JPS6239600B2 - - Google Patents

Info

Publication number
JPS6239600B2
JPS6239600B2 JP2834780A JP2834780A JPS6239600B2 JP S6239600 B2 JPS6239600 B2 JP S6239600B2 JP 2834780 A JP2834780 A JP 2834780A JP 2834780 A JP2834780 A JP 2834780A JP S6239600 B2 JPS6239600 B2 JP S6239600B2
Authority
JP
Japan
Prior art keywords
polymer film
electrode plate
film
polarizing
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2834780A
Other languages
Japanese (ja)
Other versions
JPS56125200A (en
Inventor
Junichi Tamamura
Yoshuki Murakami
Akira Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIDENKI SEIZO KK
Original Assignee
HOSHIDENKI SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIDENKI SEIZO KK filed Critical HOSHIDENKI SEIZO KK
Priority to JP2834780A priority Critical patent/JPS56125200A/en
Publication of JPS56125200A publication Critical patent/JPS56125200A/en
Publication of JPS6239600B2 publication Critical patent/JPS6239600B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets

Description

【発明の詳細な説明】 この発明は静電容量の変化を利用して電気信号
を音響信号に変換し、又は音響信号を電気信号に
変換する電気―音響変換器に用いられるエレクト
レツト、即ち分極された高分子フイルムをもつ電
極板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electret, that is, a polarized This invention relates to an electrode plate having a polymer film.

電極板の一面にエレクトレツトを付けた電極板
エレクトレツトと振動板とを対向させ、これら間
に電気信号を印加することにより、その電気信号
に応じて振動板を振動させ、電気信号を音響信号
に変換する静電形スピーカが実用化されている。
また電極板エレクトレツトと振動板とを対向さ
せ、音響信号により振動板が振動され、その時の
電極板エレクトレツト及び振動板間の静電容量の
変化を利用して音響信号を電気信号に変換する静
電形マイクロホンも実用化されている。
By placing an electrode plate with an electret attached on one side of the electrode plate and a diaphragm facing each other and applying an electric signal between them, the diaphragm is vibrated in accordance with the electric signal, and the electric signal is converted into an acoustic signal. Electrostatic speakers that convert
In addition, the electrode plate electret and the diaphragm are placed opposite each other, and the diaphragm is vibrated by the acoustic signal, and the change in capacitance between the electrode plate electret and the diaphragm at that time is used to convert the acoustic signal into an electrical signal. Electrostatic microphones have also been put into practical use.

これら静電形電気―音響変換器に用いられる電
極板エレクトレツトを作るには、従来においては
例えば、分極された高分子フイルム、いわゆるエ
レクトレツトフイルムを接着剤により電極板に接
着していた。この方法によると接着剤がエレクト
レツトフイルムに悪影響を及ぼし、エレクトレツ
トの特性を劣化させると共に損失が多くなる欠点
があつた。またエレクトレツトフイルムを電極板
に均一に貼着させることが困難であり、機械的歪
が発生し易く、帯電を減少させ、寿命を低下させ
る。更にエレクトレツトフイルムを電極板に接着
する作業が煩雑であり、量産性が悪く、品質にば
らつきがある欠点もあつた。
In order to produce the electrode plate electrets used in these electrostatic electroacoustic transducers, conventionally, for example, a polarized polymer film, so-called electret film, was adhered to the electrode plate with an adhesive. This method has the disadvantage that the adhesive has an adverse effect on the electret film, deteriorating the properties of the electret and increasing loss. Furthermore, it is difficult to uniformly adhere the electret film to the electrode plate, and mechanical distortion is likely to occur, reducing charging and shortening the service life. Furthermore, the work of adhering the electret film to the electrode plate is complicated, making it difficult to mass-produce, and the quality varies.

一方、電極板に高分子フイルムをその融点近傍
で加熱溶着させ、その後、電極板上の高分子フイ
ルムをエレクトレツト化する方法も公知である。
この方法は高分子フイルムを電極板へ溶着する際
に加熱により高分子フイルムの厚味が不均一とな
り、この結果、物理的に不安定となり、寿命が短
かいものであつた。また高分子フイルムの融点近
傍まで加熱するため高温下で処理を行なう必要が
あり、作業性が悪かつた。
On the other hand, a method is also known in which a polymer film is heated and welded to an electrode plate near its melting point, and then the polymer film on the electrode plate is converted into an electret.
In this method, when the polymer film is welded to the electrode plate, the thickness of the polymer film becomes uneven due to heating, and as a result, it becomes physically unstable and has a short life. In addition, it was necessary to perform the treatment at high temperatures in order to heat the polymer film to near its melting point, resulting in poor workability.

この発明の目的は製造し易く、多量生産に適
し、しかも物理的に安定で寿命が長い電極エレク
トレツトを提供することにある。
An object of the present invention is to provide an electrode electret that is easy to manufacture, suitable for mass production, and that is physically stable and has a long life.

