JPS6239161B2 - - Google Patents

Info

Publication number
JPS6239161B2
JPS6239161B2 JP14672378A JP14672378A JPS6239161B2 JP S6239161 B2 JPS6239161 B2 JP S6239161B2 JP 14672378 A JP14672378 A JP 14672378A JP 14672378 A JP14672378 A JP 14672378A JP S6239161 B2 JPS6239161 B2 JP S6239161B2
Authority
JP
Japan
Prior art keywords
flame retardant
parts
flame
composition
radiation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14672378A
Other languages
Japanese (ja)
Other versions
JPS5573710A (en
Inventor
Myuki Hagiwara
Yosuke Morita
Eisuke Oda
Shunichi Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14672378A priority Critical patent/JPS5573710A/en
Publication of JPS5573710A publication Critical patent/JPS5573710A/en
Publication of JPS6239161B2 publication Critical patent/JPS6239161B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は優れた難燃性䞊びに耐攟射線性を具備
した難燃耐攟射線性重合䜓組成物成圢䜓の補造方
法に関するものである。 炭化氎玠系重合䜓、䟋えば、ポリ゚チレン、ポ
リプロピレン、゚チレン−プロピレン共重合䜓、
ポリブタゞ゚ン、ブタゞ゚ン−スチレン共重合
䜓、ポリスチレン、ポリむ゜プレン及びその他の
炭化氎玠系重合䜓は燃え易く、防灜䞊必芁ず認め
られるずきは、これらを難燃化凊理しお甚いるこ
ずが望たれおいる。この目的から、埓来皮々の難
燃剀や難燃化の方法が提案されおいるのは呚知の
ずおりである。難燃剀ずしおは、䟋えば有機系難
燃剀ずしお、塩玠もしくは臭玠化パラフむン、あ
るいは塩玠化ポリ゚チレン等のハロゲン眮換脂肪
族系化合物、たた、ヘキサプロモベンれンやデカ
ブロモゞプニル゚ヌテル等のハロゲン眮換芳銙
族系化合物、トリプニルホスプヌト、トリス
・−ゞブロモプロピルホスプヌト等の
リン系化合物、無機系難燃剀ずしお氎酞化アルミ
ニりムなどその他倚くの化合物が知られおいる。
なかでも、臭玠等のハロゲン眮換芳銙族化合物は
熱的に安定で炭化氎玠系重合䜓の難燃剀ずしお効
果の倧きいものずしお知られおいる。しかしなが
ら、ここに䟋瀺したいわゆる添加型の難燃剀の堎
合、難燃剀ず重合䜓の間には化孊的な結合はな
い。このため長期の䜿甚期間䞭には難燃剀が成圢
䜓衚面に滲出したり、あるいは高枩䞋で揮散する
などのため難燃化重合䜓成型物の難燃特性が䜎䞋
するずいう堎合がしばしば起る。実際に難燃化重
合䜓成型物が火灜に遭遇したずきのこずを考える
ず難燃剀の分子量が小さくか぀添加型である堎
合、火焔や熱によ぀お重合䜓が着火する以前に成
型物から蒞発揮散しおしたうので、難燃化の効果
が著しく枛退するずいう事態に立ち到る。このた
め、あらかじめ過剰に添加しおおくなどの措眮を
ずるこずがあるが、倚量の難燃剀の添加は難燃化
重合䜓成型物の匷床等の機械的性質、絶瞁性胜等
の電気的性質を著しく䜎䞋させる原因ずなる。 䞀方、添加型難燃剀でも䟋えば塩玠化ポリ゚チ
レンのように高分子量のものが提案されおいる。
この堎合は䞊述したような䜎分子量のものに芋ら
れるような暹脂からの滲出や高枩䞋での揮散は少
ない。しかしながら、これら高分子量の難燃剀は
ごく分子構造の類䌌した暹脂においおのみ盞溶性
を瀺し構造の異なるもの同志の盞溶性は非垞に悪
い。たた、たずえ衚面䞊混合したように芋えお
も、䞍均䞀に分散しおいるにすぎないこずが倚
く、難燃化効果も悪い。 本発明者等は先に䞀般に芋られる難燃剀のかか
る欠点をもたない、぀たり、配合組成物からの難
燃剀の滲出、あるいは揮散がなく、か぀広い範囲
の重合䜓に察しお良奜な盞溶性を瀺し、か぀、少
量の䜿甚で有効な難燃化効果が埗られる炭化氎玠
系重合䜓に察する新しい難燃化法ずしお重合性リ
ン酞゚ステルを甚いる新しい難燃化法を提案し
た。 しかし、この難燃化法により埗られた難燃性炭
化氎玠系重合䜓組成物においおは組成物䞭に配合
した重合性リン酞゚ステル系の難燃剀が、重合化
凊理により重合䜓ずな぀た埌にも耐加氎分解性が
䜎く、埓぀お該組成物成圢䜓を高湿床の条件䞋で
䜿甚した堎合に加氎分解反応によりその難燃性が
䜎䞋するずいう問題が新たに生起した。 ずころで、近幎、軜氎冷华型原子炉による発電
が普及し぀぀あるが、原子炉呚蟺で甚いられる電
線・ケヌブルの耐火灜性の向䞊が安党性確保のう
ちから匷く芁請せられおいる。原子炉呚蟺では、
電線・ケヌブルは高湿床ず攟射線ずいう劣化芁因
が耇合した環境䞋で甚いられるこずもあり、絶瞁
材の難燃化凊理もこれに適した方法によらなけれ
ばならない。぀たり、難燃剀は䞍滲出性でしかも
耐湿性に富み、基材ずなる炭化氎玠系重合䜓の耐
攟射線性をそこなうものであ぀おはならない。 以䞊のような芳点から、重合性化合物による炭
化氎玠系重合䜓の難燃化に぀いお本発明者らは鋭
意怜蚎を重ねた結果、䞀般匏 匏䞭、あるいは で瀺されるアクリル酞の臭玠眮換プニル゚ステ
ルが充分な重合反応性を有し、か぀、この重合物
が基材ずなる炭化氎玠系重合䜓䞭で充分な耐湿性
ず難燃性ずを付䞎できる性胜を有しおいるこずを
芋いだした。 䞀方、䞊述のような重合性難燃剀はこれらが重
合䜓ずな぀おはじめお有効な難燃化効果を発揮す
るものであるから、䞀般に、炭化氎玠系重合䜓の
耐攟射線性付䞎剀ずしお垞甚されるラゞカル捕捉
䜜甚の匷い酞化防止剀の添加は難燃剀の重合を阻
害し、難燃化効果を䜎䞋させるので奜たしくな
い。さらに、この重合阻害䜜甚のために未反応の
たた残された重合性の難燃剀は、それらが攟射線
環境䞋におかれるず埐々に反応しお基材炭化氎玠
系重合䜓の攟射線劣化を促進するずいう悪圱響を
もたらすこずが明らかにな぀た。この事から重合
性難燃剀ず組合せお甚いるこずのできる耐攟射線
性付䞎剀は、該重合性難燃剀の重合を阻害しない
ものでなければならない。 本発明者らは、かかる芁請のもずに各皮化合物
の攟射線反応に぀いお基瀎的な怜蚎を進めたずこ
ろ、炭化氎玠系重合䜓に察しおピレンずゞアルキ
ルゞオチカルバミン酞ニツケルもしくはピレンず
−ベンゟむルオキシ−・・・−テトラ
メチルピリゞンずの特定範囲の混合物を䞊蚘の重
合性難燃剀ず共甚した堎合に、難燃性、耐攟射線
性ずもに優れた性胜を有する電気絶瞁性炭化氎玠
系重合䜓組成物が埗られるこずを芋いだし、本発
明に到達した。 本発明においお察象ずされる炭化氎玠系重合䜓
ずぱチレン、プロピレン、ブテン、む゜ブテ
ン、ブタゞ゚ン、む゜プレン、スチレン、α−メ
チルスチレン等炭玠及び氎玠からなる単量䜓を䞻
成分ずする重合䜓、たたはそれらの混合物をい
う。たた、本発明でいう重合䜓は䞊蚘単量䜓の各
皮誘導䜓、アクリル酞及びその゚ステル、メタク
リル酞及びその゚ステル、北化ビニル、北化ビニ
リデン、テトラフルオル゚チレン、塩化ビニル、
塩化ビニリデン、臭化ビニル、アクリロニトリ
ル、アクリルアミド、酢酞ビニルなどのビニル系
単量䜓ずの共重合䜓及びこれらず䞊述の炭化氎玠
系重合䜓ずの混合物も本発明の範囲に属する。 たた、前蚘䞀般匏
The present invention relates to a method for producing a molded article of a flame-retardant and radiation-resistant polymer composition having excellent flame retardancy and radiation resistance. Hydrocarbon polymers, such as polyethylene, polypropylene, ethylene-propylene copolymers,
