JPS6239490A - Method and device for preventing oscillation of level of liquid storage tank - Google Patents
Method and device for preventing oscillation of level of liquid storage tankInfo
- Publication number
- JPS6239490A JPS6239490A JP60169778A JP16977885A JPS6239490A JP S6239490 A JPS6239490 A JP S6239490A JP 60169778 A JP60169778 A JP 60169778A JP 16977885 A JP16977885 A JP 16977885A JP S6239490 A JPS6239490 A JP S6239490A
- Authority
- JP
- Japan
- Prior art keywords
- storage tank
- liquid level
- gas
- gas blowing
- liquid storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は液体貯槽の液面動揺を防止する方法及び装置に
関し、さらに詳言すると、石油タンク等が地震等によっ
て加振されたときに、貯油がタンクから溢れることを未
然に防止する装置に係る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and device for preventing liquid level fluctuations in a liquid storage tank, and more specifically, when an oil tank or the like is shaken by an earthquake, This relates to a device that prevents stored oil from overflowing from a tank.
「従来技術」
石油タンク等の液面動揺を防止する従来の方法又は装置
としては、浮屋根式貯槽の浮屋根に滑車を介してロープ
を掛け、そのローブにダンパーを伺・加して浮屋根の動
揺すなわち液面の動揺を抑制する装置(特公昭59−2
9512号)、固定屋根式貯槽の液面にフロートを浮べ
て液面波動をくすす方法又は装置(特公昭59−381
53号。"Prior Art" A conventional method or device for preventing liquid level fluctuations in oil tanks, etc. is to hang a rope over the floating roof of a floating roof type storage tank via a pulley, and attach a damper to the lobe to create a floating roof. A device for suppressing the agitation of the water, that is, the agitation of the liquid level (Special Publication Publication No. 59-2
No. 9512), a method or device for dampening liquid surface waves by floating a float on the liquid surface of a fixed roof type storage tank (Special Publication No. 59-381
No. 53.
特公昭59−29512号)が知られている。Special Publication No. 59-29512) is known.
[本発明が解決しようとする問題点]
従来の方法又は装置において使用されたダンパーやフロ
ートは、貯槽の形式、内容液等によって異なるため、す
べての貯槽に共通して適用することができないという問
題があった。又、ダンパーやフロート又はそれらに付帯
する設備は、地震荷重が作用すると、かえって危険にな
るおそれもあった。さらに、従来のものはいずれも能動
的ではなく受動的に液面の動揺を防止するため効果が後
手に回るおそれがあった。[Problems to be Solved by the Present Invention] The problem is that the dampers and floats used in conventional methods or devices differ depending on the type of storage tank, liquid content, etc., and cannot be commonly applied to all storage tanks. was there. In addition, dampers, floats, and equipment attached to them may become dangerous if earthquake loads are applied to them. Furthermore, all of the conventional methods passively prevent fluctuations in the liquid level, so there is a risk that they will not be as effective.
本発明はこれらの問題点を解決するものであり、その目
的とするところは、貯槽の形状、寸法、内容液の種類に
は関係なく、共通して適Inシ得る液面動揺の防止方法
及び装置であって、地震荷重の作用により危険が生じる
おそれがなく、能動的に溢流を先手で封することができ
るものを提供することにある。The present invention is intended to solve these problems, and its purpose is to provide a method and method for preventing liquid level fluctuations that can be applied in common, regardless of the shape, size, or type of liquid contained in the storage tank. It is an object of the present invention to provide a device that can proactively seal off overflows without causing danger due to the action of seismic loads.