この発明によれば分極処理された分極用高分子
フイルムと電極板との間に介在用高分子フイルム
が介在されている。この介在用高分子フイルムは
分極用高分子フイルムの融点よりも融点が低く、
かつ厚味が分極用高分子フイルムのそれよりも小
さいものである。第1図及び第2図における孔3
4,56と対応した孔80が適当数貫通されてい
る。この電極板エレクトレツトを作るには、分極
用高分子フイルムを介在用高分子フイルムを介し
て導膜体、つまり電極板に熱溶着させる。その熱
溶着された分極用高分子フイルムに対対し分極を
行う。前記介在用高分子フイルムは分極用高分子
フイルムよりも融点が低く、前記熱溶着の温度は
介在用高分子フイルムの融点近傍で行われる。こ
のため比較的低温で熱溶着が行われ、作業性がよ
いものとなる。また分極用高分子フイルムの厚味
は前記熱溶着により変化せず、均一の厚味が保持
される。このため物理的に安定し、電気的にも優
れ長寿命のものが得られる。介在用高分子フイル
ムの厚さは分極用高分子フイルムの厚さよりも薄
いものを用いることが好ましい。また熱溶着は加
熱と加圧とを同時に行う。分極用高分子フイルム
に対し予め分極を行つた後に、その分極用高分子
フイルムを介在用高分子フイルムを介して電極板
に熱溶着してもよい。この場合もその熱溶着の温
度は分極用高分子フイルムの溶融温度より低くさ
れるため、分極用高分子フイルムの厚味が変化す
るおそれがなく、かつ分極の劣化も無視できる。
またこのように分極した高分子フイルムを介在用
高分子フイルムを介して電極板に熱溶着する場合
はその温度時間と、分極に対するエージングの温
度時間とがほゞ等しくなるため、分極に対するエ
ージングを前記熱溶着の際に行うことにより、全
体の処理時間を短縮できる。
According to this invention, the intervening polymer film is interposed between the polarized polymer film and the electrode plate. This intervening polymer film has a melting point lower than that of the polarizing polymer film,
Moreover, the thickness is smaller than that of the polarizing polymer film. Hole 3 in Figures 1 and 2
A suitable number of holes 80 corresponding to holes 4 and 56 are passed through. To make this electrode plate electret, a polarizing polymer film is thermally welded to a conductive film, that is, an electrode plate, via an intervening polymer film. The heat-welded polarizing polymer film is polarized. The intervening polymer film has a melting point lower than that of the polarizing polymer film, and the temperature of the thermal welding is performed near the melting point of the intervening polymer film. Therefore, thermal welding is performed at a relatively low temperature, resulting in good workability. Further, the thickness of the polarizing polymer film does not change due to the heat welding, and the thickness remains uniform. Therefore, it is physically stable, electrically superior, and has a long life. The thickness of the intervening polymer film is preferably thinner than the thickness of the polarizing polymer film. Furthermore, thermal welding involves heating and pressurizing at the same time. After polarizing the polymer film for polarization in advance, the polymer film for polarization may be thermally welded to the electrode plate via an intervening polymer film. In this case as well, the thermal welding temperature is lower than the melting temperature of the polarizing polymer film, so there is no fear that the thickness of the polarizing polymer film will change, and deterioration in polarization can be ignored.
In addition, when a polymer film polarized in this way is thermally welded to an electrode plate via an intervening polymer film, the temperature time and the temperature time of aging for polarization are approximately equal, so the aging for polarization is By performing this at the time of thermal welding, the overall processing time can be shortened.

この発明による電極板エレクトレツトの実施例
を説明する前に、電極板エレクトレツトを用いた
電気―音響変換器の例を説明する。第1図はヘツ
ドホンに用いられる電気―音響変換器の一例を示
し、円筒状ケース11の両端内周面に鍔12,1
3が一体に形成され、これら鍔12,13の内面
にそれぞれ接し、ケース11の両端開口を塞ぐよ
うに電極板エレクトレツト14,15が配され
る。電極板エレクトレツト14,15間に、これ
らと対向して振動板16が、それぞれリング状絶
縁材のスペーサ17,18を介して配される。振
動板16は例えば3〜6μ厚のポリエステル樹脂
のような高分子フイルム19の両面にアルミニウ
ムなどの金属の蒸着により導電層21,22が被
着されて構成される。導電層21,22とスペー
サ17,18との各間に金属リング23,24が
介在される。電極板エレクトレツト14,15は
それぞれ導電体、即ち電極板25,26と、これ
ら電極板25,26にそれぞれ取付けられたエレ
クトレツトフイルム27,28とよりそれぞれ成
り電極板25,26がそれぞれケース11の鍔1
2,13と対接される。
Before describing embodiments of the electrode plate electret according to the present invention, an example of an electro-acoustic transducer using the electrode plate electret will be explained. FIG. 1 shows an example of an electro-acoustic transducer used in a headphone.
3 are integrally formed, and electrode plates 14 and 15 are arranged so as to be in contact with the inner surfaces of these flanges 12 and 13, respectively, and to close the openings at both ends of the case 11. A diaphragm 16 is arranged between and opposite the electrode plates 14 and 15 with ring-shaped insulating spacers 17 and 18 interposed therebetween, respectively. The diaphragm 16 is constructed by depositing conductive layers 21 and 22 on both sides of a polymer film 19 such as a polyester resin having a thickness of 3 to 6 μm, for example, by vapor deposition of a metal such as aluminum. Metal rings 23 and 24 are interposed between the conductive layers 21 and 22 and the spacers 17 and 18, respectively. The electrode plates 14 and 15 each consist of a conductor, that is, an electrode plate 25 and 26, and an electret film 27 and 28 attached to these electrode plates 25 and 26, respectively. Tsuba 1
2 and 13.