Polybutadiene, butadiene-styrene copolymers, polystyrene, polyisoprene, and other hydrocarbon polymers are easily flammable, and when deemed necessary for disaster prevention, it is desirable to use them after being subjected to flame-retardant treatment. It is well known that various flame retardants and flame retardant methods have been proposed for this purpose. Examples of flame retardants include organic flame retardants such as chlorine or brominated paraffin, halogen-substituted aliphatic compounds such as chlorinated polyethylene, and halogen-substituted aromatic compounds such as hexapromobenzene and decabromodiphenyl ether. , triphenyl phosphate, tris(2,3-dibromopropyl) phosphate, and many other compounds such as aluminum hydroxide are known as inorganic flame retardants.
Among them, halogen-substituted aromatic compounds such as bromine are known to be thermally stable and highly effective as flame retardants for hydrocarbon polymers. However, in the case of the so-called additive type flame retardant exemplified here, there is no chemical bond between the flame retardant and the polymer. Therefore, during long-term use, the flame retardant properties of the flame retardant polymer molded product often deteriorate because the flame retardant oozes out onto the surface of the molded product or evaporates at high temperatures. Considering that a flame retardant polymer molded product actually encounters a fire, if the flame retardant has a small molecular weight and is additive, it will evaporate from the molded product before the polymer ignites due to flames or heat. Since it volatilizes, a situation arises in which the flame retardant effect is significantly reduced. For this reason, measures such as adding an excessive amount in advance may be taken, but adding a large amount of flame retardant will affect the mechanical properties such as strength and electrical properties such as insulation performance of the flame retardant polymer molded product. This causes a significant decrease in the amount of water. On the other hand, additive flame retardants with high molecular weights, such as chlorinated polyethylene, have been proposed.
In this case, there is little leaching from the resin or volatilization at high temperatures, which occurs with the low molecular weight ones mentioned above. However, these high molecular weight flame retardants are compatible only with resins having very similar molecular structures, and the compatibility between resins with different structures is very poor. Moreover, even if it appears to be mixed on the surface, it is often only dispersed non-uniformly, and the flame retardant effect is also poor. The inventors have previously discovered that flame retardants do not have such drawbacks commonly found in flame retardants, i.e., there is no leaching or volatilization of flame retardants from formulated compositions, and good compatibility with a wide range of polymers. We proposed a new flame retardant method using polymerizable phosphoric acid esters as a new flame retardant method for hydrocarbon polymers, which shows that effective flame retardant effects can be obtained even when used in small amounts. However, in the flame retardant hydrocarbon polymer composition obtained by this flame retardant method, the polymerizable phosphate ester flame retardant blended into the composition is However, a new problem has arisen in that when a molded article of the composition is used under conditions of high humidity, its flame retardancy decreases due to a hydrolysis reaction. Incidentally, in recent years, power generation using light water-cooled nuclear reactors has become widespread, and there is a strong demand for improving the fire resistance of electric wires and cables used around the reactor in order to ensure safety. Around the reactor,
