JPS6239056A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6239056A
JPS6239056A JP60179651A JP17965185A JPS6239056A JP S6239056 A JPS6239056 A JP S6239056A JP 60179651 A JP60179651 A JP 60179651A JP 17965185 A JP17965185 A JP 17965185A JP S6239056 A JPS6239056 A JP S6239056A
Authority
JP
Japan
Prior art keywords
transfer section
transfer means
horizontal
horizontal transfer
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60179651A
Other languages
Japanese (ja)
Inventor
Sotohisa Asai
浅井 外壽
Masaaki Kimata
雅章 木股
Masao Yamawaki
正雄 山脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60179651A priority Critical patent/JPS6239056A/en
Publication of JPS6239056A publication Critical patent/JPS6239056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To easily obtain a small-sized or high-resolution solid state image pickup device with a limited narrow channel effect, by providing buried channels for vertical and horizontal transfer sections, respectively, with their forming conditions such as channel depth and impurity concentration controlled independently of each other. CONSTITUTION:The junction of a buried channel 21 in a vertical transfer section is provided with a depth smaller than that of the junction of a buried channel 22 in a horizontal transfer section, while the impurity concentration of the buried channel 21 in the vertical transfer section is higher than that of the N-type diffused layer 22 in the horizontal transfer section. In this way, namely, by providing the junction of the N-type diffused layer 21 in the vertical transfer section subjected to a higher narrow channel effect with a depth smaller than that of the junction of the N-type diffused layer 22 in the horizontal transfer section, the narrow channel effect can be inhibited. Further, since the junction of the N-type diffused layer 22 in the horizontal transfer section is formed deep, the decrease in transfer efficiency, which might be caused if the N-type diffused layer 22 were formed shallow together with the layer 21, can be effectively prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は2次元的に光電変換素子が配列された固体w
i像装置の転送効率の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a solid w in which photoelectric conversion elements are two-dimensionally arranged.
This invention relates to improving the transfer efficiency of an i-image device.

[従来の技術] 第2図は従来のインターラインCCD型の固体!fi像
装置の模式的構成を示ブー図である。第2図におい−C
1固体Ifi像装置は、垂直および水平方向に配列され
て与えられた光信号を1i向信号に変換する受光素子6
と、受光素子6からの信号1i荷を読出すための選択ス
イッチ7と、受光素子6から選択スイッチ7を介して読
出された信号電荷を垂直方向に転送するための垂直転送
部8と、垂直転送部8より転送されてきた信@電荷を1
水平線対応ごとに直列に転送して読出す水平転送部9と
から!Tfiされる。次に動作について説明する。
[Prior art] Figure 2 shows a conventional interline CCD type solid state! FIG. 2 is a diagram showing a schematic configuration of an FI image device. Figure 2 - C
1 solid state Ifi image device includes light receiving elements 6 arranged vertically and horizontally and converting a given optical signal into a 1i direction signal.
, a selection switch 7 for reading out the signal charge 1i from the light receiving element 6, a vertical transfer section 8 for vertically transferring the signal charge read out from the light receiving element 6 via the selection switch 7, The signal @charge transferred from the transfer unit 8 is 1
From the horizontal transfer unit 9 that serially transfers and reads out each horizontal line! Tfied. Next, the operation will be explained.

たとえばp−nダイオードから構成される受光素子6は
入射光を信号電荷に変換して一時蓄積を行なう。垂直走
査の帰線期間にスイッチ7を電気的に開いて信号電荷を
垂直転送部8へ転送する。
For example, the light receiving element 6 composed of a pn diode converts incident light into signal charges and temporarily stores them. During the retrace period of vertical scanning, the switch 7 is electrically opened to transfer signal charges to the vertical transfer section 8 .

水平走査の帰線期間に1行く1水平線)ずつ垂直方向に
シフトさせることにより、水平転送部9に1行分の信号
を転送し、次に水平転送部9の信号を水平方向にシフト
させることにより直列の電荷信号列として出力信号が得
られる。この垂直転送部および水平転送部は信号電荷の
転送効率を改善するために埋め込みチャネルCODを用
いて構成される例がほとんどである。
By vertically shifting the signal by 1 line by 1 horizontal line during the retrace period of horizontal scanning, the signal for one line is transferred to the horizontal transfer section 9, and then the signal of the horizontal transfer section 9 is shifted in the horizontal direction. An output signal is obtained as a series charge signal train. In most cases, the vertical transfer section and the horizontal transfer section are constructed using a buried channel COD in order to improve the transfer efficiency of signal charges.