なお、この発明の電極板エレクトレツト14,
15には介在用高分子フイルム31,32がそれ
ぞれエレクトレツトフイルム27,28と電極板
25,26との間に介在されている。電極板エレ
クトレツト14,15には放音孔33,34が貫
通形成されている。信号源35の電気信号がトラ
ンス36の一次側に与えられ、トランス36の2
次側の両端は電極板25,26にそれぞれ電気的
に接続され、中点が金属リング21,22に電気
的に接続される。この結果信号源35の電気信号
に応じて振動板16はプツシユプルに駆動されて
振動し、音響信号が得られる。なお振動板16の
導電層21,22の一方は省略してもよい。
Note that the electrode plate electret 14 of this invention,
Intervening polymer films 31 and 32 are interposed between the electret films 27 and 28 and the electrode plates 25 and 26, respectively. Sound emitting holes 33 and 34 are formed through the electrode plate electrets 14 and 15. The electrical signal from the signal source 35 is applied to the primary side of the transformer 36, and the
Both ends on the next side are electrically connected to electrode plates 25 and 26, respectively, and the middle point is electrically connected to metal rings 21 and 22. As a result, the diaphragm 16 is driven in a push-pull manner to vibrate in response to the electrical signal from the signal source 35, and an acoustic signal is obtained. Note that one of the conductive layers 21 and 22 of the diaphragm 16 may be omitted.

第2図は静電形マイクロホンの例を示し、円筒
状ケース41内にマイクロホンユニツト部42と
インピーダンス変換部43とが軸方向に配列して
設けられる。マイクロホンユニツト部42におい
てケース41と内接するように円筒状カプセル4
4がケース41内に収容され、カプセル44の前
方端板45には導音孔46があけられ、その導音
孔46は防塵用クロス47で塞さがれる。前方端
板45の内面に振動板48が近接対向して配され
る。振動板48は高分子フイルム49に金属の蒸
着により導電層51が被着されて構成され、その
導電層51側より金属リング52に張り付けら
れ、金属リング52が端板45の内面に対接され
る。振動板48に対し、リング状スペーサ53を
介して電極板エレクトレツト54が対向される。
電極板エレクトレツト54は電極保持部55に保
持される。電極保持部55は合成樹脂の有底円筒
体よりなり、その開放面に電極板エレクトレツト
54が保持され、内部は背室とされる。電極板エ
レクトレツト54には通気孔56が貫通形成され
ている。
FIG. 2 shows an example of an electrostatic microphone, in which a microphone unit section 42 and an impedance conversion section 43 are arranged in the axial direction within a cylindrical case 41. The cylindrical capsule 4 is inscribed in the case 41 in the microphone unit part 42.
4 is housed in a case 41, a sound guide hole 46 is formed in the front end plate 45 of the capsule 44, and the sound guide hole 46 is covered with a dustproof cloth 47. A diaphragm 48 is disposed on the inner surface of the front end plate 45 in close proximity to each other. The diaphragm 48 is composed of a polymer film 49 and a conductive layer 51 adhered to it by metal vapor deposition.The conductive layer 51 is attached to a metal ring 52 from the conductive layer 51 side, and the metal ring 52 is in contact with the inner surface of the end plate 45. Ru. An electrode plate electret 54 is opposed to the diaphragm 48 with a ring-shaped spacer 53 in between.
The electrode plate electret 54 is held by an electrode holding section 55. The electrode holding part 55 is made of a bottomed cylindrical body made of synthetic resin, and the electrode plate electret 54 is held on the open surface thereof, and the inside thereof is used as a back chamber. A ventilation hole 56 is formed through the electrode plate electret 54 .

