JPS6239365Y2 - - Google Patents

Info

Publication number
JPS6239365Y2
JPS6239365Y2 JP1983008444U JP844483U JPS6239365Y2 JP S6239365 Y2 JPS6239365 Y2 JP S6239365Y2 JP 1983008444 U JP1983008444 U JP 1983008444U JP 844483 U JP844483 U JP 844483U JP S6239365 Y2 JPS6239365 Y2 JP S6239365Y2
Authority
JP
Japan
Prior art keywords
laser beam
laser
optical fiber
output
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983008444U
Other languages
Japanese (ja)
Other versions
JPS59116916U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983008444U priority Critical patent/JPS59116916U/en
Publication of JPS59116916U publication Critical patent/JPS59116916U/en
Application granted granted Critical
Publication of JPS6239365Y2 publication Critical patent/JPS6239365Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案はレーザ光を効率よく伝送する伝送装置
に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a transmission device that efficiently transmits laser light.

〔考案の技術的背景とその問題点〕[Technical background of the invention and its problems]

レーザ光を光フアイバでエネルギ伝送すると、
集光パワー密度が低下してしまうため、加工速度
を遅くせざるを得なくなつたり、穴あけ、切断な
どの比較的集光パワー密度の高いレーザ光照射条
件を必要とする場合には、光フアイバの伝送が適
さない面もあつた。たとえば、YAGレーザ光を
集光レンズで集束し、平均出力が高いエネルギを
伝送しようとすると、径の大きい光フアイバでな
いと困難となるが、反面径の大きい光フアイバか
ら放出されるレーザ光は既に光フアイバ内でパワ
ー密度が低下しているため、これを集光しても十
分高い集光パワー密度が得られず、穴あけ等の除
去加工ができなくなるという不具合が生じる。し
たがつて、上記の理由により光フアイバでは種々
の加工を行えない実情にある。
When energy is transmitted from laser light through optical fiber,
Optical fibers are used in cases where the processing speed must be slowed down due to a decrease in focused power density, or when laser beam irradiation conditions with relatively high focused power density are required, such as drilling or cutting. There were some aspects in which transmission was not suitable. For example, if you try to focus YAG laser light with a condensing lens and transmit energy with a high average output, it will be difficult to transmit energy with a high average output unless the optical fiber has a large diameter.On the other hand, the laser light emitted from the large diameter optical fiber has already Since the power density is reduced within the optical fiber, even if the optical fiber is focused, a sufficiently high focused power density cannot be obtained, resulting in a problem that removal processing such as drilling becomes impossible. Therefore, for the reasons mentioned above, it is not possible to perform various types of processing on optical fibers.

〔考案の目的〕[Purpose of invention]

本考案は高出力のレーザ光を光フアイバで効率
よく伝送し多目的の加工に適合できる伝送装置を
提供するにある。
The object of the present invention is to provide a transmission device that efficiently transmits high-power laser light through an optical fiber and is suitable for multi-purpose processing.

〔考案の概要〕[Summary of the idea]

光フアイバへ入光させるための光学系をレーザ
光の平均出力の度合に応じ短焦点もしくは長焦点
の集光レンズにしてそれらを個々にレーザ光路上
に配置する構成にしたものである。
The optical system for inputting light into the optical fiber is configured to be a short focal length or long focal length condensing lens depending on the degree of average output of the laser beam, and these lenses are individually arranged on the laser optical path.

〔考案の実施例〕[Example of idea]

第1図は本考案の一実施例で、1はYAG等の
固体レーザ発振器、2は伝送径がDFになる伝送
用の光フアイバ、3は光フアイバ2から放出され
たレーザ光Lを被加工物4に集光する照射用集光
レンズである。ところで、レーザ発振器1と光フ
アイバ2の入射端との間にはレーザ光路上に挿脱
自在になる光学系5が設けられている。上記光学
系5はレーザ発振器1側近くで上記光路上に挿脱
される長焦点レンズ6と、光フアイバ2の入射端
近くで挿脱される短焦点レンズ7からなり、これ
らはいずれも移動架台8a,8b上に取り付けら
れ上記レーザ光路上への挿脱自在が可能となるよ
うにされている。
Figure 1 shows an embodiment of the present invention, in which 1 is a solid-state laser oscillator such as YAG, 2 is an optical fiber for transmission with a transmission diameter of DF, and 3 is a laser beam L emitted from the optical fiber 2 to be processed. This is a condensing lens for irradiation that condenses light onto an object 4. Incidentally, an optical system 5 is provided between the laser oscillator 1 and the input end of the optical fiber 2, and is detachable from the laser beam path. The optical system 5 consists of a long focus lens 6 that is inserted into and removed from the optical path near the laser oscillator 1 side, and a short focus lens 7 that is inserted and removed near the input end of the optical fiber 2, both of which are mounted on a movable mount. 8a, 8b so that it can be inserted into and removed from the laser optical path.