第3図は埋め込みチャネル型の転送素子の構造を示す断
面図であり、第2図の光電変換領域の断面4ai^図で
ある。第3図において、p型半導体基板1上に埋め込み
チャネルとなるn型拡散層2が形成される。n型拡散層
2上には、絶縁体となるゲート酸化1!1131.32
と、電荷の転送を制賀するための電圧を印加するための
第1のグー1− ’i極41と、信号l!荷を受光素子
6から読出ずための電圧を印加するための第2のゲート
N橿42とが設けられる。またn型拡散層2に適当な電
圧を印加して府め込みチャネルを形成するためのバイア
スII極5が設けられる。
FIG. 3 is a cross-sectional view showing the structure of a buried channel type transfer element, and is a cross-sectional view 4ai^ of the photoelectric conversion region in FIG. In FIG. 3, an n-type diffusion layer 2 serving as a buried channel is formed on a p-type semiconductor substrate 1. On the n-type diffusion layer 2, there is a gate oxide layer 1!1131.32 which becomes an insulator.
, a first goo 1-'i pole 41 for applying a voltage to suppress charge transfer, and a signal l! A second gate 42 is provided for applying a voltage for not reading out the signal from the light receiving element 6. Further, a bias II pole 5 is provided for applying an appropriate voltage to the n-type diffusion layer 2 to form a buried channel.

この埋め込みチャネル型CODにおいては、n型拡散層
2を全体を一旦空乏層化させるようにバイアスlE[t
5に電圧を印加1Lゲート電極41゜42への印加電圧
を適当な範囲で選択すると、半導体基板1内部の深さ方
向の電位分布はn型拡散N2の内部で最大点を持つ。こ
の状態で信号電荷を注入すると、信号電荷は電圧最大点
近傍に蓄えられるため、si −sr o□界面〈半導
体基板とゲート酸化膜との界面)の影響を受けにくく転
送効率が表面チャネル型の場合よりも向上する。
In this buried channel type COD, a bias lE[t
When the voltage applied to the 1L gate electrodes 41 and 42 is selected within an appropriate range, the potential distribution in the depth direction inside the semiconductor substrate 1 has a maximum point inside the n-type diffusion N2. When signal charges are injected in this state, the signal charges are stored near the voltage maximum point, so the transfer efficiency is less affected by the si-sro□ interface (the interface between the semiconductor substrate and the gate oxide film), and the transfer efficiency is lower than that of the surface channel type. Improved than the case.

[発明が解決しようとする間引1 従来の固体搬像装置においては、水平転送部9と垂直転
送1!S8とを形成するそれぞれの埋め込みチャネルC
ODの形成条件が同一にされている。
[Thinning 1 to be Solved by the Invention In the conventional solid-state image transfer device, the horizontal transfer unit 9 and the vertical transfer 1! S8 and each buried channel C forming
The conditions for forming OD are the same.

ところで、水平方向のWIewの向上や、@躍の小形化
のためには水平画素ピッチを小さくする必要があり、こ
のためには垂直転送部の幅をできるだけ小さくすう必要
があ8.一方、水平転送部は最大電荷転送量を確保する
意味もあって、それほど小さくする必要はない。このこ
とより水平転送部と垂直転送部のチャネル幅が異なり、
かつ垂直転送部のチャネル幅が2μmまたはそれ以下の
状態にされる。
By the way, in order to improve the WIew in the horizontal direction and to make the @Yaku smaller, it is necessary to reduce the horizontal pixel pitch, and for this purpose, it is necessary to reduce the width of the vertical transfer section as much as possible. On the other hand, the horizontal transfer section does not need to be made so small in order to ensure the maximum amount of charge transfer. This means that the channel widths of the horizontal transfer section and vertical transfer section are different.
In addition, the channel width of the vertical transfer section is set to 2 μm or less.

