JPS6239040B2 - - Google Patents

Info

Publication number
JPS6239040B2
JPS6239040B2 JP57127235A JP12723582A JPS6239040B2 JP S6239040 B2 JPS6239040 B2 JP S6239040B2 JP 57127235 A JP57127235 A JP 57127235A JP 12723582 A JP12723582 A JP 12723582A JP S6239040 B2 JPS6239040 B2 JP S6239040B2
Authority
JP
Japan
Prior art keywords
tank
raw water
scum
pump
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57127235A
Other languages
Japanese (ja)
Other versions
JPS5916585A (en
Inventor
Kazutoyo Sugihara
Yasuhide Kinota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12723582A priority Critical patent/JPS5916585A/en
Publication of JPS5916585A publication Critical patent/JPS5916585A/en
Publication of JPS6239040B2 publication Critical patent/JPS6239040B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は廃水液中の溶存物質、懸濁性物質、沈
降性物質などを浮上分離させる浄化装置に関す
る。 <従来技術> 従来、廃水中の溶存物質、懸濁性物質、沈降性
物質等の分離除去方法としては、濾過、凝集、沈
澱、電解、加圧浮上、等の各種の方法があるが、
それぞれ技術的、経済的、処理能力的、或いは立
地条件的に問題が多い。 この対策として先に本発明者は、廃水又は前処
理された廃水を界面活性剤のような起泡性のある
ものの存在下で多量の低圧空気と薬剤とを混合撹
拌し、発生する接着性に富む泡沫により廃水中の
各種フロツク、懸濁物質を捕捉し、これに特殊薬
を添加し、強固なスカムとして浮上分離させる低
圧浮上分離法(特願昭54−2781)を提案した。 <本発明が解決しようとする問題点> この特願昭54−2781では、他の従来方法(凝集
沈澱法、加圧浮上法)に比べると、はるかに処理
能力が高いけれども、大量処理となると更に処理
能力の向上が望まれていた。また、分離スカムの
脱水性も余り良くなく、分離スカムをさらに機械
的脱水工程で脱水しなければならず、この点の改
善も望まれていた。また、分離槽の占める面積
も、前記した他の方法に比べるとはるかに小さい
が、まだまだ大きく、装置も大型であるため、更
に大幅な縮小化と、装置の小型化、コストダウン
が望まれていた。 本発明は浮上分離工程における処理能力の飛躍
的向上と、分離スカムの脱水性改善に伴なう機械
的脱水工程の不要化と、装置の小型化、コストダ
ウン、設置面積の縮小化とを図つたものである。 <前記問題点を解決するための手段> 前記問題点を解決するために、本発明の浄化装
置では、 (A) 原水を貯える原水槽1と、 (B) この原水槽1から送られてきた原水を貯える
条件付与槽10と、 (C) 原水中から重金属化合物を析出させ、あるい
は、原水中のエマルジヨン含油廃水を分解させ
てフロツクを生じさせるための薬剤を、前記条
件付与槽10中へ、注入する条件付与系薬剤供
給装置30と、 (D) 前記条件付与槽10内の条件付与原水と注入
された前記薬剤とを撹拌する撹拌装置と、 (E) 前記条件付与槽10からの流過経路におい
て、前記条件付与槽からの条件付与原水中に低
圧(0.1〜0.2Kg/m3)の気体を注入する気体供
給装置90と、 (F) 前記流過経路に設けられ、前記条件付与原水
と前記気体供給装置90から注入された気体と
混合撹拌して泡沫スカムを生成させつつ、泡沫
スカムが破壊されない程度の低速で送出するポ