[問題点を解決するための手段]
前記目的を達成するため本発明の方法は、液体貯槽内の
圧力を周壁に沿う複数の位置において検知し、その検知
信号をコンピュータに入力して液面動揺時に液面振動の
周期及び方位(モード)を算出し、さらに、液面動揺方
位に位置する周壁部液面の液位を時系列で求め、その周
壁部の液面が振動の腹の時期にその液面にガス泡群を吹
出して液面の動揺を制振することに特徴がある。その方
法を実施する装置は、ガス源と、液体貯槽の内底面の周
壁に沿う複数の位置に設けられた圧力センサーを含む圧
力検知手段と、同じく周壁に沿って設けられた複数のガ
ス吹田セクタと、各ガス吹出セクタをガス源に接続する
弁と、圧力検知手段からの信号に基づいて開閉する弁と
その開閉時期を設定するコンピュータを含む制御値設定
手段と、制御値設定手段からの信号に基づいて設定した
弁を設定した期間開閉させる制御出力手段とを備える。[Means for Solving the Problems] In order to achieve the above object, the method of the present invention detects the pressure within the liquid storage tank at a plurality of positions along the peripheral wall, and inputs the detection signal to a computer to detect fluctuations in the liquid level. At the same time, the period and direction (mode) of the liquid level vibration are calculated, and the liquid level of the peripheral wall located in the direction of the liquid level vibration is determined in time series, and the liquid level of the peripheral wall is determined to be at the peak of the vibration. It is characterized by blowing gas bubbles onto the liquid surface to dampen fluctuations in the liquid surface. An apparatus for carrying out the method includes a gas source, pressure sensing means including pressure sensors provided at a plurality of positions along the peripheral wall of the inner bottom surface of the liquid storage tank, and a plurality of gas Suita sectors also provided along the peripheral wall. and a control value setting means including a valve that connects each gas blowing sector to a gas source, a valve that opens and closes based on a signal from the pressure detection means, and a computer that sets the opening and closing timing thereof, and a signal from the control value setting means. and control output means for opening and closing the valve set based on the set period of time.
。石油等の可燃性液体が貯槽されている場合、ガス源の
ガスは防爆不活性ガスにする必要がある。. If a flammable liquid such as petroleum is stored in a tank, the gas source must be an explosion-proof inert gas.
[作用]
地震動により貯槽内液に液面動揺が生ずると、その液面
動揺に起因する情報は貯槽内底面に設置された圧力セン
サーにより検知され、信号とじてコンピュータに入力さ
れる。コンピュータは、入力された信号に基づいて振動
のモード、周期、方位を判定し、ついで、振動方位に位
置する周壁部液面の液位を算出する。次にコンピュータ
は振動方位に位置する周壁部液面にガスを吹出すガス吹
出セクタの弁を、そこの液位が極小値を少し越えたとき
に開き、平衡点に達する少し後に閉じる信号を制御出力
手段に出力する。このコンピュータからの信号により制
御出力手段は弁を開閉するから、ガス源のガスは振動方
位に位置するガス吹出セクタのガス吹出孔群から噴出し
、ガス泡群となって、振動の腹の期間に当たる液面に浮
上する。このガス泡群の流体力学的力と液の攪乱によっ
て、液面動揺の励振は相殺され、液面動揺は制振される
。[Operation] When a liquid level fluctuation occurs in the liquid in the storage tank due to seismic motion, information resulting from the liquid level fluctuation is detected by a pressure sensor installed at the bottom of the storage tank, and is input into the computer as a signal. The computer determines the mode, period, and direction of vibration based on the input signal, and then calculates the liquid level of the liquid surface of the peripheral wall located in the direction of vibration. Next, the computer controls a signal to open the valve in the gas blowing sector that blows gas to the liquid surface of the peripheral wall located in the vibration direction when the liquid level there slightly exceeds the minimum value, and closes it a little after reaching the equilibrium point. Output to output means. The control output means opens and closes the valve according to the signal from this computer, so the gas from the gas source is ejected from the gas blowing holes of the gas blowing sector located in the direction of vibration, forming a group of gas bubbles, and forming a group of gas bubbles during the antinode period of the vibration. It floats to the surface of the liquid that hits. Due to the hydrodynamic force of the gas bubble group and the disturbance of the liquid, the excitation of the liquid level oscillation is canceled out, and the liquid level oscillation is suppressed.
[実施例]
本発明の方法及び装置を図面に示す実施例に基づいて説
明する。[Example] The method and apparatus of the present invention will be explained based on the example shown in the drawings.
第1図及び第2図に示すように、固定屋根式で円筒形の
η槽10内において周壁に沿う底板11上に8個の圧力
センサーIA〜IHを等円弧間隔に配設する。同じく貯
槽10内の周壁に沿って環状のガス吹出v9を取付ける
。ガス吹出管9は隔壁により8個のガス吹出セクタ8A
〜8Hに分割される。各ガス吹出セクタはそれぞれ″r
!、磁弁7A〜7Hを介して貯槽10を回るガス供給管
13に接続され、ガス供給管13は不活性ガス源18に
接続される。ガス吹出セクタ8A〜8Hの中央に圧力セ
ンサーIA〜IHが配置され、各ガス吹出セクタには多
数のガス吹出孔20が穿設される。As shown in FIGS. 1 and 2, eight pressure sensors IA to IH are arranged at equal arc intervals on a bottom plate 11 along the peripheral wall in a fixed roof type cylindrical η tank 10. Similarly, an annular gas blowout v9 is installed along the peripheral wall inside the storage tank 10. The gas blowing pipe 9 is divided into eight gas blowing sectors 8A by a partition wall.