このように垂直転32Ii部の幅が狭くなった場合、た
とえばテレビジョン学会技術報告TE8S69−6.E
D558に示されるように狭チャネル幅効果によって垂
直転送部の電位ポテンシャルが低くなる。特に、COD
の幅が2μ++を以下になるとこの効果は顕著になる。
When the width of the vertical rotation 32Ii portion is narrowed in this way, for example, as described in the Technical Report TE8S69-6 of the Television Society of Japan. E
As shown in D558, the potential of the vertical transfer section becomes low due to the narrow channel width effect. In particular, COD
This effect becomes remarkable when the width of 2μ++ or less.

この狭チャネル幅効果の原因は、主に分離用酸化膜下に
形成されたチャネルカット用の高11度不純物拡散領域
からの不純物の横方向拡散により埋め込みチャネルとな
る不純物拡散領域の不純物1度が低下することに起因す
ると考えられる。
The cause of this narrow channel width effect is mainly due to the lateral diffusion of impurities from the high 11 degree impurity diffusion region for channel cut formed under the isolation oxide film. This is thought to be due to the decrease in

第4図は第2図の線I−I[G、7沿って切断した場合
の断面miを示す図である。第4図において、p型半導
体基板1上に埋め込みチャネルとなるn型拡散層2が形
成される。n型拡散112上にはゲート酸化膜31.ゲ
ートl!l141が形成される。
FIG. 4 is a diagram showing a cross section mi taken along line II[G, 7 in FIG. 2. In FIG. 4, an n-type diffusion layer 2 serving as a buried channel is formed on a p-type semiconductor substrate 1. A gate oxide film 31 is formed on the n-type diffusion 112. Gate l! l141 is formed.

隣接する素子と電気的に分1するために、n型拡散11
N2を挾むように分離用酸化膜10およびp+拡散11
11が形成さる。p+拡散層11は分離用酸化v110
とp型半導体基板1の界面にn型反転層が形成されるの
を防止するために1分離用酸化膜10の形成前に自己整
合的にたとえばイオン注入法を用いて形成される。その
後分離用酸化慢10を形成するために、たとえば950
℃、水蒸気雰囲気中で400分程度酸化する。このとき
ρ“拡散l!111も横方向に拡散を生じる。この後、
分離用酸化膜108用いて自己整合的にn型拡散層2も
形成されるが、分離用酸化膜10との境界近傍のn型不
純物1度がp+拡散謂11からの横方向拡散によって補
償されて低下する。特にCODのチャネル幅が狭い場合
には、n型拡散暦2全体の1度が低下しポテンシャルの
低下が生じる。
In order to electrically separate the adjacent elements, an n-type diffusion 11
Isolation oxide film 10 and p+ diffusion 11 sandwiching N2
11 is formed. The p+ diffusion layer 11 is oxidized v110 for isolation.
In order to prevent an n-type inversion layer from being formed at the interface between p-type semiconductor substrate 1 and p-type semiconductor substrate 1, it is formed in a self-aligned manner using, for example, an ion implantation method before forming isolation oxide film 10. Thereafter, in order to form the separating oxide film 10, for example 950
Oxidize in a steam atmosphere at ℃ for about 400 minutes. At this time, ρ"diffusion l!111 also causes diffusion in the lateral direction. After this,
The n-type diffusion layer 2 is also formed in a self-aligned manner using the isolation oxide film 108, but the n-type impurity 1 degree near the boundary with the isolation oxide film 10 is compensated for by lateral diffusion from the p+ diffusion so-called 11. and decreases. In particular, when the channel width of the COD is narrow, the entire n-type diffusion calendar 2 decreases by 1 degree, resulting in a decrease in potential.

このため、水平転jx部の転送動作を制御するためのク
ロック信号と垂直転送部の転送動作を制御するためのク
ロック信号とに対しその電圧レベルを変更する等の調整
をしなければ最適動作が難しく、かつ高速・高電圧のク
ロックパルスを必用とし、装置が安価にできないという
問題点が生じる。
Therefore, optimal operation will not be achieved unless adjustments are made such as changing the voltage levels of the clock signal for controlling the transfer operation of the horizontal transfer section and the clock signal for controlling the transfer operation of the vertical transfer section. This method is difficult and requires high-speed, high-voltage clock pulses, which poses the problem that the device cannot be manufactured at low cost.