ンプと、 (G) 前記流過経路における前記ポンプの吸込み側
直前あるいは吐出側直後に、前記条件付与槽1
0で生じた各種フロツクのスカム化を促進させ
るための薬剤を注入する浮上分離系薬剤供給装
置60と、 (H) 前記流過経路から前記ポンプで送出される前
記条件付与原水を回遊させて比重差によつて半
径方向外方に液体を、中心部に泡沫スカムを集
まらせて、浮力によつて液体から泡沫スカムを
上部へ浮上分離させる少なくとも1つの浮上分
離サイクロンと、 (I) 前記浮上分離サイクロンの上部にオーバーフ
ローした泡沫スカムから、さらに液体を分離す
るスカム脱水槽110と を備えている。 <作 用> このようにしたため、本発明の浄化装置によれ
ば、原水槽1内の原水は、条件付与槽10におい
て条件付与系薬剤を注入されて、撹拌装置で撹拌
されて重金属化合物が析出されるか、あるいはエ
マルジヨンが破壊されてフロツクが生じる。 このようにされた条件付与原水は、浮上分離サ
イクロンへの流過経路において低圧のエアーを注
入されてポンプで混合撹拌されて、ポンプの直前
あるいは直後に注入される浮上分離系薬剤によつ
て促進されて、浮上分離サイクロンに達する流過
経路において、微細なエアーの周りにフロツクが
接着した破壊されにくい強固な泡沫スカムが多量
に形成される。 そして、条件付与原水はこのように大量の泡沫
スカムが形成された状態で浮上分離サイクロン内
へ、泡沫が破壊されない程度の低速で送り込まれ
て浮上分離サイクロン内を円運動で回遊する。こ
の円運動における遠心分離作用によつて液体は比
重が重いので、半径方向外側に、泡沫スカムは比
重が軽いので中心部に分離され、浮力によつて泡
沫スカムは上部へと浮上する。 そして、泡沫スカムは順次上方へ押し上げられ
てオーバーフローして、スカム分離層でさらに液
体を分離する。このようにして、除去すべき物質
は泡沫に付着したまま排除される。 浮上分離サイクロンの下部からは、泡沫スカム
と分離された浄化された液体が、そのまま排出さ
れるか、あるいは第2次以降の浮上分離サイクロ
ンへ送られて、泡沫スカムとの分離によりさらに
浄化された後、排出される。 <本発明の実施例> 以下、本発明の実施例を図面を参照しつつ説明
する。 第1図中、1は処理すべき廃水あるいは後述す
るスカム脱水槽110からの濾過水(両者を含め
て、原水と記す。)を貯溜する原水槽、2は原水
槽内の原水Aを条件付与槽10へ送出するポン
プ、3はパイプ、4は弁、5は原水槽1内の原水
Aの水位を検知してポンプ2の始動、停止のため
の信号を送出する水位検知器である。 10は条件付与槽で、仕切板11,12によつ
て3つの槽第1の槽13、第2の槽14、第3の
槽15に仕切られ、各槽はそれぞれ仕切板11a
〜11b、12a〜12bの開路によつて連通と
なつている。第1の槽13には、水位が設定水位
高を超すと原水槽1へ原水を戻すオーバーフロー
装置16が設けられている。 30は条件付与系薬剤供給装置で、例えばエマ
ルジヨン含油廃水中のエマルジヨンを破壊させる
ための薬剤(これをX剤と記す。)を貯溜した薬
剤槽31と、分解遊離油を吸着捕集するための薬
剤(これをOH剤と記す。)を貯溜した薬剤槽3
2とを備え、X剤はポンプ33によつて第2の槽
14に注入され、OH剤はポンプ34によつて第
3の槽15に注入される。第3の槽15には、
OH剤の適量添加を自動的に行なうためのPH計1
7が設けられている。 22は第2の槽14において原水と注入された
X剤とを混合反応させるために撹拌するポンプ、
23はポンプ22が設けられたパイプ、25は第
3の槽15において注入されたOH剤を混合反応
させるために撹拌するポンプ、26はポンプ25
が設けられたパイプである。 40は第1の浮上分離サイクロン、50は第2
の浮上分離サイクロンである。41,51はそれ
ぞれサイクロン本体であつて、サイクロン本体4
1,51中へ送り込まれた液体は円運動で回遊す
る。42,52はこの回遊において遠心分離作用
によつて液体と分離して集まつた泡沫スカムが上
方へ浮上してサイクロン本体41,51からオー
バーフローした浮上分離スカムの受皿である。4
3,53はスカムの流出口である。 110はスカム流出口43,53からの流出ス
カムを受け入れて濾布111によつてスカムから
さらに液体を分離するスカム脱水槽、112はス