電極板エレクトレツト54は電極板57とこれ
に取付けられたエレクトレツトフイルム58とよ
りなり、更にこの発明では電極板57とエレクト
レツトフイルム58との間には介在用高分子フイ
ルム59が介在されている。インピーダンス変換
部43においては筒体61がカプセル44の背後
においてケース41の内周面とほゞ接して配さ
れ、筒体61の背面に配線基板62が対接され
る。ケース41の両端部はカプセル44の前方端
板45の前面側と、配線基板62の背面側とにそ
れぞれ折曲げられてマイクロホンユニツト42及
びインピーダンス変換部43とが機械的に連結さ
れる。配線基板62には筒体61内においてイン
ピーダンス変換回路63が形成され、インピーダ
ンス変換回路63は電極保持部55の底板を通じ
て電極板エレクトレツトの電極板57に接続され
る。前方より導音孔46を通じて到来した音響信
号により振動板48が振動し、振動板48及び電
極板エレクトレツト54間の静電容量が変化し、
その電気信号がインピーダンス変換回路63によ
り低インピーダンス信号として出力される。
The electrode plate electret 54 consists of an electrode plate 57 and an electret film 58 attached thereto, and furthermore, in the present invention, an intervening polymer film 59 is interposed between the electrode plate 57 and the electret film 58. There is. In the impedance conversion unit 43, a cylinder 61 is arranged behind the capsule 44 and in almost contact with the inner peripheral surface of the case 41, and a wiring board 62 is placed in contact with the back surface of the cylinder 61. Both ends of the case 41 are bent to the front side of the front end plate 45 of the capsule 44 and the back side of the wiring board 62, respectively, so that the microphone unit 42 and the impedance conversion section 43 are mechanically connected. An impedance conversion circuit 63 is formed in the cylindrical body 61 of the wiring board 62, and the impedance conversion circuit 63 is connected to the electrode plate 57 of the electrode plate electret through the bottom plate of the electrode holding portion 55. The diaphragm 48 vibrates due to the acoustic signal coming from the front through the sound guide hole 46, and the capacitance between the diaphragm 48 and the electrode plate electret 54 changes.
The electrical signal is output as a low impedance signal by the impedance conversion circuit 63.

この発明は第1図及び第2図に示したような電
気―音響変換器に用いられる電極板エレクトレツ
ト14,15,54などであり、第3図に示すよ
うに導電体、即ち電極板71上に介在高分子フイ
ルム72を介して分極用高分子フイルム73が取
付けられている。
This invention relates to electrode plate electrets 14, 15, 54, etc. used in electro-acoustic transducers as shown in FIGS. 1 and 2, and as shown in FIG. A polarizing polymer film 73 is attached on top with an intervening polymer film 72 interposed therebetween.

分極用高分子フイルム73としては、4フツ化
エチレン―6フツ化プロピレン共重合フイルム
(FEP)、ポリカーボネートフイルム(PC)、ポリ
エチレンフイルム(PE)、ポリフツ化ビニリデン
フイルム(PVF2)、ポリプロピレンフイルム
(PP)などが使用される。これら高分子フイルム
の熱接着温度範囲はそれぞれ282〜371℃、204〜
221℃、121〜204℃、204〜218℃、140〜204℃で
ある。例えばヘツドホン用として用いる場合には
分極用高分子フイルム73として直径50〜60mm、
厚み75〜125μ程度に形成し、必要に応じて接着
性を向上させるために、その片面を金属ナトリウ
ムのナフタレン溶液で処理して比較的粗い面とす
るか、或いはアルミニウム、ニツケルなどをその
片面に金属蒸着するなど一般に用いられている手
法を用いることができる。
Examples of the polarizing polymer film 73 include tetrafluoroethylene-hexafluoropropylene copolymer film (FEP), polycarbonate film (PC), polyethylene film (PE), polyvinylidene fluoride film (PVF 2 ), and polypropylene film (PP). ) etc. are used. The thermal bonding temperature range of these polymer films is 282~371℃ and 204~
221°C, 121-204°C, 204-218°C, and 140-204°C. For example, when used for headphones, the polarizing polymer film 73 has a diameter of 50 to 60 mm;
It is formed to a thickness of about 75 to 125 μm, and if necessary, in order to improve adhesion, one side is treated with a naphthalene solution of metallic sodium to make it relatively rough, or one side is coated with aluminum, nickel, etc. A commonly used method such as metal vapor deposition can be used.

介在用高分子フイルム72は同様にして直径50
〜60mm、厚み10〜30μ程度に形成し、これを電極
板71と分極用高分子フイルム73との間に挿設
する。この際、分極用高分子フイルム73の前記
処理を施された面が介在用高分子フイルム72に
接するようにして電極板71、介在用高分子フイ
ルム72、分極用高分子フイルム73の積層体7
4を形成する。
Similarly, the intervening polymer film 72 has a diameter of 50 mm.
~60mm and a thickness of approximately 10~30μ, and is inserted between the electrode plate 71 and the polarizing polymer film 73. At this time, the laminated body 7 of the electrode plate 71, the intervening polymer film 72, and the polarizing polymer film 73 is placed so that the surface of the polarizing polymer film 73 that has been subjected to the above-mentioned treatment is in contact with the intervening polymer film 72.
form 4.

次にこの積層体74を介在用高分子フイルム7
2の熱接着温度範囲内の雰囲気温度で加熱し、介
在用高分子フイルム72を介して電極板71に分
極用高分子フイルム73を接着させる。
Next, this laminate 74 is attached to the intervening polymer film 7.
The polarizing polymer film 73 is bonded to the electrode plate 71 via the intervening polymer film 72 by heating at an ambient temperature within the thermal bonding temperature range of No. 2.