それゆえ、この発明の目的は上記の問題点を解消し、微
細化された固体撮像装置においても水平転送部と垂直転
送部の電位ポテンシャルの差が小さく、クロックレベル
の調整が容易な固体Wi像装置を提供することである。
Therefore, an object of the present invention is to solve the above-mentioned problems, and to provide a solid-state Wi image with a small difference in potential between the horizontal transfer section and the vertical transfer section even in a miniaturized solid-state imaging device, and with which the clock level can be easily adjusted. The purpose is to provide equipment.

[問題点を解決するための手段] この発明における固体撮m装置は、埋め込みチャネルの
形成条件を垂直転送部と水平転送部とで異ならせるよう
にしたものである。
[Means for Solving the Problems] In the solid-state imaging device of the present invention, the conditions for forming the buried channel are different between the vertical transfer section and the horizontal transfer section.

好ましくは垂直転送部の埋め込みチャネルは水平転送部
の埋め込みチャネルの深さより浅くされる。また、垂直
転送部の埋込みチャネルの不純物濃度が水平転送部のそ
れより高くされる。
Preferably, the buried channel of the vertical transfer section is shallower than the depth of the buried channel of the horizontal transfer section. Further, the impurity concentration of the buried channel of the vertical transfer section is made higher than that of the horizontal transfer section.

U作用フ 垂直転送部の埋め込みチャネルとなるn型拡散層の深さ
く接合深さ)を水平転送部のそれより浅く形成したので
、垂直転送aftにおいて狭チャネル幅効果を抑制し、
電位ポテンシャルの低下を補償することができる。
Since the depth (junction depth) of the n-type diffusion layer that becomes the buried channel of the vertical transfer section is shallower than that of the horizontal transfer section, the narrow channel width effect is suppressed in the vertical transfer section.
It is possible to compensate for a decrease in electric potential.

U発明の冥M例コ 第1図はこの発明の一寅施例である固体撮像装置の垂直
転送部および水平転送部の断面m造を示す図である。第
1図(a)は垂直転送部の断面構造を示し、第1図(1
))は水平転送部の断面構造を示す。第1図(a)、(
b)において、垂直転送部および水平転送部は共にp型
半導体基板1Fに素子分離用の酸化It!110および
p+拡散層11が形成され、これらの間の半導体蟇板頭
域に埋め込みチャネルとなるn型拡散@21.22がそ
れぞれ形成される。0型拡散@21.22のそれぞれの
上には、絶縁体となるゲート酸化−31および転送動作
を制御するための電圧を印加するためのゲート電極41
が設けられる。
Embodiment of the Invention FIG. 1 is a diagram showing the cross-sectional structure of a vertical transfer section and a horizontal transfer section of a solid-state imaging device which is an embodiment of the invention. Figure 1(a) shows the cross-sectional structure of the vertical transfer section.
)) shows the cross-sectional structure of the horizontal transfer section. Figure 1 (a), (
In b), both the vertical transfer section and the horizontal transfer section are provided with oxidized It! for element isolation on the p-type semiconductor substrate 1F. 110 and p+ diffusion layer 11 are formed, and n-type diffusions @21 and 22, which become buried channels, are formed in the semiconductor plate head region between them, respectively. On each of the 0-type diffusions @21 and 22, a gate oxide 31 serving as an insulator and a gate electrode 41 for applying a voltage to control the transfer operation are provided.
is provided.

第1図(a)、(b)から見られるように、この発明の
特徴として垂直転送部の埋め込みチャネルの接合深さは
水平転送部の埋め込みチャネル22の接合深さより6浅
くされ、かつ垂直転送部の埋め込みチャネル21の不純
物濃度は水平転送部の11型拡散層22よりも高くされ
る。
As seen from FIGS. 1(a) and 1(b), the feature of the present invention is that the junction depth of the buried channel in the vertical transfer section is 6 shallower than the junction depth of the buried channel 22 in the horizontal transfer section, and The impurity concentration of the buried channel 21 in the horizontal transfer section is made higher than that of the 11-type diffusion layer 22 in the horizontal transfer section.