カム脱水槽110からの濾水を原水槽1へ導くパ
イプである。 60は浮上分離系薬剤供給装置で、条件付与槽
10内での各種フロツクをスカム化するための薬
剤(これをZK剤、ZA剤と記す。)をそれぞれ貯
溜したZK剤槽61、ZA剤槽62とを備え、ZK剤
槽61内のZK剤はポンプ63,64により、パ
イプ70,71のポンプ73,74の吸込み直前
に、ZA剤槽62内のZA剤はポンプ65,66に
より、パイプ70,71のポンプ73,74の吐
出直後に注入される。 70は条件付与槽10の第3の槽15内の液体
を第1の浮上分離サイクロン40へ導くパイプ、
71は第1の浮上分離サイクロン本体41のアン
ダーフローを第2の浮上分離サイクロン50へ導
くパイプである。 73,74はパイプ70,71に設けられ、条
件付与原水と、後述するエアポンプ90から注入
される低圧のエアーと、浮上分離系薬剤供給装置
60から注入される薬剤とを撹拌して低速で浮上
分離サイクロン41,51へ送り出すポンプであ
る。なお、このポンプ73,74は、少し上方の
浮上分離サイクロン40,50へ送り出すのであ
るから、前記撹拌さえ充分に遂行できるに足る低
圧のものを用いて、サイクロン41,51内で泡
沫スカムが壊れずに維持されるように低速で送り
だす。80,81は流量調節弁である。なお、前
記薬剤槽31,32内の薬剤は、図示していない
が、パイプ71へも注入できるように構成されて
いる。 90は気体供給装置をなすエアポンプであつ
て、電磁弁91,93、流量調節弁92,94を
介して、ポンプ73,74の吸込み直前のパイプ
70,71へ低圧のエアーを注入するものであ
る。 100は第2の浮上分離サイクロン本体51の
アンダーフローと第1の浮上分離サイクロン本体
41のアンダーフローとを連通する連通管、10
1は第1の浮上分離サイクロン本体のアンダーフ
ローと条件付与槽10の第3の槽15のアンダー
フローとを連通する連通管で、各浮上分離サイク
ロン水位のバランスを保つ役割を担つている。 120はパイプ72から流れる最終段の第2の
浮上分離サイクロン本体51のアンダーフローを
貯溜し排出する排出槽で、レベル調整器121に
よつて第2の浮上分離サイクロン50、第1の浮
上分離サイクロン40の液面レベルを調整できる
ようになつている。122はオーバーフロー装置
である。 130は、必要により排出槽120内の処理水
を吸込パイプ132、吐出量調節弁133、パイ
プ134を経て条件付与槽10の第2の槽14に
送出する循環ポンプ、131は、循環停止時に条
件付与槽の原水が処理水貯槽120へ逆流するの
を阻止するための逆止弁である。 次に上記装置の作動をエマルジヨン含油廃水の
処理を例にとつて説明する。 先ず原水槽1内の原水Aはポンプ2によつて条
件付与槽10の第1の槽13へ送られる。ポンプ
2は水位検知器5によつて送出を制御されると共
に、オーバーフロー装置16によつて水位は設定
高さ以上とならないようになつている。 第1の槽13に貯溜された原水は仕切板11a
〜11bから成る連通路から第2の槽14へ流入
し、薬剤槽31からX剤が注入されポンプ22で
撹拌される。このX剤により原水中のエマルジヨ
ンは破壊される。破壊されたエマルジヨン含油廃
水は仕切板12a〜12bから成る連通路から第
3の槽15へ流入し、ここで薬剤槽32からOH
剤が注入され、ポンプ25で撹拌され、分解遊離
された油等はX剤とOH剤とから生成されるコロ
イダルフロツクに吸着される。 以上の処理をされた条件付与原水は、ポンプ7
3によつて、パイプ70を通つて第1の浮上分離
サイクロン本体41の上部へ送られる。 この際、ポンプ73の直前にエアポンプ90か
ら低圧エアー(0.1〜0.2Kg/m3)が注入されるた
め、ポンプ73によつてエアーが分散撹拌されて
微細な気泡が多量に液体中に生じる。そして、こ
れと共に、スカム化を促進するために、ポンプ7
3の吸込み側にZK剤が注入され、吐出側にZA剤
が注入されるため、微細な気泡にフロツクが接着
して、これによつて、浮上し易く且つ壊れ難い特
殊組成をもつスカムが生成されつつ、第1の浮上
分離サイクロン40へと低速で送られる。 条件付与原水は第1の浮上分離サイクロン40
に送入されると、円運動で回遊し、遠心分離作用
によつて、比重の大きい液体が半径方向の外側
に、比重の小さい泡沫スカムが回転の中心部にと