Electric wires and cables are sometimes used in environments where there are multiple deterioration factors such as high humidity and radiation, and the flame retardant treatment of insulation materials must be done in a manner suitable for this environment. In other words, the flame retardant must be non-leaching, highly moisture resistant, and must not impair the radiation resistance of the base hydrocarbon polymer. From the above points of view, the present inventors have conducted intensive studies on making flame retardant hydrocarbon polymers using polymerizable compounds, and as a result, the general formula The brominated phenyl ester of acrylic acid represented by (in the formula, n = 3, 4 or 5) has sufficient polymerization reactivity, and this polymer is sufficient in the hydrocarbon polymer that serves as the base material. The inventors have discovered that the material has the ability to provide excellent moisture resistance and flame retardancy. On the other hand, polymerizable flame retardants such as those mentioned above exhibit an effective flame retardant effect only when they are turned into polymers, so they are generally used as radiation resistance imparting agents for hydrocarbon polymers. Addition of an antioxidant with a strong radical scavenging effect is not preferable because it inhibits the polymerization of the flame retardant and reduces the flame retardant effect. Furthermore, due to this polymerization inhibiting effect, the polymerizable flame retardants left unreacted will gradually react when exposed to a radiation environment, promoting radiation deterioration of the base hydrocarbon polymer. It has been shown that this has an adverse effect. For this reason, a radiation resistance imparting agent that can be used in combination with a polymerizable flame retardant must not inhibit the polymerization of the polymerizable flame retardant. Based on this request, the present inventors conducted basic studies on the radiation reactions of various compounds, and found that pyrene and nickel dialkyl diothicarbamate or pyrene and 4-benzoyloxy -Electrically insulating hydrocarbon type that has excellent performance in both flame retardancy and radiation resistance when a mixture with 2,2,6,6-tetramethylpyridine in a specific range is used together with the above polymerizable flame retardant. It has been discovered that a polymer composition can be obtained, and the present invention has been achieved. The hydrocarbon polymers targeted by the present invention are polymers whose main component is a monomer consisting of carbon and hydrogen, such as ethylene, propylene, butene, isobutene, butadiene, isoprene, styrene, α-methylstyrene, or A mixture of these. In addition, the polymers referred to in the present invention include various derivatives of the above monomers, acrylic acid and its esters, methacrylic acid and its esters, vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, vinyl chloride,
Copolymers with vinyl monomers such as vinylidene chloride, vinyl bromide, acrylonitrile, acrylamide, vinyl acetate, and mixtures of these with the above-mentioned hydrocarbon polymers also belong to the scope of the present invention. In addition, the general formula