この加熱溶着を行う装置としては例えば第4図
に示すように、恒温槽75内の基盤76上に、例
えばポリ4フツ化エチレンフイルム(PTFEフイ
ルム)よりなる剥離体77を配し、この上に電極
板71、介在用高分子フイルム72、分極用高分
子フイルム73の順に積載して積層体74とす
る。この剥離体77は300℃以上の耐熱性を有
し、熱接着せず、積層体74とその上下のものと
を剥離することができるものである。
As shown in FIG. 4, an apparatus for performing this heat welding includes, for example, a peelable body 77 made of, for example, polytetrafluoroethylene film (PTFE film) placed on a base 76 in a constant temperature bath 75. An electrode plate 71, an intervening polymer film 72, and a polarizing polymer film 73 are stacked in this order to form a laminate 74. This peeling body 77 has heat resistance of 300° C. or more, and can peel the laminate 74 and the items above and below it without thermal adhesion.

この例では複数の積層体74を同時にそれぞれ
接着させるようにした場合で、剥離体77を順次
介して所望の複数個の積層体74が積み重ねられ
る。更に最上層の剥離体77上に例えば2Kg程度
の重錘78を積載する。
In this example, a plurality of laminates 74 are bonded together at the same time, and a desired plurality of laminates 74 are stacked up one after another via peeling bodies 77. Further, a weight 78 of about 2 kg, for example, is placed on the peeling body 77 of the uppermost layer.

この状態で恒温槽75内を、使用した介在用高
分子フイルム72の熱接着温度範囲内の所定の温
度に設定する。介在用高分子フイルム72として
例えばポリカーボネートフイルムを使用した場合
には210〜250℃、ポリエチレンフイルムを使用し
た場合には約150℃、ポリフツ化ビニリデンフイ
ルムを使用した場合には約220℃、ポリプロピレ
ンフイルムを使用した場合には約200℃とする。
この設定温度に恒温槽75をほゞ1時間程度維持
し、その後は自然に冷却させる。
In this state, the inside of the constant temperature bath 75 is set to a predetermined temperature within the thermal bonding temperature range of the intervening polymer film 72 used. For example, when a polycarbonate film is used as the intervening polymer film 72, the temperature is 210 to 250°C, when a polyethylene film is used, it is about 150°C, when a polyvinylidene fluoride film is used, it is about 220°C, and when a polypropylene film is used, the temperature is about 220°C. When used, the temperature should be approximately 200℃.
The constant temperature bath 75 is maintained at this set temperature for approximately one hour, and then allowed to cool naturally.

この溶着を行う他の手法は、例えば第5図に示
すようにして行なう。例えばアルミニウムなどの
厚みが0.6〜1mm程度の電極板71が矢印79の
方向に送られ、その電極板72上に供給ボビン8
1に巻かれた介在用高分子フイルム72が案内ロ
ーラ82を介して送り出される。更にその上に供
給ボビン83に巻かれた分極用高分子フイルム7
3が案内ローラ84を介して送り出される。分極
用高分子フイルム73は厚みが75〜125μで介在
用高分子フイルム72と接する面には前述のよう
に金属ナトリウムのナフタレン溶液で処理して比
較的粗い面とするか、或はアルミニウム、ニツケ
ルなどで金属蒸着処理されたものを用いることが
できる。介在用高分子フイルム72の厚みは20〜
30μ程度のものが用いられる。この電極板71、
介在用高分子フイルム72及び分極用高分子フイ
ルム73の積層体74は熱ローラ85で挾まれて
加熱炉86内に所定の速度で送り込まれる。加熱
炉86内は前述のような介在用高分子フイルム7
2の熱接着温度範囲の所定温度に設定されてい
る。図示されていないが、加熱炉86内にも所定
圧を与える熱ローラが配設されていて所定時間加
熱加圧された状態で積層体74が加熱炉86を通
過する。このようにして分極用高分子フイルム7
3は介在用高分子フイルム72を介して電極板7
1に接着される。
Another method for performing this welding is, for example, as shown in FIG. An electrode plate 71 made of aluminum or the like with a thickness of about 0.6 to 1 mm is fed in the direction of arrow 79, and a supply bobbin 8 is placed on the electrode plate 72.
The intervening polymer film 72 wound around 1 is sent out via the guide roller 82. Furthermore, a polarizing polymer film 7 wound around a supply bobbin 83 is placed thereon.
3 is sent out via the guide roller 84. The polarizing polymer film 73 has a thickness of 75 to 125 μm, and the surface in contact with the intervening polymer film 72 is treated with a naphthalene solution of metallic sodium to give a relatively rough surface, or is made of aluminum or nickel. It is possible to use a material that has been subjected to metal vapor deposition treatment. The thickness of the intervening polymer film 72 is 20~
A material of about 30μ is used. This electrode plate 71,
The laminate 74 of the intervening polymer film 72 and the polarizing polymer film 73 is sandwiched between heat rollers 85 and fed into a heating furnace 86 at a predetermined speed. Inside the heating furnace 86 is the intervening polymer film 7 as described above.
The temperature is set at a predetermined temperature within the thermal bonding temperature range of No. 2. Although not shown, a heat roller that applies a predetermined pressure is also disposed within the heating furnace 86, and the laminate 74 passes through the heating furnace 86 while being heated and pressurized for a predetermined period of time. In this way, the polarizing polymer film 7
3 is an electrode plate 7 via an intervening polymer film 72.
1.