分離され、この結果、泡沫スカムがサイクロンの
中心部に集まる。この結果、泡沫スカム同志が互
に付着し合つて塊り(集合体)となる。このた
め、泡沫スカムの塊りは大きな浮力によつて強力
に上方へ浮上し、下から次々と後続して浮上する
後続の泡沫スカムによつて、上方へ持ち上げられ
圧密されて、サイクロン本体41のオーバーフロ
ーとして受皿42に受けられる。このように、泡
沫スカムはサイクロンの上方に液面から浮いた状
態で維持されるため、泡沫スカムからは自然に脱
水され、脱水性の極めて良い状態となり、さらに
押し上げられて受皿42からオーバーフローして
流出口43を経てスカム脱水槽110に入り、こ
こでさらに自然脱水される。スカム脱水槽110
の濾水は原水槽1へ導かれる。 このようにしてスカムが遠心浮上分離された残
溜水は、さらに必要な場合には、ポンプ74によ
つてサイクロン本体41の下部からパイプ71を
通つて第2の浮上分離サイクロン50へ導かれ
る。この間、同様にエアーボンプ90によつて低
圧エアーが注入され、ポンプ64,66によつて
ZK剤、ZA剤がそれぞれ吸込み側、吐出側へ注入
され、ポンプ74によつて混合撹拌される。 なお、必要な場合にはパイプ71へ薬剤槽31
内のX剤が注入される。 そして、同様の過程で第2の浮上分離サイクロ
ン本体51でスカムが分離され、サイクロン本体
51のオーバーフローとして受皿52に受けら
れ、流出口53を経てスカム脱出槽110に入り
自然脱水され、濾水は原水槽1へ導かれる。アン
ダーフローは、パイプ72を通つてレベル調節器
121をもつ排水槽120を介して外部へ排出さ
れ、或いは、一部循環水として、循環ポンプ13
0によつて条件付与槽10へ送出される。 第1、第2の浮上分離サイクロン40,50の
水位は、排水槽120のレベル調節器121で設
定され、第2の浮上分離サイクロン50のアンダ
ーフローのパイプ72、第1の浮上分離サイクロ
ン40のアンダーフローのパイプ71、条件付与
槽10のアンダーフローのパイプ70は連通管1
00,101で連通されているため、相互の水位
バランスは自動的に調整される。なお流量調節弁
80,81の開度は、各ポンプの性能等によつて
現場的に調整されるべきものであるが、その程度
は流量調節弁81の開度が流量調節弁80の開度
より大きいことが望ましい。 次に、エマルジヨン含油廃水について本発明の
浮上分離サイクロン装置によつて浮上分離処理を
行つた実測例を表―1に示す。 (実測例) 原 水:エマルジヨン含油廃水(機械整備工場廃
水) X 剤:塩化第二鉄 OH剤:苛性ソーダ ZK剤:カチオン系高分子凝集剤 ZA剤:アニオン系高分子凝集剤 第1の浮上分離サイクロン40へ送られる原水へ
の液剤の注入量: X 剤…0.25Kg/m3(条件付与槽10へ) OH剤…0.25Kg/m3(条件付与槽10へ) ZK剤…0.01Kg/m3(パイプ70へ) ZA剤…0.01Kg/m3(パイプ70へ) 第1の浮上分離サイクロン40へ送られる上記薬
剤注入後の原水のPH=10.0 第2の浮上分離サイクロン50へのパイプ71に
注入される薬剤の注入量 X 剤…0.05Kg/m3 ZK剤…0.005Kg/m3 ZK剤…0.005Kg/m3 第2の浮上分離サイクロン50へ送られる上記薬
剤注入後の原水のPH=8.5
<Industrial Application Field> The present invention relates to a purification device that floats and separates dissolved substances, suspended substances, sedimented substances, etc. in wastewater. <Prior art> Conventionally, there are various methods for separating and removing dissolved substances, suspended substances, sedimentary substances, etc. in wastewater, such as filtration, coagulation, precipitation, electrolysis, and pressure flotation.