It is divided into ~8H. Each gas blowing sector is ″r
! , are connected to a gas supply pipe 13 that circulates around the storage tank 10 via magnetic valves 7A to 7H, and the gas supply pipe 13 is connected to an inert gas source 18. Pressure sensors IA to IH are arranged at the center of gas blowing sectors 8A to 8H, and a large number of gas blowing holes 20 are bored in each gas blowing sector.
第3図に示すように、各圧力センサーからくるパラレル
なアナログ信号をシリアルなデジタル信号に変換するマ
ルチプレクサを含むA/Dコンバータ 2を設ける。A
/Dコンバータ2の出力は制御値設定手段としてのコン
ピュータ3に入力される。コンピュータ 3の出力は各
電磁弁7A、Eのリレー EiA、Eを作動させるリレ
ー制御出力発生@(PIO)4に入力される。As shown in FIG. 3, an A/D converter 2 including a multiplexer for converting parallel analog signals coming from each pressure sensor into serial digital signals is provided. A
The output of the /D converter 2 is input to a computer 3 as control value setting means. The output of the computer 3 is input to a relay control output generator @ (PIO) 4 that operates relays EiA and E of each electromagnetic valve 7A and E.
次に、実施例の装置における液面動揺の制振について説
明する。地震動により貯槽内の液面が動(ポしてコンピ
ュータ 3 に入力する信号が限界値を越えると、第4
図にフローチャー1・で示すように、コンピュータ 3
は演算を開始する。そのm1段階(PI)として、貯槽
の直径と液位から液面の第一次振動の周期Tを計算する
。貯槽液面の振動は一次が卓越するから、二次以上は無
視できる。Next, damping of liquid level fluctuation in the device of the embodiment will be explained. The liquid level in the storage tank changes due to earthquake motion (if the signal input to computer 3 exceeds the limit value,
As shown in flowchart 1 in the figure, computer 3
starts the operation. As the m1 step (PI), the period T of the first vibration of the liquid level is calculated from the diameter of the storage tank and the liquid level. Since the first-order vibration of the storage tank liquid level is predominant, the second-order and higher-order vibrations can be ignored.
第二段階(P2)において、各圧力センサーからの信号
を入力し、第三段階(P3)として、液面動揺の方位(
貯槽の中心を原点として)及びモード(直線又は旋回)
を判断する。第四段階(P4)において、使用するガス
吹出セクタと圧力センサーを選定する。例えば、第3図
と第5図に示すように、液面動揺の方位が二個の圧力セ
ンサーIA、IEすなわち二個のガス吹出セクタ8A
、 8Eを結ぶ方向と同じか又は近いときは、ガス吹出
セクタ8A、8Eと圧力センサーIA、IEが選定され
る。In the second step (P2), the signals from each pressure sensor are input, and in the third step (P3), the direction of the liquid level fluctuation (
(with the center of the storage tank as the origin) and mode (straight line or turning)
to judge. In the fourth step (P4), the gas blowing sector and pressure sensor to be used are selected. For example, as shown in FIG. 3 and FIG.
, 8E, gas blowing sectors 8A, 8E and pressure sensors IA, IE are selected.
第5段階(p5)で選定した圧力センサーの位置におい
て圧力が高から低へ変る途中で圧力平衡点を通過する時
刻Oを検出し、第6段階(P6)で、その時刻Oより(
3/10)T秒の経過をカウントする。(3/10)T
秒が経過すると、第7段階(P7)として、一方のガス
吹出セクタの弁を開く信号を発生する。この信号は、第
3図及び第5図の場合、コンピュータ3から制御出力発
生器4に入力され、制御出力発生器4はリレー6Aをオ
ンにして電磁弁7Aを開くから、不活性ガス供給源18
からガスがガス吹出管8のガス吹出セクタ8Aに供給さ
れ、そのガス吹出孔群から液中へ吹出す。At the position of the pressure sensor selected in the fifth step (P5), the time O at which the pressure passes the pressure equilibrium point on the way from high to low is detected, and in the sixth step (P6), from that time O (
3/10) Count the passage of T seconds. (3/10)T
When the seconds have elapsed, as a seventh step (P7), a signal is generated to open the valve of one gas blowing sector. In the case of FIGS. 3 and 5, this signal is input from the computer 3 to the control output generator 4, and the control output generator 4 turns on the relay 6A and opens the solenoid valve 7A, so the inert gas supply source 18
Gas is supplied to the gas blowing sector 8A of the gas blowing pipe 8, and is blown into the liquid from the gas blowing hole group.