このようにして熱溶着工程を経て相互に接着さ
れた分極用高分子フイルム73と介在用高分子フ
イルム72と電極板71とからなる積層体74は
次にその分極用高分子フイルム73に分極処理を
行う分極工程に移される。その前に第1図及び第
2図における孔34,56と対応した孔80(第
6図)が例えばプレスにより形成される。この孔
80は第5図に示したように連続的に積層体を形
成する場合は、目的の電気―音響変換器に用いら
れる電極板エレクトレツトの形状に打抜くように
同時に行うこともできる。
The laminate 74 consisting of the polarizing polymer film 73, the intervening polymer film 72, and the electrode plate 71 that have been bonded to each other through the thermal welding process in this way is then subjected to a polarization treatment to the polarizing polymer film 73. It is then transferred to the polarization step where it performs. Before that, holes 80 (FIG. 6) corresponding to the holes 34, 56 in FIGS. 1 and 2 are formed, for example, by pressing. When the laminate is formed continuously as shown in FIG. 5, the holes 80 can be formed at the same time so as to be punched into the shape of the electrode plate electret used in the intended electro-acoustic transducer.

第6図はこの分極工程の一例を示すもので、図
示されていない基盤上に熱溶着工程を経た積層体
74が配設される。積層体74の最下層である電
極板71に電源87の正極を接続し、積層体74
の最上層である分極用高分子フイルム73のほゞ
中心から約50mm上側に離れて針電極88を、積層
体74に対し垂直に配設し、この針電極88を電
源87の負極に接続する。この状態で電極板71
及び電極88間に約25KVの直流電圧を約20〜30
分間印加して分極用高分子フイルム73面上にコ
ロナ放電を起させる。この分極処理後、その積層
体74をほゞ150℃程度で1時間程度エージング
処理してすべての工程が完了する。
FIG. 6 shows an example of this polarization process, in which a laminate 74 that has undergone a thermal welding process is placed on a substrate (not shown). The positive electrode of a power source 87 is connected to the electrode plate 71, which is the lowest layer of the laminate 74, and the laminate 74
A needle electrode 88 is arranged perpendicularly to the laminate 74 about 50 mm above the center of the polarizing polymer film 73, which is the top layer of the polarizing polymer film 73, and this needle electrode 88 is connected to the negative electrode of a power source 87. . In this state, the electrode plate 71
A DC voltage of about 25 KV is applied between the electrodes 88 and the electrodes 88 for about 20 to 30 minutes.
The voltage is applied for a minute to cause corona discharge to occur on the surface of the polarizing polymer film 73. After this polarization treatment, the laminate 74 is aged at approximately 150° C. for approximately one hour to complete all steps.

実施例 分極用高分子フイルム73として融点が260〜
280℃の4フツ化エチレン―6フツ化プロピレン
共重合フイルムの125μの厚さのものを用い、そ
の片面をナフタリン溶液により微粗面にした。介
在用高分子フイルム72として融点が220〜230℃
の厚みが20μのポリカーボネートフイルムを用
い、厚さが1mmのアルミニウムの電極板71に、
分極用高分子フイルム73を240℃で融着した。
この融着された分極用高分子フイルム73を第6
図について述べた針電極コロナ放電法により−
25KVで分極した後、150℃、1時間のエージング
を行つた。その結果は表面電位の初期値は役−
850Vであつた。この試料を90℃の温度加速試験
を行い、−1dB、即ち初期値0.891に減衰するまで
の時間を測定したら1920時間であつた。
Example Melting point is 260~ as polymer film 73 for polarization
A 125 μm thick ethylene tetrafluoride-propylene hexafluoride copolymer film at 280° C. was used, and one side of the film was made slightly rough with a naphthalene solution. The melting point of the intervening polymer film 72 is 220 to 230°C.
A polycarbonate film with a thickness of 20 μ is used, and an aluminum electrode plate 71 with a thickness of 1 mm is used.
A polarizing polymer film 73 was fused at 240°C.
This fused polarizing polymer film 73 is
By the needle electrode corona discharge method described in Fig.
After polarization at 25KV, aging was performed at 150°C for 1 hour. The result is that the initial value of the surface potential is
It was 850V. This sample was subjected to a temperature acceleration test at 90°C, and the time required for the sample to decay to -1 dB, ie, the initial value of 0.891, was 1920 hours.

一方、同一の分極用高分子フイルムを用い、こ
れを介在用高分子フイルムを用いることなく同一
の電極板に280℃で融着させ、その分極用高分子
フイルムに対し、先と同一条件で分極し、更にエ
ージングを行つた。この試料の表面電位は介在用
高分子フイルムを用いる場合と同様に約−850V
であつたが、温度加速試験により−1dB減衰する
までの時間は150時間であり、介在用高分子フイ
ルムを用いる場合と比較して著しく短かかつた。
On the other hand, using the same polarizing polymer film, it was fused to the same electrode plate at 280°C without using an intervening polymer film, and the polarizing polymer film was polarized under the same conditions as before. Then, it was further aged. The surface potential of this sample is approximately -850V, which is the same as when using an intervening polymer film.
However, in the temperature acceleration test, the time required for -1 dB attenuation was 150 hours, which was significantly shorter than when using an intervening polymer film.