これはたとえば、水平転送部のn型拡散@21の不純物
源として砒素、水平転送部の1)型拡散層22の不純物
源としてリンを使用し、各n型拡散層21.22の形成
のためのイオン注入用のフAトレジストマスクを別々に
設け、それぞれ専用に(個別に)バターニングすること
により容易に実現することができる。
For example, arsenic is used as the impurity source for the n-type diffusion @21 in the horizontal transfer section, phosphorus is used as the impurity source for the 1) type diffusion layer 22 in the horizontal transfer section, and for the formation of each n-type diffusion layer 21,22. This can be easily realized by separately providing photoresist masks for ion implantation and patterning them exclusively (separately).

上述のように狭チャネル幅効果の大きい垂直転送部のn
型拡敢121の接合深さを水平転送部のn型拡散層22
の接合深さより浅くすることにより、先に)ホベたテレ
ビジョン学会技術報告丁EBS69−6.ED558に
も開示されているように、狭チャネル幅効果を抑制する
ことができる。
As mentioned above, the vertical transfer section has a large narrow channel width effect.
The junction depth of the type expansion 121 is changed to the n-type diffusion layer 22 of the horizontal transfer section.
By making the bonding depth shallower than the bonding depth of the previous) Hobe Television Society Technical Report EBS69-6. As also disclosed in ED558, narrow channel width effects can be suppressed.

一方、水平転送部のn型K111層22の接合深さは従
来と同様深(形成されているので、水平転送部のn型拡
1ttH1122をも同時に浅くした場合に弔意される
高速転送時の転送効率の低下も防止することができる。
On the other hand, the junction depth of the n-type K111 layer 22 in the horizontal transfer section is deep (formed as in the conventional case). Decrease in efficiency can also be prevented.

なお、上記実施例においては不純物の拡散源を変更する
ことにより、拡散係数の違いを用いて垂直転送部のn型
拡散層のみを浅くしたものであるが1.!!!l処理時
間を水平転送部用n型拡散層とf!直直送送部用n型拡
散層で変えることによっても上記実施例と同様の効果を
得ることができる。
In the above embodiment, only the n-type diffusion layer of the vertical transfer section was made shallow by changing the impurity diffusion source and using the difference in diffusion coefficient.1. ! ! ! l processing time for the n-type diffusion layer for the horizontal transfer section and f! The same effect as in the above embodiment can be obtained by changing the n-type diffusion layer for the direct delivery section.

さらに上記2つの実施例においては、垂直転送部の埋め
込みチャネルの深さを水平転送部の1ψめ込み千トネル
よりも浅くすることにより、狭チVネル幅効果自舅を抑
制して電位ポテンシャルの低下を補償し転i3!i効率
を改善するものであるが、秋チャネル幅効果の″f−ヤ
ネル雷位の低下を防止するだけであれば、垂直転送部の
0型拡散膏の不純物′a度をチャネル電位の低下を補償
する程度に高くすることによっても電位ポテンシャルの
低下を防止することができる(:とは明らかである。
Furthermore, in the above two embodiments, by making the depth of the buried channel of the vertical transfer section shallower than the 1ψ buried channel of the horizontal transfer section, the narrow channel V channel width effect is suppressed and the potential potential is reduced. Compensate for the decline and transfer to i3! However, if only to prevent the fall channel width effect from lowering the f-Yarnel voltage level, it is necessary to reduce the impurity level of the type 0 diffusion layer in the vertical transfer section to reduce the channel potential. It is also possible to prevent the potential from decreasing by increasing the potential to a level that compensates for it.

r fi!明の効果1 以上のように、この発明によれば、垂直転送部と水平転
送部の埋め込みチトネルの深さや不!Il′aJ濃度等
の形成条件を各々独立に1lIlllして各々の埋込み
チャネルを形成したので、狭チーVネル幅効果を抑11
)することができ、施解@j度まtごは小形の固1本蹟
隊装置を0易にμsることができる。
rfi! Advantageous Effect 1 As described above, according to the present invention, the depth and depth of the embedded chitnels in the vertical transfer section and the horizontal transfer section can be adjusted. Since each buried channel was formed by setting the formation conditions such as Il'aJ concentration independently, the narrow channel width effect was suppressed.
), and the implementation can easily be performed using a small solid-state device.