第8段階(P8)は(2/10)T秒のカウントである
が、その間、電磁弁7Aは開いたままであるから、ガス
は引続いてガス吹出セクタ8Aから吹出し、ガス泡群と
なって圧力センサーIA上の液面へ浮上する。このとき
、圧力センサーIA上の周壁部の液面は下降から上昇へ
転じた振動の腹の時期にあるが、ガス泡群による流体力
学的力と撹乱作用により振動は減衰する。(2/10)
T秒経過すると、第9段階(P9)として開いた弁を閉
じる信号を発生する。第3図及び第5図の場合、リレー
6Aをオフにして電磁弁7Aを閉じる。The eighth stage (P8) is a count of (2/10) T seconds, during which time the solenoid valve 7A remains open, so the gas continues to blow out from the gas blowing sector 8A, forming a group of gas bubbles. It floats to the liquid surface above the pressure sensor IA. At this time, the liquid level on the peripheral wall above the pressure sensor IA is at the antinode of the oscillation, when it changes from falling to rising, but the oscillation is attenuated by the hydrodynamic force and disturbance action of the gas bubble group. (2/10)
When T seconds have elapsed, a signal is generated to close the opened valve in the ninth step (P9). In the case of FIGS. 3 and 5, the relay 6A is turned off and the solenoid valve 7A is closed.
ついで、第10段階(PIO)として、(3/10)T
秒の時illをカウントし、第11段階(pH)として
反対側に位置する他方のガス吹出しセクタの弁を開く信
号を発生する。第3図及び第5図の場合、リレー6Eが
オンになり電磁弁7Eが開くから、不活性ガスはガス吹
出セクタ8Aから1/2周期遅れてガス吹出セクタ8E
のガス吹出孔群から吹出す、第12段階(PI2)の(
2/10)T秒のカウント中も電磁弁7Eは開いている
から、ガスの吹出しは継続しガス泡群となって、圧力セ
ンサーIA」二の周壁部の液面へ浮上し、振動の腹の時
期に相当する液面の振動を減衰させる。ガスの吹出し開
始を平衡点時刻Oから(3/10)T秒後に設定したが
、これはモデルテストにより得られた最適値である。又
、吹出し期間を(2/10)T秒に設定したが、これは
ガスの消費量を不必要に増大させずに液′面動揺を有効
に防止できる時間である。Then, as the 10th step (PIO), (3/10)T
Count the time ill in seconds and generate a signal to open the valve of the other gas blowing sector located on the opposite side as the 11th stage (pH). In the case of FIGS. 3 and 5, since the relay 6E is turned on and the solenoid valve 7E is opened, the inert gas is transferred to the gas blowing sector 8E with a 1/2 cycle delay from the gas blowing sector 8A.
The 12th stage (PI2) (
2/10) Since the solenoid valve 7E is open even during the counting of T seconds, the gas continues to be blown out, forming a group of gas bubbles that float to the liquid surface on the peripheral wall of the pressure sensor IA'2, causing the antrum of the vibration. Attenuates the vibration of the liquid level corresponding to the period of . The start of gas blowout was set to be (3/10) T seconds after the equilibrium point time O, which is the optimum value obtained through a model test. In addition, the blowing period was set to (2/10) T seconds, which is a time that can effectively prevent fluctuations in the liquid level without unnecessarily increasing the amount of gas consumed.
ついで、第13段階(PI3)として開いていた電磁弁
を閉じる信号を発生する。第3図及び第5図の場合は、
電磁弁7Eを閉じる。Then, as a thirteenth step (PI3), a signal is generated to close the solenoid valve that was open. In the case of Figures 3 and 5,
Close the solenoid valve 7E.
次の第14段階(PI3)は、上記の第6段階から第1
3段階までを4回くりかえすことであり、第3図及び第
5図の場合は、圧力センサーIA、IE上の周壁部の液
面は4回振動の腹になったときに、毎回吹出したガス泡
群の制振作用を受けて減衰する。The next 14th stage (PI3) is the first stage from the 6th stage above.
The steps up to step 3 are repeated four times, and in the case of Figures 3 and 5, when the liquid level on the peripheral wall above the pressure sensors IA and IE reaches the antinode of vibration four times, the gas blown out each time It is attenuated by the damping effect of the bubble group.