上記構成の作用を次に説明する。 The operation of the above configuration will be explained next.

この説明に入る前に、最少スポツト径と集束光
の強度(パワー密度)について「レーザハンドブ
ツク」(昭和48年2月20日発行、(株)朝倉書店、
P691)を引用して説明する。すなわち、第4図
に示すように、広がり角θ(rad)の光線を焦点
距離f(cm)のレンズClで集束すると、レーザ
光Lの焦点面Fにおけるスポツト径は次式で表さ
れることが知られている。
Before going into this explanation, we will explain the minimum spot diameter and the intensity of focused light (power density) in the "Laser Handbook" (published February 20, 1971, published by Asakura Shoten Co., Ltd.).
P691). That is, as shown in Fig. 4, when a light beam with a spread angle θ (rad) is focused by a lens Cl with a focal length f (cm), the spot diameter of the laser beam L at the focal plane F is expressed by the following formula. It has been known.

d=fθ また、レーザ光Lを集束したとき、焦点面にお
ける強度(パワー密度)Fはレーザの出力パワー
Pをスポツト面積πd2/4で割れば求められる。
すなわち、次式となる。
d=fθ Furthermore, when the laser beam L is focused, the intensity (power density) F at the focal plane can be obtained by dividing the output power P of the laser by the spot area πd 2 /4.
That is, the following equation is obtained.