4、図面の筒中説明 第1図はこの発明の一寅施例である固体1III像装置
の転送部の断面図であり、第1図(a ”)は垂直転送
部、第1図(b)は水平転送部の1gi面図をそれぞれ
示す。第2図は従来のインターラインICCDの椙成を
示す図である。第3図は埋め込みヂャ、ネルCCDの断
面積ii!iを模式的に示す図である。
4. Explanation of the inside of the drawing Figure 1 is a sectional view of the transfer section of a solid-state 1III imager, which is one embodiment of the present invention. 2 shows a 1gi plane view of the horizontal transfer section. Fig. 2 shows the construction of a conventional interline ICCD. Fig. 3 schematically shows the cross-sectional area ii!i of the embedded channel and channel CCD. It is a diagram.

第4図(ま第2図の線I−IIに冶った断面構造を示1
−図である。
Figure 4 (also shows the cross-sectional structure taken along line I-II in Figure 2)
-Illustration.

図において、1は1)型半導体基板、2(;l型虱散唐
、10は分離用酸化膜、11は素子間分離用のp+型拡
1aii!、21は垂直転送部の埋め込みチャネル、2
2は水平転送部の埋め込みチャネル、6は受光素子、7
は受光素子選択スイッチ、8は垂直転送部、9は水平転
送部を示す。
In the figure, 1 is a 1) type semiconductor substrate, 2 is an oxide film for isolation, 11 is a p+ type expansion 1aii! for isolation between elements, 21 is a buried channel of a vertical transfer section, 2
2 is a buried channel of the horizontal transfer section, 6 is a light receiving element, and 7 is a buried channel of the horizontal transfer section.
Reference numeral 8 indicates a light receiving element selection switch, 8 indicates a vertical transfer section, and 9 indicates a horizontal transfer section.

なお1図中、同一符号は同一または相当部分を示す。In addition, in FIG. 1, the same reference numerals indicate the same or corresponding parts.

代理人  人 と 111  雄 第1図 (OL)           (b、)1:P型牛卆
抹板、 +o:y9)−繞用峻JLII)f。
Agent Person and 111 Male Figure 1 (OL) (b,) 1: P-type cow record plate, +o: y9) - 繞用弻JLII) f.

1トビ松較4 λ1,22ニーri型紘教漕 31: ケート峻化膜、 41: ケーート電壱F 第2閏 1:P型挿本44文 2:へ型狐財 S :  n’l#MJjノ<47ス電イリkJ/、 
32:ケート噸Uヒ便 +1,42:ケート電壮
1 Tobimatsu comparison 4 λ1, 22 knee ri type Kokyoko 31: Keto sharp film, 41: Kate Denichi F 2nd leap 1: P type insert 44 sentence 2: He type fox wealth S: n'l# MJjノ<47sudenirikJ/,
32: Kate Denso +1, 42: Kate Denso

Claims (4)

【特許請求の範囲】[Claims] (1)垂直方向および水平方向の2次元的に配列された
複数個の光電変換素子と、前記複数個の光電変換素子の
各々に対して設けられて前記光電変換素子からの電荷信
号を選択的に読出すスイッチ手段と、前記スイッチ手段
からの信号を前記垂直方向に転送するための垂直転送手
段と、前記垂直転送手段からの信号を前記水平方向へ転
送するための水平方向転送手段とを備える固体撮像装置
であって、 前記垂直転送手段および前記水平転送手段は共に埋め込
みチャネル型の電荷転送素子から構成されており、 前記垂直転送手段の埋め込みチャネルと前記水平転送手
段の埋め込みチャネルとを各々異なる形成条件で作成し
たことを特徴とする、固体撮像装置。
(1) A plurality of photoelectric conversion elements arranged two-dimensionally in the vertical and horizontal directions, and a charge signal provided for each of the plurality of photoelectric conversion elements to selectively convert charge signals from the photoelectric conversion elements. a vertical transfer means for transferring a signal from the switch means in the vertical direction; and a horizontal transfer means for transferring a signal from the vertical transfer means in the horizontal direction. The solid-state imaging device is characterized in that the vertical transfer means and the horizontal transfer means are both composed of buried channel type charge transfer elements, and the buried channels of the vertical transfer means and the buried channels of the horizontal transfer means are different from each other. A solid-state imaging device, characterized in that it is created under forming conditions.
(2)前記垂直転送手段の埋込みチャネルの深さが前記
水平転送手段の埋込みチャネルの深さよりも浅くされて
いることを特徴とする、特許請求の範囲第1項記載の固
体撮像装置。
(2) The solid-state imaging device according to claim 1, wherein the depth of the buried channel of the vertical transfer means is shallower than the depth of the buried channel of the horizontal transfer means.
(3)前記垂直転送手段の埋込みチャネルの不純物濃度
が前記水平転送手段の埋込みチャネルの不純物濃度より
高くされていることを特徴とする、特許請求の範囲第1
項または第2項記載の固体撮像装置。
(3) The impurity concentration of the buried channel of the vertical transfer means is higher than the impurity concentration of the buried channel of the horizontal transfer means.
The solid-state imaging device according to item 1 or 2.
(4)前記固体撮像装置は、選択された1水平線に対応
する光電変換素子からのみの信号を前記垂直転送手段へ
読出して前記水平転送手段へ転送する動作を行なう、特
許請求の範囲第1項記載の固体撮像装置。
(4) The solid-state imaging device performs an operation of reading out signals only from a photoelectric conversion element corresponding to one selected horizontal line to the vertical transfer means and transferring the signals to the horizontal transfer means. The solid-state imaging device described.
JP60179651A 1985-08-13 1985-08-13 Solid-state image pickup device Pending JPS6239056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179651A JPS6239056A (en) 1985-08-13 1985-08-13 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179651A JPS6239056A (en) 1985-08-13 1985-08-13 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6239056A true JPS6239056A (en) 1987-02-20