【匏】 匏䞭、あるいはで瀺される重合性
難燃剀の具䜓䟋ずしおは臭玠が・・−、
・・−、・・、・・−あるい
は・・−の䜍眮に入぀たトリブロモプニ
ルアクリレヌト、・・・−あるいは・
・・−䜍眮に入぀たテトラブロムプニル
アクリレヌトおよびペンタブロムプニルアクリ
レヌトがあげられる。 䜵甚される耐攟射線性付䞎剀であるピレン、ゞ
アルキルゞチオカルバミン酞ニツケルおよび−
ベンゟむルオキシ−・・・−テトラメチ
ルピペリゞンは垂販のものをそのたた甚いるこず
ができる。たた、ゞアルキルゞチオカルバミン酞
ニツケルのアルキルずしおぱチル、−ブチル
等が䟋瀺される。 ここにおいお炭化氎玠系重合䜓に察する前蚘難
燃剀の添加量は察象ずなる炭化氎玠系重合䜓の皮
類ず必芁ずされる難燃床によるが、重合䜓100重
量郚に察しお難燃剀〜60重量郚甚いられる。し
かし、該難燃剀は難燃化効果が倧きいこずから著
しく過剰な添加は必芁ずせず䞀般には10〜30重量
郚皋床の添加で十分である。 なお、本発明においおは添加した難燃剀䞭の臭
玠原子に察し䞉酞化アンチモンをアンチモン原
子量で1/2〜1/3倍量䜵甚するず難燃性が䞀段ず助
長され奜たしいものである。 䞀方、重合性難燃剀ず䜵甚する前蚘耐攟射線性
付䞎剀の添加量は、少量過ぎる堎合は効果が小さ
く、倚量の添加は組成物の難燃性の䜎䞋をたねく
ので、䞀般には炭化氎玠系重合䜓100重量郚に察
しお0.5〜20重量郚ずされる。たた、該耐攟射線
性付䞎剀であるピレンずゞアルキルゞチオカルバ
ミン酞ニツケルあるは、−ベンゟむルオキシ−
・・・−テトラメチルピペリゞンずの混
合割合は重量比でから0.1の範囲で甚
いるのが最も効果的である。 本発明による難燃性耐攟射線性重合䜓組成物成
圢䜓を埗るには、たず炭化氎玠系重合䜓ず重合性
難燃剀および耐攟射線性付䞎剀を皮々の公知の方
法、䟋えば、粒状、粉状、フレヌク状、ブロツク
状重合䜓に察しお粉状たたは粒状の難燃剀を添加
し、ミキサヌにお混合し、ホツトロヌル、ブラベ
ンダヌ等により混緎すればよい。しかる埌に、所
望の成圢手段により、成圢埌配合した重合性難燃
剀を所望の手段により重合せしめるのであるが、
この重合せしめる手段ずしおは、䟋えば、組成物
の成圢盎前に該組成物䞭にラゞカル発生剀を添加
し成圢ず同時に加熱重合させる。あるいは組成物
の成型埌、賊圢された成圢䜓に電離性攟射線を照
射しお重合させる等の方法がある。成圢前に照射
するず、その炭化氎玠系重合䜓に架橋が生じ、そ
の埌の組成物の成圢が困難ずなるので、奜たしく
はない。 本発明にお甚いる難燃組成物䞭には増量剀、可
塑剀、染料、顔料、熱安定剀、垯電防止剀、滑剀
及びその類䌌物質のような成分を配合するこずも
可胜である。 なお本発明においう組成物成圢䜓ずは䜕ら特定
の圢状のものを意味するものでなく、䟋えばシヌ
ト、フむルム、電線又はケヌブル等における絶瞁
䜓局、シヌス局、その他皮々の賊圢物を指称する
ものである。 以䞋に、実斜䟋を瀺すが、ここでは難燃性の衚
瀺方法ずしお、酞玠指数を採甚した。この倀の枬
定方法はJIS K7201又はASTM D2863−70に芏栌
䞋されおおり、これらによれば高分子材料の酞玠
指数は詊料の燃焌時間が分以䞊継続しお燃焌す
るか、たたは燃焌長さが50mm以䞊燃え続けるのに
必芁な最䜎の酞玠濃床から求められる。 なお、以䞋の各䟋においおすべおの郚及びは
特に断らない限り重量による。 実斜䟋〜、比范䟋〜 ゚チレンプロピレンゎムEPDM100郚に察
し、亜鉛華郚、むオり0.5郚、ステアリン酞
郚、ポリ・・−トリメチル−・ゞヒ
ドロキリノン1.5郚、䞉酞化アンチモン10郚、
タルク100郚、重合性難燃剀ずしお・・−
トリブロモプニルアクリレヌト実斜䟋又
はペンタブロモプニルアクリレヌト実斜䟋
30郚、耐攟射線性付䞎剀ずしおピレン郚、
ゞブチルゞチオカルバミン酞ニツケル郚を120
℃の二本ロヌル䞊にお、゚チレンプロピレンゎム
に混入させ、その埌、ロヌル枩床を宀枩に䞋げ
お、ラゞカル発生剀ずしおゞクミルパヌオキサむ
ド郚およびゞ−−ブチルパヌオキサむド郚
を混入した。この混合物を、175℃、30分間、100
Kgcm2で厚さmmあるいはmmのシヌトに圧瞮成
圢した。埗られた厚さmmのシヌトから、巟6.5
mm、長さ150mmの现片を切り出し各詊料の酞玠指
数を枬定した。たた、厚さmmのシヌトからは
JIS3号ダンベルを打抜き、宀枩、空気䞭に、×
105radhrの線量率でγ線を照射したのち、埗ら
れた各詊料に぀いお匕匵詊隓法20℃、匕匵速床
500mmminにより耐攟射線性を枬定した。埗
られた結果を衚に瀺した。同衚䞭の比范䟋は
重合性難燃剀の代りにデカブロムゞプニル゚ヌ
テルを実斜䟋ず同じ臭玠含量ずなるように加
え、か぀、耐攟射線性付䞎剀を添加しない堎合の
結果である。 本発明の方法によれば高い酞玠指数ず優れた耐
攟射線性を有する難燃性組成物成圢䜓が埗られる
こずがわかる。 なお、比范䟋ずしおデカブロムゞプニル゚
ヌテルず実斜䟋およびで甚いたものず同じ組
成の耐攟射線性付䞎剀を添加した堎合、酞玠指数
が・・で充分な難燃性を有する組成物成圢
䜓は埗られなか぀た。
[Formula] Specific examples of polymerizable flame retardants represented by (in the formula, n = 3, 4 or 5) include bromine, 2, 3, 4-,
Tribromophenyl acrylate in the 2, 3, 5-, 2, 3, 6, 2, 4, 6- or 3, 4, 5- position, 2, 3, 4, 5- or 2,
Mention may be made of tetrabromphenyl acrylate and pentabromphenyl acrylate in the 3, 5, and 6 positions. Pyrene, nickel dialkyldithiocarbamate and 4-
Commercially available benzoyloxy-2,2,6,6-tetramethylpiperidine can be used as is. Further, examples of the alkyl of nickel dialkyldithiocarbamate include ethyl, n-butyl, and the like. The amount of the flame retardant added to the hydrocarbon polymer depends on the type of hydrocarbon polymer and the required degree of flame retardancy, but 5 to 60 parts by weight of the flame retardant is added to 100 parts by weight of the polymer. part is used. However, since the flame retardant has a large flame retardant effect, it is not necessary to add a significantly excessive amount, and in general, addition of about 10 to 30 parts by weight is sufficient. In the present invention, it is preferable to use antimony trioxide in an amount of 1/2 to 1/3 times the antimony atomic weight per 1 bromine atom in the added flame retardant, as this further promotes flame retardancy. On the other hand, if the amount of the radiation resistance imparting agent used in combination with the polymerizable flame retardant is too small, the effect will be small, and if it is added in a large amount, the flame retardance of the composition will decrease. The amount is 0.5 to 20 parts by weight per 100 parts by weight of the combined product. In addition, the radiation resistance imparting agent pyrene and nickel dialkyldithiocarbamate or 4-benzoyloxy-