第1図及び第3図に示すように、吹出した不活性ガスは
液面と屋根16の間の空間15に放出され、その空間の
圧力が上昇するが、屋根16に付設されたガス抜き用可
動It7が開くため、空間15の圧力が過度に上昇する
ことは防止される0図示していないが、浮屋根式貯槽の
場合も、浮屋根の外周部にカス抜き用可動着を付設して
制振のために吹出した1カスを大気中に放散させるよう
にすれば、固定式屋根貯槽と同様に本発明を適用するこ
とができる。As shown in FIGS. 1 and 3, the blown inert gas is released into the space 15 between the liquid level and the roof 16, and the pressure in that space increases. Since the movable It7 opens, the pressure in the space 15 is prevented from rising excessively. Although not shown in the figure, in the case of a floating roof type storage tank, a movable garment for scrap removal is attached to the outer periphery of the floating roof. The present invention can be applied in the same way as a fixed roof storage tank by dissipating the scum blown out into the atmosphere for vibration damping.
第15段階(PI3)は各圧力センサーからの入力信号
に基づいて液面動揺の大きさを算定することであり、そ
の算定値を第6段階(PiB)においてあらかじめ設定
した値と比較する。もし小さければ、コンピュータの演
算は終了し、大きければ、再び第2段階からくり返す。The 15th step (PI3) is to calculate the magnitude of liquid level fluctuation based on the input signals from each pressure sensor, and the calculated value is compared with the value set in advance in the 6th step (PiB). If it is smaller, the computer operation ends; if it is larger, it repeats again from the second step.
なお、旋回モードの液面動揺が検知されるときは、液面
の旋回に合わせて周壁部の液面にガスを吹出し振動を制
止する。−個のガス吹出セクタから電磁弁の開閉のつど
吹出すガス泡群の量は容積比で貯槽中の振動液量の1%
程度でもよいことが、モデルテストにより確かめられた
。Note that when liquid level fluctuation in the swirling mode is detected, gas is blown onto the liquid surface of the peripheral wall portion in accordance with the swirling of the liquid level to suppress the vibration. - The amount of gas bubbles that are blown out from each gas blowing sector each time the solenoid valve is opened and closed is 1% of the amount of vibrating liquid in the storage tank in terms of volume.
It was confirmed through a model test that even a small amount is sufficient.
次に、本発明の方法の効果を測定するためになされたモ
デルテストについて説明する。モデルとしては水を深さ
24cmまで入れた内寸長さ80cm、幅15 c m
、高さ50cmの水槽を使用した。その水槽を振動台
にのせ、第6図に示すように、正弦波振動を長さ方向に
加え、水槽の側壁に沿う内底面上に圧力センサー1を取
付けた。圧力センサーの信号をレコーダに入れると共に
A/Dコンバータ2を介してコンピュータ3に入力した
。水槽の両側壁に沿う内底面に多数のガス吹出孔群があ
るガス吹出セクタ8A、8Eを配置し、それぞれ電磁弁
7A、7Eを介してコンプレッサのサージタンク18に
連結した。サージタンクの空気圧は2気圧に保持した。Next, a model test conducted to measure the effectiveness of the method of the present invention will be described. The model is filled with water to a depth of 24 cm and has an inner dimension of 80 cm in length and 15 cm in width.
A water tank with a height of 50 cm was used. The water tank was placed on a vibration table, and as shown in FIG. 6, sinusoidal vibration was applied in the longitudinal direction, and the pressure sensor 1 was attached to the inner bottom surface along the side wall of the tank. The signal from the pressure sensor was input to a recorder and also to a computer 3 via an A/D converter 2. Gas blow-off sectors 8A and 8E having a large number of gas blow-off holes were arranged on the inner bottom surface along both side walls of the water tank, and were connected to the surge tank 18 of the compressor via electromagnetic valves 7A and 7E, respectively. The air pressure in the surge tank was maintained at 2 atmospheres.
コンピュータ3の電磁弁開閉信号は出力発生@PIOを
介してリレーBに伝達され、リレー6はその信号に基づ
いて電磁弁(7A又は7E)を開閉する。ガスを吹出す
時期とガスを吹出す時間を変えて液面動揺の制振効果を
調べた。The solenoid valve opening/closing signal from the computer 3 is transmitted to the relay B via the output generator @PIO, and the relay 6 opens and closes the solenoid valve (7A or 7E) based on the signal. The damping effect on liquid level fluctuation was investigated by changing the gas blowout timing and gas blowout time.