Each has many problems in terms of technical, economic, processing capacity, and location conditions. As a countermeasure to this problem, the present inventor first mixed and stirred wastewater or pretreated wastewater with a large amount of low-pressure air and a chemical in the presence of a foaming agent such as a surfactant, and the resulting adhesive We proposed a low-pressure flotation separation method (Japanese Patent Application No. 54-2781) that traps various flocs and suspended solids in wastewater using rich foam, adds special chemicals, and floats and separates them as a solid scum. <Problems to be solved by the present invention> This patent application No. 54-2781 has a much higher throughput than other conventional methods (coagulation-sedimentation method, pressure flotation method), but it is not suitable for large-scale processing. Furthermore, improvement in processing capacity was desired. Furthermore, the dehydration properties of the separated scum are not very good, and the separated scum must be further dehydrated by a mechanical dehydration process, and improvements in this point have been desired. Furthermore, although the area occupied by the separation tank is much smaller than that of the other methods mentioned above, it is still large and the equipment is also large, so further reductions in size, miniaturization of the equipment, and cost reduction are desired. Ta. The present invention aims to dramatically improve processing capacity in the flotation separation process, eliminate the need for a mechanical dewatering process by improving the dewatering properties of separated scum, and reduce the size, cost, and footprint of the equipment. It is ivy. <Means for solving the above-mentioned problems> In order to solve the above-mentioned problems, the purification device of the present invention includes (A) a raw water tank 1 that stores raw water; (B) a raw water tank 1 that stores raw water; a conditioning tank 10 for storing raw water; (C) introducing into the conditioning tank 10 an agent for precipitating heavy metal compounds from the raw water or decomposing emulsion oil-containing wastewater in the raw water to form flocs; (D) a stirring device that stirs the conditioned raw water in the conditioned tank 10 and the injected drug; (E) flow from the conditioned tank 10; (F) a gas supply device 90 for injecting low-pressure gas (0.1 to 0.2 Kg/m 3 ) into the conditioned raw water from the conditioned tank in the flow path; and a pump that mixes and stirs the gas injected from the gas supply device 90 to generate foamy scum while delivering the foamed scum at a low speed that does not destroy the foamy scum; (G) a suction side of the pump in the flow path; Immediately before or after the discharge side, the condition imparting tank 1
(H) a flotation separation system chemical supply device 60 for injecting a chemical to promote the scum formation of various flocs generated in the process; at least one flotation cyclone that collects the liquid radially outwardly and the foam scum in the center by a difference, and floats and separates the foam scum from the liquid upwardly by buoyancy; (I) said flotation cyclone; The cyclone is equipped with a scum dewatering tank 110 for further separating liquid from the foamy scum overflowing at the upper part of the cyclone. <Function> As described above, according to the purification device of the present invention, the raw water in the raw water tank 1 is injected with a conditioning agent in the conditioning tank 10, and is stirred by the stirring device to precipitate heavy metal compounds. Either the emulsion is destroyed and a floc is produced. The conditioned raw water is injected with low-pressure air in the flow path to the flotation cyclone, mixed and stirred by a pump, and is accelerated by flotation system chemicals injected just before or after the pump. As a result, in the flow path that reaches the flotation separation cyclone, a large amount of hard foam scum, which is hard to break and has flocs adhered around fine air, is formed. Then, the conditioned raw water is fed into the flotation separation cyclone with a large amount of foam scum formed therein at a low speed that does not destroy the foam, and circulates in the flotation separation cyclone in a circular motion. Due to the centrifugal separation effect in this circular motion, the liquid, which has a heavy specific gravity, is separated radially outward, and the foam scum, which has a low specific gravity, is separated into the center, and the foam scum floats to the top due to the buoyant force. The foamy scum is then successively pushed upward and overflows, further separating the liquid at the scum separation layer. In this way, the substance to be removed remains attached to the foam and is removed. From the bottom of the flotation separation cyclone, the purified liquid separated from the foam scum is either discharged as is or sent to the second and subsequent flotation cyclones, where it is further purified by separation from the foam scum. After that, it is discharged. <Embodiments of the present invention> Examples of the present invention will be described below with reference to the drawings. In Figure 1, 1 is a raw water tank that stores wastewater to be treated or filtered water from the scum dehydration tank 110 (described later) (both are referred to as raw water), and 2 is a raw water A in the raw water tank that is given conditions. 3 is a pipe, 4 is a valve, and 5 is a water level detector that detects the water level of raw water A in the raw water tank 1 and sends a signal for starting and stopping the pump 2. Reference numeral 10 denotes a condition imparting tank, which is partitioned into three tanks, a first tank 13, a second tank 14, and a third tank 15 by partition plates 11 and 12, and each tank is separated by a partition plate 11a.