The most effective mixing ratio with 2,2,6,6-tetramethylpiperidine is in the range of 1:2 to 1:0.1 by weight. In order to obtain the flame-retardant and radiation-resistant polymer composition molded article according to the present invention, first, a hydrocarbon polymer, a polymerizable flame retardant, and a radiation resistance imparting agent are mixed by various known methods, for example, in the form of granules, powders, etc. A powder or granular flame retardant may be added to a polymer in the form of flakes or blocks, mixed in a mixer, and kneaded using a hot roll, Brabender, or the like. Thereafter, the polymerizable flame retardant blended after molding is polymerized by a desired molding method.
As a means for this polymerization, for example, a radical generator is added to the composition immediately before the composition is molded, and the radical generator is heated and polymerized at the same time as the molding. Alternatively, after molding the composition, there is a method of irradiating the shaped molded article with ionizing radiation to polymerize it. Irradiation before molding is not preferred because crosslinking occurs in the hydrocarbon polymer, making subsequent molding of the composition difficult. Ingredients such as fillers, plasticizers, dyes, pigments, heat stabilizers, antistatic agents, lubricants and similar substances can also be incorporated into the flame retardant composition used in the present invention. In addition, the composition molded article as used in the present invention does not mean a specific shape at all, but refers to, for example, an insulator layer, a sheath layer, and other various excipients in sheets, films, electric wires, cables, etc. It is something. Examples are shown below, in which oxygen index was adopted as a method of indicating flame retardancy. The method for measuring this value is standardized in JIS K7201 or ASTM D2863-70, and according to these, the oxygen index of a polymer material is measured if the sample burns continuously for 3 minutes or more, or if the combustion length It is calculated from the minimum oxygen concentration required for the flame to continue burning for more than 50 mm. In the following examples, all parts and percentages are by weight unless otherwise specified. Examples 1-2, Comparative Examples 1-2 5 parts of zinc white, 0.5 part of sulfur, 1 part of stearic acid to 100 parts of ethylene propylene rubber (EPDM)
parts, poly(2,2,4-trimethyl-1,2 dihydroquilinone) 1.5 parts, antimony trioxide 10 parts,
100 parts of talc, 2, 4, 6- as a polymeric flame retardant
30 parts of tribromophenyl acrylate (Example 1) or pentabromophenyl acrylate (Example 2), 5 parts of pyrene as a radiation resistance imparting agent,
120 parts of nickel dibutyldithiocarbamate
The mixture was mixed into ethylene propylene rubber on two rolls at .degree. C., and then the roll temperature was lowered to room temperature, and 3 parts of dicumyl peroxide and 6 parts of di-t-butyl peroxide were mixed as radical generators. This mixture was heated at 175°C for 30 minutes at 100°C.
It was compression molded into a sheet with a thickness of 3 mm or 2 mm at kg/cm 2 . From the obtained 3mm thick sheet, width 6.5
A strip of 150 mm in length was cut out and the oxygen index of each sample was measured. Also, from a sheet with a thickness of 2 mm,
Punch out JIS No. 3 dumbbells and place them in the air at room temperature 5x
After irradiating with gamma rays at a dose rate of 10 5 rad/hr, each sample obtained was subjected to a tensile test method (20℃, tensile rate
500mm/min) to measure radiation resistance. The results obtained are shown in Table 1. Comparative Example 1 in the same table shows the results when decabromodiphenyl ether was added instead of the polymerizable flame retardant so that the bromine content was the same as in Example 1, and no radiation resistance imparting agent was added. It can be seen that according to the method of the present invention, a flame-retardant composition molded article having a high oxygen index and excellent radiation resistance can be obtained. In addition, as Comparative Example 2, when decabrom diphenyl ether and a radiation resistance imparting agent having the same composition as that used in Examples 1 and 2 were added, sufficient flame retardance was obtained with an oxygen index of 2, 4, and 5. No molded article of the composition was obtained.