ガス吹出し時期は、ガス吹出しセクタ8Aの液面が平衡
点になった時刻を基準としてO、(1/10)T秒後、
(2/10)T秒後I HHHHl(9/10)T秒後
(Tは振動の周期)の10個の条件についてテストした
。又、ガス吹出し期間は(1/10)7秒間、(2/1
0)7秒間、(3/10)7秒間、(4/10)7秒間
の4個の条件についてテストした。(4/10)7秒間
にガス吹出セクタから吹出す空気量は水槽中の振動で動
揺する部分の水量の2〜3%であった。The gas blowing timing is O (1/10) T seconds after the time when the liquid level of the gas blowing sector 8A reaches the equilibrium point.
(2/10) I HHHHl after T seconds (9/10) Ten conditions were tested after T seconds (T is the period of vibration). Also, the gas blowing period is (1/10) 7 seconds, (2/1
Four conditions were tested: 0) 7 seconds, (3/10) 7 seconds, and (4/10) 7 seconds. (4/10) The amount of air blown out from the gas blowing sector for 7 seconds was 2 to 3% of the amount of water in the part of the aquarium that was shaken by vibrations.
テストの結果、ガス吹出し時期は平衡点時刻より(2/
10)T秒後〜(4/10)T秒後の範囲が効果的であ
り、ガス吹出し時間は(2/10)T秒以上あれば効果
のあることが確められた。第7図は、ガス吹出し時期が
平衡点時刻より(3/10)T秒後、ガス吹出し期間が
(2/10)T秒の条件のテストにおいて、圧力センサ
ーlの圧力波形を示すオシログラフであるが、この図か
ら、水槽をのせた振動台の加振が継続していても、振動
により生じた液面の動揺は吹出した空気泡群により抑制
され、1分後には十分に制振されることを示している。As a result of the test, the gas blowing timing was determined from the equilibrium point time (2/
10) It was confirmed that the range of T seconds to (4/10) T seconds is effective, and that gas blowing time of (2/10) T seconds or more is effective. Figure 7 is an oscilloscope showing the pressure waveform of pressure sensor l in a test under the conditions that the gas blowout timing was (3/10) T seconds after the equilibrium point time and the gas blowout period was (2/10) T seconds. However, from this figure, even if the vibration table on which the water tank is placed continues to vibrate, the fluctuation of the liquid level caused by the vibration is suppressed by the group of air bubbles blown out, and the vibration is sufficiently suppressed after one minute. Which indicates that.
グラフ上部の断続する線は電磁弁7Aの開期間を示すも
のである。図示していないが、反対側の電磁弁7Eも半
周期おくれて同様に開閉する。The intermittent line at the top of the graph indicates the open period of the solenoid valve 7A. Although not shown, the electromagnetic valve 7E on the opposite side opens and closes in the same manner with a delay of half a cycle.
[発゛明の効果]
上記の通り、本発明の方法及び装置は、地震により貯槽
内の液面が動揺したとき、振動の腹になる液面にガス泡
群を浮上させて流体力学的に液面動揺を減衰させるから
、従来の浮屋根にダンパーを付設するものや、液面にフ
ロートを浮べるものとは異なり、貯槽の形式1寸法内容
液の種類には関係なく、共通の方式として適用すること
ができる。又、貯槽内に付加するものは圧力センサーと
ガス吹出管にのみであり、それらは底面1に配置するこ
とができるから、従来のダンパーやフロートとは異なり
、地震により危険をもたらすおそれはない。本発明の装
置は液面動揺をコンピュータで同定し、先手で動揺する
液面を能動的に制振するものであるから、従来の受動的
に制振するものより格段に優れているといえる。[Effects of the invention] As described above, the method and device of the present invention, when the liquid level in the storage tank is shaken due to an earthquake, causes a group of gas bubbles to float on the liquid level at the antinode of the vibration, thereby hydrodynamically controlling the liquid level. Because it attenuates fluctuations in the liquid level, unlike conventional methods that attach a damper to a floating roof or float a float on the liquid surface, it is applied as a common method regardless of the storage tank type, dimensions, content, and type of liquid. can do. Moreover, the only things added to the storage tank are the pressure sensor and the gas blowout pipe, which can be placed on the bottom 1, so unlike conventional dampers and floats, there is no risk of posing a danger due to earthquakes. The device of the present invention uses a computer to identify fluctuations in the liquid level and proactively dampens the fluctuating liquid level, so it can be said to be significantly superior to conventional vibration damping systems that passively dampen the vibrations.