-11b and 12a-12b are opened for communication. The first tank 13 is provided with an overflow device 16 that returns raw water to the raw water tank 1 when the water level exceeds a set water level height. Reference numeral 30 denotes a condition-imparting chemical supply device, which includes, for example, a chemical tank 31 storing a chemical for destroying the emulsion in the emulsion oil-containing wastewater (hereinafter referred to as X agent), and a chemical tank 31 for adsorbing and collecting decomposed free oil. Chemical tank 3 storing chemicals (hereinafter referred to as OH agents)
2, the X agent is injected into the second tank 14 by the pump 33, and the OH agent is injected into the third tank 15 by the pump 34. In the third tank 15,
PH meter 1 for automatically adding the appropriate amount of OH agent
7 is provided. 22 is a pump that stirs the raw water and the injected X agent in order to mix and react in the second tank 14;
23 is a pipe in which the pump 22 is installed, 25 is a pump that stirs the OH agent injected in the third tank 15 for mixing and reaction, and 26 is a pump 25
It is a pipe with a 40 is the first flotation separation cyclone, 50 is the second
This is a flotation separation cyclone. 41 and 51 are cyclone bodies, respectively, and the cyclone body 4
The liquid sent into the tubes 1 and 51 circulates in a circular motion. Reference numerals 42 and 52 designate receivers for floating and separated scum, which is collected by being separated from the liquid by the centrifugal action during this circulation, floats upward, and overflows from the cyclone bodies 41 and 51. 4
3 and 53 are scum outlet ports. 110 is a scum dehydration tank that receives the scum flowing out from the scum outlet 43, 53 and further separates liquid from the scum using a filter cloth 111; 112 is a pipe that leads the filtrate from the scum dehydration tank 110 to the raw water tank 1; be. Reference numeral 60 denotes a flotation separation system chemical supply device, which includes a ZK agent tank 61 and a ZA agent tank that store chemicals (referred to as ZK agent and ZA agent) for scuming various flocs in the condition imparting tank 10. 62, the ZK agent in the ZK agent tank 61 is pumped into the pipes 70, 71 by the pumps 63, 64, and the ZA agent in the ZA agent tank 62 is pumped into the pipes by the pumps 65, 66, just before the pumps 73, 74 are sucked into the pipes 70, 71. It is injected immediately after the pumps 73 and 74 of 70 and 71 discharge. 70 is a pipe that guides the liquid in the third tank 15 of the condition imparting tank 10 to the first flotation separation cyclone 40;
A pipe 71 guides the underflow of the first flotation and separation cyclone body 41 to the second flotation and separation cyclone 50. 73 and 74 are provided in the pipes 70 and 71, and float at low speed by stirring the conditioned raw water, low-pressure air injected from an air pump 90 (described later), and a chemical injected from the flotation separation system chemical supply device 60. This is a pump that sends out to the separation cyclones 41 and 51. Furthermore, since the pumps 73 and 74 send the air to the flotation separation cyclones 40 and 50 located slightly above, the foam scum is broken down in the cyclones 41 and 51 using pumps with a pressure low enough to sufficiently perform the above-mentioned stirring. It is fed at a low speed so that it is maintained without any problems. 80 and 81 are flow rate control valves. Although not shown, the medicines in the medicine tanks 31 and 32 are configured so that they can also be injected into a pipe 71. Reference numeral 90 denotes an air pump serving as a gas supply device, which injects low-pressure air into the pipes 70, 71 immediately before the suction of the pumps 73, 74 via electromagnetic valves 91, 93 and flow control valves 92, 94. . 100 is a communication pipe that communicates the underflow of the second flotation separation cyclone main body 51 and the underflow of the first flotation separation cyclone main body 41;
Reference numeral 1 denotes a communication pipe that communicates the underflow of the first flotation and separation cyclone body with the underflow of the third tank 15 of the condition imparting tank 10, and has the role of maintaining the balance of the water level of each flotation and separation cyclone. Reference numeral 120 denotes a discharge tank for storing and discharging the underflow of the second flotation separation cyclone main body 51 in the final stage flowing from the pipe 72. 40 liquid levels can be adjusted. 122 is an overflow device. 130 is a circulation pump that sends the treated water in the discharge tank 120 to the second tank 14 of the condition-imparting tank 10 via the suction pipe 132, the discharge amount control valve 133, and the pipe 134 as necessary; This is a check valve for preventing the raw water in the supply tank from flowing back into the treated water storage tank 120. Next, the operation of the above-mentioned apparatus will be explained using the treatment of emulsion oil-containing wastewater as an example. First, the raw water A in the raw water tank 1 is sent to the first tank 13 of the condition imparting tank 10 by the pump 2. The delivery of the pump 2 is controlled by a water level detector 5, and an overflow device 16 prevents the water level from exceeding a set height. The raw water stored in the first tank 13 is separated by the partition plate 11a
The X-agent flows into the second tank 14 through the communication path consisting of . This X agent destroys the emulsion in the raw water. The destroyed emulsion oil-containing wastewater flows into the third tank 15 from the communication path made up of the partition plates 12a to 12b, where it is transferred from the chemical tank 32 to the OH
The agent is injected and stirred by the pump 25, and the decomposed and liberated oil and the like are adsorbed by colloidal floc produced from the X agent and the OH agent. The conditioned raw water processed above is pumped to pump 7.