【衚】 実斜䟋 〜 実斜䟋およびにおいお、耐攟射線性付䞎剀
ずしおピレン郚、・・・−テトラメチ
ルピペリゞン郚を甚いた倖は実斜䟋ず同様に
しお詊料シヌトを埗、各詊料に぀いお酞玠指数お
よび耐攟射線性詊隓を行な぀た。埗られた結果を
衚にたずめた。
[Table] Examples 3 to 4 In Examples 1 and 2, the same procedure as in Example 1 was used except that 5 parts of pyrene and 2 parts of 2,2,6,6-tetramethylpiperidine were used as radiation resistance imparting agents. Sample sheets were obtained, and oxygen index and radiation resistance tests were conducted on each sample. The results obtained are summarized in Table 2.

【衚】 䞊衚から明らかな劂く実斜䟋およびず同様
の優れた難燃耐攟射線性重合䜓組成物成圢䜓が埗
られるこずがわかる。 実斜䟋  ポリ゚チレンPE100郚に察し、ステアリン
酾鉛0.5郚、パラフむンワツクス0.5郚、ポリ
・・−トリメチル−・ゞヒドロキノ
リン0.5郚、䞉酞化アンチモン10郚、デクロラ
ンプラス25 15郚、重合性難燃剀ずしおペンタブ
ロムプニルアクレヌト20郚、耐攟射線性付䞎剀
ずしおピレン郚、ゞブチルゞチオカルバミン酞
ニツケル郚を110℃の二本ロヌル䞊でポリ゚チ
レンに混入させ、その埌さらに、ラゞカル発生剀
ずしおゞクミルパヌオキサむド郚を混入した。
この混和物を160℃、30分間、100Kgcm2で厚さ
mmのシヌトに圧瞮成型した。このシヌトから巟65
mm、長さ150mmの现片を切り出した。これらの詊
料の酞玠指数の枬定および耐攟射線性詊隓を行な
぀た。埗られた結果を衚に瀺す。
[Table] As is clear from the above table, it can be seen that excellent flame-retardant and radiation-resistant polymer composition molded articles similar to those of Examples 1 and 2 were obtained. Example 5 For 100 parts of polyethylene (PE), 0.5 parts of lead stearate, 0.5 parts of paraffin wax, 0.5 parts of poly(2,2,4-trimethyl-1,2 dihydroquinoline), 10 parts of antimony trioxide, 15 parts of Lorane Plus 25, 20 parts of pentabromophenylacrate as a polymerizable flame retardant, 5 parts of pyrene as a radiation resistance imparting agent, and 2 parts of nickel dibutyldithiocarbamate were mixed into polyethylene on two rolls at 110°C. Thereafter, 3 parts of dicumyl peroxide was further mixed in as a radical generator.
This mixture was heated at 160℃ for 30 minutes to a thickness of 3 cm at 100Kg/ cm2.
It was compression molded into a sheet of mm. Width 65 from this sheet
mm, and 150 mm long strips were cut out. These samples were subjected to oxygen index measurements and radiation resistance tests. The results obtained are shown in Table 3.