Family

ID=16069498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179651A Pending JPS6239056A (en) 1985-08-13 1985-08-13 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6239056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635738A (en) * 1993-12-21 1997-06-03 Nikon Corporation Infrared solid-state image sensing apparatus
US5866239A (en) * 1996-03-05 1999-02-02 Nippon Electric Glass Co., Ltd. Top plate having a first enamel coating in a heating portion and a second enamel coating in a non-heating portion on a surface of a low expansion crystallized glass
US7037587B2 (en) 2003-02-13 2006-05-02 Guardian Industries Corp. Coated articles with nitrided layer and methods of making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635738A (en) * 1993-12-21 1997-06-03 Nikon Corporation Infrared solid-state image sensing apparatus
US5866239A (en) * 1996-03-05 1999-02-02 Nippon Electric Glass Co., Ltd. Top plate having a first enamel coating in a heating portion and a second enamel coating in a non-heating portion on a surface of a low expansion crystallized glass
US7037587B2 (en) 2003-02-13 2006-05-02 Guardian Industries Corp. Coated articles with nitrided layer and methods of making same

Similar Documents

Publication Publication Date Title
US7705381B2 (en) Solid-state image sensing device and camera system using the same
US4984047A (en) Solid-state image sensor
US6765246B2 (en) Solid-state imaging device with multiple impurity regions and method for manufacturing the same
US8953076B2 (en) Photoelectric conversion device and camera having a photodiode cathode formed by an n-type buried layer
JP2878137B2 (en) Amplification type photoelectric conversion element, amplification type solid-state imaging device using the same, and method of manufacturing amplification type photoelectric conversion element
CN102097305B (en) Semiconductor device and its manufacturing method, solid-state imaging device and solid-state imaging apparatus
US4117514A (en) Solid state imaging device
US8482646B2 (en) Image sensing device and camera
US4173064A (en) Split gate electrode, self-aligned antiblooming structure and method of making same
KR100225558B1 (en) Ccd shift register
KR940010932B1 (en) Manufacturing method of ccd image sensor
JPH0518465B2 (en)
CN101950752B (en) Solid-state imaging device and electronic device
JPS6239056A (en) Solid-state image pickup device
US5397730A (en) Method of making a high efficiency horizontal transfer section of a solid state imager
JPS6239058A (en) Solid-state image pickup element
JPS5933865A (en) Solid stage image pickup element
JP3247163B2 (en) Solid-state imaging device and manufacturing method thereof
JP2901649B2 (en) Semiconductor device and camera using the same
JPS61188965A (en) Solid-state image sensor
KR20000034227A (en) Method for manufacturing solid camera device
JPH0575089A (en) Solid state image pickup device
JPH0774336A (en) Solid-state image sensing device
JPH0318058A (en) Manufacture of solid-state image sensor
JPS5817789A (en) Solid-state image pickup device