3, it is sent to the upper part of the first flotation separation cyclone main body 41 through a pipe 70. At this time, since low pressure air (0.1 to 0.2 Kg/m 3 ) is injected from the air pump 90 immediately before the pump 73, the air is dispersed and stirred by the pump 73, and a large amount of fine bubbles are generated in the liquid. Along with this, in order to promote scum formation, the pump 7
As the ZK agent is injected into the suction side of 3 and the ZA agent is injected into the discharge side, flocs adhere to the fine air bubbles, thereby creating scum with a special composition that is easy to float and hard to break. It is sent to the first flotation separation cyclone 40 at low speed. The conditioned raw water is passed through the first flotation separation cyclone 40
When the liquid is fed into the chamber, it circulates in a circular motion, and by centrifugal separation, the liquid with a high specific gravity is separated radially outward, and the foam scum with a low specific gravity is separated in the center of rotation. Scum gathers in the center of the cyclone. As a result, the foamy scum adheres to each other and forms a lump (aggregate). Therefore, the mass of foamy scum floats upward strongly due to the large buoyant force, and is lifted upward and compacted by the subsequent foamy scum that floats up one after another from below, and is then consolidated into the cyclone body 41. The overflow is received by the saucer 42. In this way, the foamy scum is maintained floating above the liquid surface above the cyclone, so water is naturally dehydrated from the foamy scum, resulting in a state with extremely good dehydration properties, and it is further pushed up and overflows from the saucer 42. The scum enters the scum dehydration tank 110 through the outlet 43, where it is further naturally dehydrated. Scum dehydration tank 110
The filtrate is led to raw water tank 1. The residual water from which the scum has been centrifugally floated in this manner is further guided by a pump 74 from the lower part of the cyclone body 41 to the second flotation cyclone 50 through the pipe 71, if necessary. During this time, low pressure air is similarly injected by the air pump 90, and the pumps 64 and 66 inject low pressure air.
The ZK agent and the ZA agent are injected into the suction side and the discharge side, respectively, and mixed and stirred by the pump 74. In addition, if necessary, the chemical tank 31 is connected to the pipe 71.
The X agent inside is injected. Then, in the same process, the scum is separated in the second flotation separation cyclone body 51, is received in the tray 52 as an overflow of the cyclone body 51, enters the scum escape tank 110 through the outlet 53, and is naturally dehydrated. You will be led to raw water tank 1. The underflow is discharged to the outside through a drain tank 120 having a level regulator 121 through a pipe 72, or a part of the underflow is supplied to the circulation pump 13 as circulating water.