第1図は本発明の一実施例の装置を備えた貯槽の組直断
面の略図であり、地震動により液面が動揺した状態を示
す。
第2図は第1図の貯槽の水平断面の略図である。
第3図は第1図の装置の全体の構成を示す略図である。
第4図はコンピュータのフローチャートである。
第5図は圧力センサーの信号がコンピュータで処理され
て不活性ガスを貯槽液中に吹出す′FrL磁弁を開閉さ
せるまでの流れを示す図である。
第6図はモデルテストの装置を示す略図である。
第7図はモデルテストにおける水槽の側壁部内底面の圧
力振動を示すオシログラフである。
1文において、符号 】は圧力センサー、 2はA/D
コンバータ、 3はコンピュータ、4は制御出力発生器
、 6はリレー、7は電磁弁、8はガス吸出セクタ、9
はガス吹出管、10は周壁、11は底板、20はガス吹
出孔をそれぞれ示す。FIG. 1 is a schematic diagram of a reassembled cross section of a storage tank equipped with an apparatus according to an embodiment of the present invention, and shows a state in which the liquid level is fluctuated due to earthquake motion. FIG. 2 is a schematic horizontal cross-section of the storage tank of FIG. 1; FIG. 3 is a schematic diagram showing the overall configuration of the device shown in FIG. 1. FIG. 4 is a computer flow chart. FIG. 5 is a flowchart showing the process in which the signal from the pressure sensor is processed by a computer to open and close the 'FrL magnetic valve that blows out inert gas into the storage tank liquid. FIG. 6 is a schematic diagram showing the apparatus for model testing. FIG. 7 is an oscillograph showing pressure vibrations on the inner bottom surface of the side wall of the water tank in the model test. In one sentence, the code ] is the pressure sensor, and 2 is the A/D.
Converter, 3 is a computer, 4 is a control output generator, 6 is a relay, 7 is a solenoid valve, 8 is a gas suction sector, 9
10 is a gas blowing pipe, 10 is a peripheral wall, 11 is a bottom plate, and 20 is a gas blowing hole.
Claims (1)
の信号をコンピュータを含む制御値設定手段に入力し、
前記制御値設定手段により液面動揺の振動周期及び方位
並びに振動方位に位置する貯槽周壁液面の液位を算出し
、前記貯槽周壁部液面にその液位が振動の腹に当る時期
にガス泡群を吹出すことを特徴とする液体貯槽の液面動
揺防止方法。 2)圧力を検知する位置は液体貯槽の周壁に沿う内底面
又はその近傍であることを特徴とする特許請求の範囲第
1項記載の液体貯槽の液面動揺防止方法。 3)振動方位に位置する周壁部液面の液位が極小値を少
し越えた時点でガスの吹出しを開始し平衡点を少し越え
た時点でガスの吹出しを停止することを特徴とする特許
請求の範囲第1項記載の液体貯槽の液面動揺防止方法。 4)吹出すガスは防爆不活性ガスであることを特徴とす
る特許請求の範囲第1項記載の液体貯槽の液面動揺防止
方法。 5)液体貯槽の周壁に沿って配設された複数個のガス吹
出セクタと、各ガス吹出セクタにそれぞれの弁を介して
接続されたガス源と、各ガス吹出セクタに穿設されたガ
ス吹出孔と、前記液体貯槽内の周壁に沿う位置の圧力を
測定する複数個の圧力センサーを含む圧力検知手段と、
前記圧力検知手段からの信号に基づいて開閉する前記弁
及びその開閉時期を設定するコンピュータを含む制御値
設定手段と、前記制御値設定手段からの信号によって、
前記弁を開閉させる制御出力手段とからなることを特徴
とする液体貯槽の液面動揺防止装置。 6)ガス吹出セクタは環形のガス吹出管を隔壁で6ない
し8等分に仕切って形成され、圧力センサーは各ガス吹
出セクタの中央に配置されたことを特徴とする特許請求
の範囲第5項記載の液体貯槽の液面動揺防止装置。[Claims] 1) Detecting the pressure at a plurality of positions within the liquid storage tank and inputting the signal to a control value setting means including a computer;
The control value setting means calculates the vibration period and direction of the liquid level oscillation, and the liquid level of the liquid surface on the circumferential wall of the storage tank located in the direction of vibration, and the gas is applied to the liquid level on the circumferential wall of the storage tank at the time when the liquid level hits the antinode of the vibration. A method for preventing liquid level fluctuation in a liquid storage tank, characterized by blowing out a group of bubbles. 2) The method for preventing liquid level fluctuation in a liquid storage tank according to claim 1, wherein the pressure is detected at or near the inner bottom surface along the peripheral wall of the liquid storage tank. 3) A patent claim characterized in that gas blowing is started when the liquid level of the peripheral wall located in the vibration direction slightly exceeds a minimum value, and gas blowing is stopped when the liquid level slightly exceeds an equilibrium point. A method for preventing liquid level fluctuation in a liquid storage tank according to item 1. 4) The method for preventing liquid level fluctuation in a liquid storage tank according to claim 1, wherein the gas to be blown out is an explosion-proof inert gas. 5) A plurality of gas blowing sectors arranged along the peripheral wall of the liquid storage tank, a gas source connected to each gas blowing sector via a respective valve, and a gas blowing hole drilled in each gas blowing sector. pressure sensing means including a hole and a plurality of pressure sensors that measure pressure at positions along a peripheral wall within the liquid storage tank;