F=4P/πd したがつて、長焦点レンズ6および短焦点レン
ズ7の焦点距離をそれぞれf1およびf2としたと
き、レーザ出力が十分小さなビーム広がり角θ
である場合はf1θ=DFとなるようにf1を十分長
く選定し、一方固体レーザ発振器1内のYAGロ
ツドが光励起によつて熱歪み作用を受け、高い平
均レーザ出力条件でレーザ出力ビームがより大き
なビーム広がり角θを示す場合にはf2θ
DFとなるように選定する。このようにレーザ平
均出力レベルPiもしくは出力ビームのビーム広が
り角θiの小さいときから大きくなるまで複数段
階に光学系5の焦点距離fiをfiθi=DFの条件を
満足するように設定する。これにより光フアイバ
2の入射端での入射集光ビームが入射フアイバ端
をほぼ全面積にわたつて満たすことができるよう
になる。第2図はパルスYAGレーザの平均出力
Pavと出力レーザビームのビーム広がり角θの関
係を示したもので、平均出力Pavと出力レーザビ
ームのビーム広がり角θも比例的に増大する。し
たがつて、光フアイバの最大許容入射角を形成す
るような短焦点レンズで光フアイバに入射させる
と、レーザビーム広がり角θが大きくなつたレー
ザ光L1でも光フアイバの伝送有効径(コア)に
集光し損失を著しく少なくして伝送することがで
きる。焦点距離f1の短焦点レンズ7を選定して金
属切断を試みると第3図に示すように切断速度S
が板厚tに対して大きなパワーPBの曲線10と
してプロツトされる。すなわち、平均出力が大き
くなり、ビーム広がり角θが大きい条件でも伝送
できるパワーPBでは焦点深度が浅くなるため板
厚が薄いときは十分高速の切断速度が得られる
が、厚くなつた場合には切断スピードを低速にし
て行わねばならない。また、ある板厚以上になる
と切断不可能となつたり、アシストガスとして使
つて酸素ガスの影響で自己燃焼が生じたり、仮に
切断できても幅広く切断してしまうことになる。
この場合、レーザ出力の平均出力を小さくしても
切断は不可能である。ところが、本考案では発振
出力Pの最大出力PBよりも小さな平均出力条件
では前記のf2よりも長焦点距離f1の光フアイバ入
射レンズで入射させることができるように構成さ
れているので、この場合は第2図に示すPSの出
力条件であるからビーム広がり角θよりも小さ
いビーム広がり角θとなつたレーザ光L2が得
られる。これによりf1θ≒DFとなるf1を選定
し、その条件で前記同様切断加工を行うと第3図
のPS,f1の曲線11に沿つた切断特性、すなわ
ち、PB,f2の高平均出力の場合の特性にくらべ
板厚の厚い条件でも切断が可能であるが、板厚の
薄いところでは切断速度がほぼレーザ平均出力に
応じて低速度となる。
F=4P/πd 2 Therefore, when the focal lengths of the long focal length lens 6 and the short focal length lens 7 are f 1 and f 2 respectively, the beam divergence angle θ 1 is such that the laser output is sufficiently small.
In this case, f 1 is selected to be sufficiently long so that f 1 θ 1 = DF, while the YAG rod in the solid-state laser oscillator 1 is subjected to thermal distortion due to optical excitation, and the laser output is increased under high average laser output conditions. If the beam exhibits a larger beam divergence angle θ 2 then f 2 θ 2 =
Select to be DF. In this way, the focal length fi of the optical system 5 is set in multiple stages from when the laser average output level Pi or the beam spread angle θi of the output beam is small to when it becomes large so as to satisfy the condition fiθi=DF. This allows the incident focused beam at the input end of the optical fiber 2 to fill the input fiber end over substantially the entire area. Figure 2 shows the average output of a pulsed YAG laser.
This shows the relationship between Pav and the beam spread angle θ of the output laser beam, and the average output Pav and the beam spread angle θ of the output laser beam also increase proportionally. Therefore, if the laser beam is introduced into the optical fiber using a short focus lens that forms the maximum allowable incident angle of the optical fiber, even if the laser beam L 1 has a large laser beam spread angle θ, the effective transmission diameter (core) of the optical fiber will decrease. The beam can be focused and transmitted with significantly reduced loss. When a short focal length lens 7 with a focal length f1 is selected and metal cutting is attempted, the cutting speed S is as shown in Fig. 3.
is plotted as a curve 10 of large power P B with respect to plate thickness t. In other words, when the average output is large and the power P B can be transmitted even under conditions where the beam divergence angle θ is large, the depth of focus becomes shallow, so a sufficiently high cutting speed can be obtained when the plate thickness is thin, but when the plate thickness becomes thick, The cutting speed must be kept low. Furthermore, if the plate thickness exceeds a certain level, it may become impossible to cut, self-combustion may occur due to the influence of oxygen gas when used as an assist gas, or even if the plate can be cut, it will be cut over a wide area.
In this case, cutting is impossible even if the average laser output is reduced. However, in the present invention, when the average output condition of the oscillation output P is smaller than the maximum output P B , it is configured so that the optical fiber input lens having a focal length f 1 longer than the above-mentioned f 2 can be used to input the light. In this case, since the output condition of P S is as shown in FIG. 2, a laser beam L 2 having a beam divergence angle θ 1 smaller than the beam divergence angle θ 2 is obtained. As a result, if f 1 is selected such that f 1 θ 1 ≒ DF and cutting is performed in the same manner as described above under that condition, the cutting characteristics along the curve 11 of P S , f 1 in FIG. 3, that is, P B , f Compared to the characteristics in case of high average output of 2 , it is possible to cut even when the plate thickness is thick, but when the plate thickness is thin, the cutting speed becomes low approximately in accordance with the laser average output.

〔考案の効果〕[Effect of idea]