以上述べたようにこの発明による電極板エレク
トレツトによれば、介在用高分子フイルムを用い
てその熱接着温度で融着させるため、融着温度が
比較的低く、それだけ処理が容易である。しかも
この融着温度に対し分極用高分子フイルムの溶融
温度が高いため、電極板に溶着した分極用高分子
フイルムの厚みは均一なものが得られ、物理的に
安定で長寿命のものが得られる。また接着剤によ
り接着する場合と比較し作業性がよく、かつ各部
が確実に融着される。更に大量生産にも適する。
As described above, according to the electrode plate electret according to the present invention, since the intervening polymer film is used and fused at its thermal bonding temperature, the fusion temperature is relatively low and processing is easier. Moreover, since the melting temperature of the polarizing polymer film is higher than this fusion temperature, the polarizing polymer film welded to the electrode plate can have a uniform thickness, and is physically stable and has a long life. It will be done. Furthermore, workability is better than when bonding with adhesive, and each part is reliably fused. Furthermore, it is suitable for mass production.

上述においては分極用高分子フイルムを電極板
に融着後に、エレクトレツト化したが、分極用高
分子フイルムを予め分極し、その分極されたもの
を電極板に介在用高分子フイルムを介して融着し
てもよい。この場合、分極用高分子フイルムの溶
融温より低い温度で融着が行われるため、分極用
高分子フイルムに予め与えられた分極の劣化が殆
んどない。また融着時の温度、時間の条件とエレ
クトレツト化のエージング条件とがほゞ等しいた
めこの分極に対するエージングを融着の際の加熱
と同時に行なうことができ、それだけ全体として
の製造時間を短縮することができる。
In the above, the polarizing polymer film was fused to the electrode plate and then electrified. However, it is also possible to polarize the polarizing polymer film in advance and fuse the polarized film to the electrode plate via the intervening polymer film. You may wear it. In this case, since the fusion is performed at a temperature lower than the melting temperature of the polarizing polymer film, there is almost no deterioration of the polarization previously given to the polarizing polymer film. In addition, since the temperature and time conditions during fusion are almost the same as the aging conditions for electrification, aging for this polarization can be done at the same time as heating during fusion, which shortens the overall manufacturing time. be able to.

また、上述において分極用高分子フイルムに対
する分極はコロナ放電による方法のみならず、熱
分極法、電子ビーム分極法などを用いることもで
きる。しかしコロナ放電分極法は常温の室内雰囲
気中で分極することができ、装置が簡単である。
またコロナ放電分極法によれば第6図に示した孔
80を有する積層体74をベルトコンベアでコロ
ナ放電分極室へ送り、これを通過させることによ
り連続的に多数の積層体に対して分極処理を行う
こともできる。この場合ベルトコンベアは導電性
のものを用い、これを電気的に接地し、このベル
トコンベアに電極板71を接触させればよい。
Furthermore, in the above description, the polarization polymer film can be polarized not only by corona discharge, but also by thermal polarization, electron beam polarization, or the like. However, the corona discharge polarization method allows polarization in an indoor atmosphere at room temperature, and the equipment is simple.
According to the corona discharge polarization method, a laminate 74 having holes 80 as shown in FIG. You can also do In this case, a conductive belt conveyor may be used, it may be electrically grounded, and the electrode plate 71 may be brought into contact with this belt conveyor.

電極板の介在用高分子フイルムが熱溶着される
面は、例えば80〜600番のサンドプラスト、つま
り砂の吹付けにより粗面とするとよい。その場合
はその粗面の凹凸により介在用高分子フイルムに
対して鋲効果となつて介在用高分子フイルムが剥
離し難いものとなる。また電極板に付けた後に分
極用高分子フイルムを分極する場合は、前記電極
板の粗面の凹凸により分極の際の有効面積が大と
なり、電位線の散乱が起り、単位面積当りの分極
用高分子フイルムの電位線の数が多くなつて単位
面積当りの電位線の数のばらつきが少なく、かつ
多くの電位線が得られ、つまり単位面積当りの印
加電圧が等価的に大きくなり、分極も十分強く行
われ、かつ均一な分極が得られ、その分極も安定
したものとなる。
The surface of the electrode plate to which the intervening polymer film is thermally welded may be made rough by, for example, No. 80 to No. 600 sandplast, that is, sand spraying. In this case, the unevenness of the rough surface will have a riveting effect on the intervening polymer film, making it difficult for the intervening polymer film to peel off. In addition, when polarizing a polymer film for polarization after attaching it to an electrode plate, the effective area during polarization becomes large due to the unevenness of the rough surface of the electrode plate, scattering of potential lines occurs, and the polarization amount per unit area increases. As the number of potential lines in the polymer film increases, there is less variation in the number of potential lines per unit area, and a large number of potential lines can be obtained.In other words, the applied voltage per unit area becomes equivalently large, and polarization also increases. The polarization is sufficiently strong and uniform polarization is obtained, and the polarization is also stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は静電形ヘツドホンの電気―音響変換器
の例を示す断面図、第2図は静電形マイクロホン
の例を示す断面図、第3図はこの発明による電極
板エレクトレツトの一例を示す断面図、第4図は
積層体を複数重ねて同時に熱溶着するため融着装
置の例を示す断面図、第5図は積層体を連続形成
して連続的に融着する装置の例を示す図、第6図
は分極方法を説明するための図である。 71:電極板、72:介在用高分子フイルム、
73:分極用高分子フイルム。
FIG. 1 is a sectional view showing an example of an electroacoustic transducer for an electrostatic headphone, FIG. 2 is a sectional view showing an example of an electrostatic microphone, and FIG. 3 is an example of an electrode plate electret according to the present invention. 4 is a sectional view showing an example of a fusing device for simultaneously thermally welding a plurality of laminates, and FIG. The diagram shown in FIG. 6 is a diagram for explaining the polarization method. 71: Electrode plate, 72: Intervening polymer film,
73: Polymer film for polarization.