control value setting means including the valve that opens and closes based on the signal from the pressure detection means and a computer that sets the opening and closing timing thereof, and a signal from the control value setting means,
A liquid level fluctuation prevention device for a liquid storage tank, comprising control output means for opening and closing the valve. 6) The gas blowing sector is formed by dividing an annular gas blowing pipe into 6 to 8 equal parts with partition walls, and the pressure sensor is disposed at the center of each gas blowing sector. The liquid level fluctuation prevention device for the liquid storage tank described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169778A JPS6239490A (en) | 1985-08-02 | 1985-08-02 | Method and device for preventing oscillation of level of liquid storage tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60169778A JPS6239490A (en) | 1985-08-02 | 1985-08-02 | Method and device for preventing oscillation of level of liquid storage tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6239490A true JPS6239490A (en) | 1987-02-20 |
Family
ID=15892685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60169778A Pending JPS6239490A (en) | 1985-08-02 | 1985-08-02 | Method and device for preventing oscillation of level of liquid storage tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6239490A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5628794A (en) * | 1979-08-16 | 1981-03-20 | Hitachi Ltd | Home laundry |
-
1985
- 1985-08-02 JP JP60169778A patent/JPS6239490A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5628794A (en) * | 1979-08-16 | 1981-03-20 | Hitachi Ltd | Home laundry |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2017531758A (en) | Exhaust gas aftertreatment device and exhaust gas aftertreatment method | |
JPS6239490A (en) | Method and device for preventing oscillation of level of liquid storage tank | |
US20150241266A1 (en) | Weighing apparatus and method for operating the weighing apparatus | |
CN105841909A (en) | Device for testing pier collision system based on ship anti-collision device and test method thereof | |
CN112922094B (en) | Tuned liquid damper water tank assembly | |
Bogaert et al. | Full and large scale wave impact tests for a better understanding of sloshing: results of the sloshel project | |
JPH0826388A (en) | Apparatus for preventing liquid in container from sloshing | |
Osawa et al. | Experimental study on high frequency effect on fatigue strength of welded joints by using plate-bending-vibration type fatigue testing machines | |
JP2008213886A (en) | Floating roof type liquid storage tank | |
RU2012144443A (en) | DEVICE AND METHOD FOR CLOSING A DRAIN HOLE OF A METALLURGICAL CAPACITY | |
KR102393357B1 (en) | Vibration-control device for offshore structures | |
JPH01131767A (en) | Vibration damper for structure | |
RU2395784C1 (en) | Device to test ammunition for vibration resistance | |
KR101400003B1 (en) | Apparatus for decreasing a rolling of offshore structures | |
JPH0720248A (en) | Earthquake deciding/inferring unit | |
Hara | Refined active control of sloshing by intermittent air-bubble injection | |
Din et al. | Mathematical modeling for the vertical damping analysis of sonobuoy lumped suspension system | |
JPH11350510A (en) | Fluid force reduction method for underwater structure and fluid force production type underwater structure | |
JPH10220522A (en) | Vibration damping device for vertical vibration | |
Ikeda | Nonlinear vibrations in an elastic structure subjected to vertical excitation and coupled with liquid sloshing in a rectangular tank | |
JP2009241929A (en) | Sloshing suppression device and floating roof tank | |
JP2007076689A (en) | Operation determining system for device for suppressing oscillation of floating roof | |
JP2729232B2 (en) | Vibration suppression device for structures | |
JP2005298022A (en) | System for suppressing shake in active liquid level of floating roof type storage tank | |
Li et al. | Turbulence Modelling of Incipient Wave Breaking on a Vertical Cylinder on a Sloped Bed |