以上のように本考案は入射径DFの光フアイバ
にレーザ光を入射させる集光レンズの焦点距離f
とビーム広がり角θとの間にfθ≒DFとなるよ
うに集光レンズを選べるようにするとともにまた
レーザ発振出力の変化に応じるようにもしたの
で、薄板の場合には高速に切断するほか切断可能
な板材の厚みの限界値を広げることが可能になつ
た。なお、切断に限らず、穴加工でも加工深さの
浅い場合は高速に穴加工し、さらに加工深さを深
くできるようになり、切断、穴あけ等の除去加工
を実現することができるようになつた。
As described above, the present invention is based on the focal length f of the condensing lens that makes the laser beam enter the optical fiber with the incident diameter DF.
The converging lens can be selected so that fθ≒DF between It has become possible to expand the limit value of possible plate thickness. In addition to cutting, it is now possible to drill holes at high speed when the depth is shallow, and to increase the depth, making it possible to perform removal operations such as cutting and drilling. Ta.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す構成図、第2
図はレーザパルスの平均出力とビーム広がり角の
関係を示す図、第3図はレーザ出力と集光レンズ
の組合せによる被加工物の厚みに対する切断速度
の関係を示す図、第4図はレーザ光の最小スポツ
ト径を説明する図である。 1……レーザ発振器、2……光フアイバ、3…
…照射用集光レンズ、5……光学系、6……短焦
点集光レンズ、7……長焦点集光レンズ、8a,
8b……移動架台。
Fig. 1 is a configuration diagram showing one embodiment of the present invention;
The figure shows the relationship between the average output of the laser pulse and the beam divergence angle. Figure 3 shows the relationship between the cutting speed and the thickness of the workpiece depending on the combination of the laser output and the condensing lens. Figure 4 shows the relationship between the laser output and the beam divergence angle. FIG. 2 is a diagram illustrating the minimum spot diameter. 1... Laser oscillator, 2... Optical fiber, 3...
...Condenser lens for irradiation, 5...Optical system, 6...Short focus condenser lens, 7...Long focus condenser lens, 8a,
8b...Moveable stand.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] レーザ発振器から出力されたレーザ光を光学系
で集光せしめて光フアイバに入射し上記光フアイ
バから出射したレーザ光を被加工物に集束する集
光レンズを備えたレーザ光伝送装置において、上
記光学系は焦点の異なる複数の集光レンズからな
りレーザ光路上にこれら集光レンズのうち上記レ
ーザ光の平均出力の高い領域では短焦点レンズが
位置し、上記平均出力の低い領域では長焦点レン
ズが位置するように挿脱自在に設けたことを特徴
とするレーザ光伝送装置。
A laser beam transmission device comprising a condensing lens that condenses a laser beam output from a laser oscillator using an optical system, enters an optical fiber, and condenses the laser beam emitted from the optical fiber onto a workpiece, the optical system comprising: The system consists of a plurality of condensing lenses with different focal points, and among these condensing lenses, a short focal length lens is positioned on the laser beam path in an area where the average output of the laser beam is high, and a long focal length lens is positioned in an area where the average output is low. A laser beam transmission device characterized in that it is provided so as to be freely inserted and removed so as to be positioned in the same position.
JP1983008444U 1983-01-26 1983-01-26 Laser light transmission equipment Granted JPS59116916U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983008444U JPS59116916U (en) 1983-01-26 1983-01-26 Laser light transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983008444U JPS59116916U (en) 1983-01-26 1983-01-26 Laser light transmission equipment

Publications (2)

Publication Number Publication Date
JPS59116916U JPS59116916U (en) 1984-08-07
JPS6239365Y2 true JPS6239365Y2 (en) 1987-10-07

Family

ID=30139933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983008444U Granted JPS59116916U (en) 1983-01-26 1983-01-26 Laser light transmission equipment

Country Status (1)

Country Link
JP (1) JPS59116916U (en)

Also Published As

Publication number Publication date
JPS59116916U (en) 1984-08-07

Similar Documents

Publication Publication Date Title
CN110087817B (en) Laser processing apparatus and method
US11850679B2 (en) Laser processing apparatus and method
JP6602860B2 (en) Laser processing apparatus and laser processing method
WO2010137475A1 (en) Laser machining device and laser machining method
US4401876A (en) Working gemstones
JP2003290965A (en) Laser beam machining device
JP2007029952A (en) Laser beam machining apparatus, and laser beam machining method
JP2002096187A (en) Laser beam machine and machining method
JPS6239365Y2 (en)
JP2591859Y2 (en) Optical fiber type processing head for laser
JP2001208924A (en) Optical fiber
JP2839741B2 (en) Laser processing apparatus and laser processing method
JP2000227576A (en) Emission optical system for laser processing device
US5248877A (en) Making an elongate cut using high energy radiation
JPH04300084A (en) Laser beam machine
JPH02284782A (en) Method for converging laser beams having different wavelengths
JP2002059287A (en) Method and device for laser beam machining
JP3429512B2 (en) Fiber guided laser equipment
JPS6032652Y2 (en) Laser beam transmission equipment
JPH06152017A (en) Laser oscillator
JPS63273589A (en) Laser welding method
JP2002001564A (en) Laser beam machining device and machining method using the same
JPH07108393A (en) Laser beam machining method and machine
JP2001264687A (en) Yag laser beam machine
JPS61132288A (en) Laser welding device