Claims (1)

【特許請求の範囲】[Claims] 1 電極板と、分極された分極用高分子フイルム
と、その分極用高分子フイルムよりも融点が低
く、この分極用高分子フイルム及び電極板を融着
している介在用高分子フイルムとを具備する電極
板エレクトレツト。
1. Comprising an electrode plate, a polarized polymer film, and an intervening polymer film that has a melting point lower than that of the polarization polymer film and is fused to the polarization polymer film and the electrode plate. Electrode plate electret.
JP2834780A 1980-03-06 1980-03-06 Electrode plate electret for electrostatic type electro-acoustic converter Granted JPS56125200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2834780A JPS56125200A (en) 1980-03-06 1980-03-06 Electrode plate electret for electrostatic type electro-acoustic converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2834780A JPS56125200A (en) 1980-03-06 1980-03-06 Electrode plate electret for electrostatic type electro-acoustic converter

Publications (2)

Publication Number Publication Date
JPS56125200A JPS56125200A (en) 1981-10-01
JPS6239600B2 true JPS6239600B2 (en) 1987-08-24

Family

ID=12246062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2834780A Granted JPS56125200A (en) 1980-03-06 1980-03-06 Electrode plate electret for electrostatic type electro-acoustic converter

Country Status (1)

Country Link
JP (1) JPS56125200A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697763B2 (en) * 2001-07-31 2011-06-08 パナソニック株式会社 Condenser microphone
JP4746291B2 (en) * 2004-08-05 2011-08-10 オリンパス株式会社 Capacitive ultrasonic transducer and manufacturing method thereof
JP4729290B2 (en) * 2004-11-15 2011-07-20 株式会社オーディオテクニカ Manufacturing method of electret condenser microphone unit
JP4877780B2 (en) * 2006-11-17 2012-02-15 株式会社オーディオテクニカ Electret condenser microphone unit and electret condenser microphone
JP5729280B2 (en) * 2011-11-30 2015-06-03 ヤマハ株式会社 Electrostatic speaker

Also Published As

Publication number Publication date
JPS56125200A (en) 1981-10-01

Similar Documents

Publication Publication Date Title
US3942029A (en) Electrostatic transducer
JP6005093B2 (en) Electroacoustic conversion film, electroacoustic transducer, flexible display and projector screen
US3118022A (en) Electroacoustic transducer
US3705312A (en) Preparation of electret transducer elements by application of controlled breakdown electric field
WO2016158518A1 (en) Electroacoustic transducer
US2423922A (en) Piezoelectric transducer
US4302633A (en) Electrode plate electret of electro-acoustic transducer and its manufacturing method
US4014091A (en) Method and apparatus for an electret transducer
EP0262145A1 (en) Piezoelectric polymeric film balloon speaker
CN110572746B (en) A conducting film and sound generating mechanism for sound generating mechanism
JP6505845B2 (en) Electro-acoustic conversion film
CN101656906B (en) Speaker monomer structure
US3894333A (en) Electromechanical transducer and method of making same
JPS6239600B2 (en)
CN104038877A (en) Electret electrostatic loudspeaker
JP2681207B2 (en) Vibration plate of electrostatic electroacoustic transducer
CN100377622C (en) Process for making backing electrode electret condenser type microphones
KR20010108129A (en) Compound electrolytic loudspeaker assembly
WO2017002573A1 (en) Electro-acoustic converter
CN110545505A (en) A conducting film and sound generating mechanism for sound generating mechanism
CN101729971A (en) Method for manufacturing electret vibrating membrane
US2922851A (en) Loudspeakers
JPS60157399A (en) Condenser microphone
JP6450014B2 (en) Electroacoustic conversion film, method for producing electroacoustic conversion film, and electroacoustic transducer
JPS6057799B2 (en) Manufacturing method of electrode plate electret for electrostatic electroacoustic transducer