【衚】 含臭玠難燃剀ずしおデカブロムゞプニル゚ヌ
テルを甚いた比范䟋ずの察比から明らかなよう
に、本発明の方法によれば、難燃性、耐攟射線性
に優れた組成物成圢䜓が埗られるこずがわかる。 実斜䟋  実斜䟋においお、耐攟射線性付䞎剀をピレン
郚、・、・−テトラメチルピペリゞン
郚ずしたずきの酞玠指数倀および耐攟射線性詊
隓の結果を衚に瀺した。
[Table] As is clear from the comparison with a comparative example using decabrom diphenyl ether as a bromine-containing flame retardant, according to the method of the present invention, a molded composition with excellent flame retardancy and radiation resistance can be obtained. You can see what you can get. Example 6 In Example 5, the oxygen index value and the results of the radiation resistance test when the radiation resistance imparting agent was 5 parts of pyrene and 2 parts of 2,2,6,6-tetramethylpiperidine are shown in Table 4. Ta.

【衚】 衚に瀺した比范䟋ずの察比から明らかなよう
に、本発明の方法によれば、難燃性、耐攟射線性
ずもに優れた組成物成圢䜓が埗られるこずがわか
る。 実斜䟋  実斜䟋においお、炭化氎玠系熱可塑性重合䜓
を゚チレン−酢酞ビニル共重合䜓EVA、酢酞
ビニル含量15wtずしたずきの酞玠指数倀お
よび耐攟射線性詊隓の結果を衚に瀺した。
[Table] As is clear from the comparison with the comparative example shown in Table 3, it can be seen that according to the method of the present invention, a molded composition having excellent flame retardancy and radiation resistance can be obtained. Example 7 In Example 5, the oxygen index value and radiation resistance test results when the hydrocarbon thermoplastic polymer was ethylene-vinyl acetate copolymer (EVA, vinyl acetate content 15 wt%) are shown in Table 5. Indicated.

【衚】 含臭玠難燃剀ずしおデカブロムゞプニル゚ヌ
テルを甚いた比范䟋ずの察比から明らかなよう
に、本発明の方法によれば、難燃性、耐攟射線性
に優れた組成物成圢䜓が埗られるこずがわかる。 実斜䟋  実斜䟋、、、および比范䟋の各組成
物をロヌルで混緎埌、各々の組成物をmm2の断面
積を持぀軟銅撚線䞊に厚みがmmずなるように抌
出機により抌出被芆埌、蒞気猶䞭160℃で30分間
加硫しお絶瞁電線を埗た。 次に、而しお埗られた各々の絶瞁電線に぀い
お、絶瞁抵抗、亀流耐電圧詊隓、IPCEA垂盎燃
焌詊隓、200Mrad照射埌の自己埄巻付による耐攟
射線性詊隓を行぀お埗られた結果を衚に瀺す。 衚から明らかな劂く、本発明方法によれば、優
れた特性を有する絶瞁電線が埗られるものであ
る。
[Table] As is clear from the comparison with a comparative example using decabrom diphenyl ether as a bromine-containing flame retardant, according to the method of the present invention, a molded composition with excellent flame retardancy and radiation resistance can be obtained. You can see what you can get. Example 8 After kneading each composition of Examples 1, 2, 3, 5 and Comparative Example 1 with a roll, each composition was extruded onto an annealed copper stranded wire having a cross-sectional area of 2 mm 2 to a thickness of 8 mm. After extrusion coating using a machine, the wire was vulcanized at 160°C for 30 minutes in a steam can to obtain an insulated wire. Next, we conducted insulation resistance, AC withstanding voltage tests, IPCEA vertical combustion tests, and radiation resistance tests by self-diameter winding after 200 Mrad irradiation on each of the obtained insulated wires, and the results obtained are listed below. 6. As is clear from the table, according to the method of the present invention, an insulated wire with excellent properties can be obtained.

【衚】 以䞊、説明した劂く、本発明方法によれば優れ
た難燃特性及び耐攟射線特性を具備した炭化氎玠
系重合䜓組成物成圢䜓が埗られるものであり、そ
の工業的䟡倀は極めお倧きいものである。
[Table] As explained above, according to the method of the present invention, a molded article of a hydrocarbon polymer composition having excellent flame retardant properties and radiation resistance properties can be obtained, and its industrial value is extremely large. It is something.

