に係るピン
ホール検出装置の検出ヘツドを示すその一部断面
図、第5図はこの発明に係るピンホール検出装置
の信号処理回路のブロツク図、第6図は第5図の
信号処理回路のタイムチヤート、第7図はこの発
明のピンホール検出装置の他の実施例を示すその
一部断面図である。
3……薄板鋼板、4……照明部、5……検出
部、11……レーザ光源、12……光点走査ユニ
ツト、41……回転ミラー、23……反射ミラ
ー、26……光電変換器、19……検出ヘツド、
13……遮光板、15……スリツト。
FIG. 1 is a partial sectional view showing a conventional pinhole detection device, FIG. 2 is a partial sectional view showing an embodiment of the pinhole detection device according to the present invention, and FIG.
FIG. 4 is a plan view showing a light-shielding plate of a pinhole detection device according to the present invention, FIG. 4 is a partial cross-sectional view showing a detection head of the pinhole detection device according to the present invention, and FIG. A block diagram of the signal processing circuit of the pinhole detection device, FIG. 6 is a time chart of the signal processing circuit of FIG. 5, and FIG. 7 is a partial sectional view showing another embodiment of the pinhole detection device of the present invention. It is. 3... Thin steel plate, 4... Illumination section, 5... Detection section, 11... Laser light source, 12... Light spot scanning unit, 41... Rotating mirror, 23... Reflecting mirror, 26... Photoelectric converter , 19...detection head,
13... Light shielding plate, 15... Slit.
Claims (1)
の通路を挾んで対向配置されたピンホール検出部
とを備えたピンホール検出装置において、光源
と、この光源からの光線を揺動させるとともに収
束させて前記薄板部材の端部に光点を結ばせる光
点走査ユニツトと、前記薄板部材の端部に対向し
て配置され、この揺動収束させられた光線を端部
の方向に反射する反射ミラー及びこの反射ミラー
に前記薄板部材の端部を介して対向配置され、ピ
ンホールを通過した光線を検知して電気信号に変
換する光電変換器とを有し、前記薄板部材の端部
の動きに追従可能な検出へツドと、このヘツドに
取着され、このヘツドの反射ミラーからの光線を
通過させるスリツトを有する遮光板とを備えるよ
うにしたことを特徴とするピンホール検出装置。1. In a pinhole detection device that includes an illumination unit that illuminates a thin plate member and a pinhole detection unit that is disposed opposite to each other across a path of the thin plate member, a light source and a light beam from the light source are oscillated and converged. a light spot scanning unit that focuses a light spot on the end of the thin plate member; and a reflector that is disposed opposite to the end of the thin plate member and reflects the oscillating and converged light beam in the direction of the end. a mirror and a photoelectric converter that is arranged opposite to the reflecting mirror through the end of the thin plate member and detects the light beam passing through the pinhole and converts it into an electric signal, and controls the movement of the end of the thin plate member. 1. A pinhole detection device comprising: a detection head capable of following the detection head; and a light-shielding plate attached to the head and having a slit through which light from a reflection mirror of the head passes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14688780A JPS5770431A (en) | 1980-10-22 | 1980-10-22 | Pinhole detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14688780A JPS5770431A (en) | 1980-10-22 | 1980-10-22 | Pinhole detecting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5770431A JPS5770431A (en) | 1982-04-30 |
JPS6239898B2 true JPS6239898B2 (en) | 1987-08-25 |
Family
ID=15417816
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14688780A Granted JPS5770431A (en) | 1980-10-22 | 1980-10-22 | Pinhole detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5770431A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107023738A (en) * | 2017-04-10 | 2017-08-08 | 安徽江南春包装科技有限公司 | A kind of marble paper prints crack detection fixing device |
-
1980
- 1980-10-22 JP JP14688780A patent/JPS5770431A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5770431A (en) | 1982-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4813782A (en) | Method and apparatus for measuring the floating amount of the magnetic head | |
SE7514389L (en) | PROCEDURE FOR OPTO-ELECTRONIC POSITION SENSORING AND INSPECTION AND FOR THE PERFORMANCE OF THE PROCEDURE DEVICE | |
JPS5849819B2 (en) | Sousashiki Kensa Souchi | |
JPS6239898B2 (en) | ||
JPS57161813A (en) | Optical head driver | |
JPH0577228B2 (en) | ||
JPH09318603A (en) | Device for detecting defect by laser and ultrasonic wave | |
JPS6365885B2 (en) | ||
JPH0481654A (en) | Ultrasonic detector | |
RU1783300C (en) | Method and device for measuring belt thickness | |
JPH076753U (en) | Moisture measuring device for sheet-like objects | |
JPH0425611Y2 (en) | ||
JPS6132444Y2 (en) | ||
JPS635762U (en) | ||
JPH02134547A (en) | Foreign matter detector | |
FR2402185A1 (en) | METHOD OF GAUGING THE SURFACE OF A PROFILE | |
JP2529444B2 (en) | Ultrasonic probe | |
JPH10293010A (en) | Dimension measurement method and device using 2-beam optical scanning | |
JP2828563B2 (en) | Position detection device | |
JPS5842933Y2 (en) | Defect detection device | |
JPH04106515A (en) | Scanning exposing device | |
JPS6048104U (en) | Optical surface displacement detection device | |
JPS6276608U (en) | ||
JPS63159709U (en) | ||
JPH0720094A (en) | Ultrasonic oscillation measuring apparatus |