Claims (1)

【特蚱請求の範囲】  炭化氎玠系重合䜓100重量郚に察しおピレン
ずゞアルキルゞチオカルバミン酞ニツケルもしく
は−ベンゟむルオキシ−・・・−テト
ラメチルピペリゞンの重合比が〜0.1
の範囲の混合物0.5〜20重量郚および䞀般匏 匏䞭、たたはによ぀お衚わされる
重合性難燃剀を〜60重量郚配合したこずを特城
ずする組成物を所望の賊圢䜓ずなしたのち、該賊
圢䜓䞭の重合性難燃剀を重合せしめる凊理を斜こ
すこずを特城ずする難燃耐攟射線性重合䜓組成物
成圢䜓の補造方法。
[Scope of Claims] 1. The polymerization ratio of pyrene and nickel dialkyldithiocarbamate or 4-benzoyloxy-2,2,6,6-tetramethylpiperidine to 100 parts by weight of the hydrocarbon polymer is 1:2 to 1. :0.1
Mixtures ranging from 0.5 to 20 parts by weight and general formula After forming a composition characterized by blending 5 to 60 parts by weight of a polymerizable flame retardant represented by the formula (wherein n=3, 4 or 5) into a desired excipient, 1. A method for producing a flame-retardant, radiation-resistant polymer composition molded article, which comprises performing a treatment of polymerizing a polymerizable flame retardant.
JP14672378A 1978-11-28 1978-11-28 Preparation of molded article of flame-retardant and radiation-resistant polymer composition Granted JPS5573710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14672378A JPS5573710A (en) 1978-11-28 1978-11-28 Preparation of molded article of flame-retardant and radiation-resistant polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14672378A JPS5573710A (en) 1978-11-28 1978-11-28 Preparation of molded article of flame-retardant and radiation-resistant polymer composition

Publications (2)

Publication Number Publication Date
JPS5573710A JPS5573710A (en) 1980-06-03
JPS6239161B2 true JPS6239161B2 (en) 1987-08-21

Family

ID=15414094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14672378A Granted JPS5573710A (en) 1978-11-28 1978-11-28 Preparation of molded article of flame-retardant and radiation-resistant polymer composition

Country Status (1)

Country Link
JP (1) JPS5573710A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196605A (en) * 1984-10-18 1986-05-15 マナック株匏䌚瀟 Incombustible electric insulation composition
JPS62267360A (en) * 1986-05-16 1987-11-20 Oouchi Shinko Kagaku Kogyo Kk Light-resistant stabilized polymer colored composition
JPH01297444A (en) * 1988-05-25 1989-11-30 Mitsubishi Petrochem Co Ltd Ozone-resistant polyolefin molded body
JP5163263B2 (en) * 2008-05-01 2013-03-13 日立電線株匏䌚瀟 Radiation-resistant sheath material and radiation-resistant cable

Also Published As

Publication number Publication date
JPS5573710A (en) 1980-06-03

Similar Documents

Publication Publication Date Title
US20100086268A1 (en) Fire Resistant Thermoplastic or Thermoset Compositions Containing an Intumescent Specialty Chemical
US3860676A (en) Flame retardant compositions
JP2655996B2 (en) Cross-linked flame-retardant resin composition and cross-linked flame-retardant insulated wire using the same
JP3358228B2 (en) Resin composition and insulated wire and insulated tube therefrom
US5539052A (en) Crosslinked thermoplastic elastomers
EP0035279B1 (en) Compositions of alkylene-alkyl acrylate copolymers having improved flame retardant properties
JPS6239161B2 (en)
JPS6140256B2 (en)
JP2648874B2 (en) Heat-resistant polyolefin composition
JP2681195B2 (en) Flame retardant polyolefin composition
KR20100078823A (en) Inorganic and melamine-based polyolefin flame retardant composition containing nanoclay
JP2869809B2 (en) Flame retardant resin composition
JPH03197539A (en) Flame-retardant resin composition
WO1986004595A1 (en) Polyolefin composition
RU2369931C1 (en) Electric insulating self-extinguishing composition
JPS625938B2 (en)
JPH0573135B2 (en)
JPH0995562A (en) Flame-retardant cross-linkable polyolefin composition and flame-retardant electric wire
JPS6010024Y2 (en) Flame-retardant cross-linked polyethylene composition insulated wire
JPH0726017B2 (en) Flame retardant composition
JPH0995563A (en) Flame-retardant heat-resistant resin composition
SU604859A1 (en) Self-stopping composition based on homo -or copolymers of olefins or their mixtures
JPH02251552A (en) Flame-retardant resin composition
JPS6034978B2 (en) Method for manufacturing flame-retardant polyolefin molded body
JPS6166736A (en) Flame-retardant polyolefin composition