0 to the condition imparting tank 10. The water levels of the first and second flotation cyclones 40 and 50 are set by the level regulator 121 of the drainage tank 120, and the underflow pipe 72 of the second flotation cyclone 50 and the water level of the first flotation cyclone 40 are set by the level regulator 121 of the drainage tank 120. The underflow pipe 71 and the underflow pipe 70 of the condition imparting tank 10 are the communication pipe 1
Since they are connected by 00 and 101, mutual water level balance is automatically adjusted. Note that the opening degrees of the flow rate control valves 80 and 81 should be adjusted on-site depending on the performance of each pump, etc. Larger is desirable. Next, Table 1 shows actual measurement examples in which emulsion oil-containing wastewater was subjected to flotation separation treatment using the flotation separation cyclone apparatus of the present invention. (Actual measurement example) Raw water: Emulsion oil-containing wastewater (machine maintenance shop wastewater) X agent: Ferric chloride OH agent: Caustic soda ZK agent: Cationic polymer flocculant ZA agent: Anionic polymer flocculant First flotation separation Amount of liquid agent injected into raw water sent to cyclone 40: X agent…0.25Kg/m 3 (to condition imparting tank 10) OH agent…0.25Kg/m 3 (to condition imparting tank 10) ZK agent…0.01Kg/m 3 (To pipe 70) ZA agent...0.01Kg/m 3 (To pipe 70) PH of the raw water after injection of the above chemical sent to the first flotation cyclone 40 = 10.0 Pipe 71 to the second flotation cyclone 50 Injection amount _ =8.5

【表】 第1、第2の浮上分離サイクロン40,50に
おける浮上分離時間はいずれも1分間であつた。 また、重金属化合物を含んだ廃水の処理の場合
には、薬剤槽31,32の薬剤を注入して重金属
化合物を析出させると共に、この析出された重金
属化合物が沈澱しないように、即ち、液中を浮遊
しやすいようにするための薬剤(これをFA剤と
記す)を薬剤槽31(または32)に貯溜する
か、または他の層に貯溜し、第2(または第3)
の槽14(または15)に注入する。 次に、アルカリ電池工場廃水について本発明の
浮上分離サイクロン装置によつて浮上分離処理を
行つた実測例を表―2に示す。 (実測例) 原 水:アルカリ電池工場廃水 FA剤:リニアアルキールベンゼンスルホン酸ソ
ーダ ZK剤:カチオン系高分子凝集剤 ZA剤:アニオン系高分子凝集剤 第1の浮上分離サイクロン40へ送られる原水の
液剤の注入量 FA剤…0.01Kg/m3 ZK剤…0.01Kg/m3 ZA剤…0.01Kg/m3 第2の浮上分離サイクロン50ヘのパイプ71に注
入される薬剤の注入量 ZK剤…0.005Kg/m3 ZA剤…0.005Kg/m3
[Table] The flotation time in the first and second flotation separation cyclones 40 and 50 was 1 minute. In addition, in the case of treating wastewater containing heavy metal compounds, the chemicals in the chemical tanks 31 and 32 are injected to precipitate the heavy metal compounds, and at the same time, in order to prevent the precipitated heavy metal compounds from settling, the liquid is A drug to make it easier to float (hereinafter referred to as an FA agent) is stored in the drug tank 31 (or 32) or in another layer, and the second (or third)
into tank 14 (or 15). Next, Table 2 shows an actual measurement example in which alkaline battery factory wastewater was subjected to flotation separation treatment using the flotation separation cyclone device of the present invention. (Actual measurement example) Raw water: Alkaline battery factory wastewater FA agent: Linear alkylbenzenesulfonate sodium ZK agent: Cationic polymer flocculant ZA agent: Anionic polymer flocculant Raw water sent to the first flotation separation cyclone 40 Injection amount of liquid agent FA agent…0.01Kg/m 3 ZK agent…0.01Kg/m 3 ZA agent…0.01Kg/m 3 Injection amount of agent injected into the pipe 71 to the second flotation separation cyclone 50 ZK agent …0.005Kg/m 3 ZA agent…0.005Kg/m 3

【表】 なお、第1、第2の浮上分離サイクロン40,
50における浮上分離時間はいずれも1分間であ
つた。 以上の実測において、処理水の水質は極めて良
好で、特にサイクロン内滞溜時間が少なく、従来
の凝集沈澱、加圧浮上などの所要時間に比し、極
端に少なかつた。また低圧浮上に比してもはるか
に少なかつた。 即ち、上記の廃水について、従来の他の方法、
即ち凝集沈降法、加圧浮上法、低圧浮上法によつ
てそれぞれ分離させた場合の分離時間と、上記本
発明の浮上分離サイクロン装置によつて分離させ
た場合の分離時間とを測定した結果は表―3の通
りであつた。
[Table] Note that the first and second flotation separation cyclones 40,
The flotation time at No. 50 was 1 minute in each case. In the above actual measurements, the quality of the treated water was extremely good, and the residence time in the cyclone was particularly short, which was extremely short compared to the time required for conventional coagulation and sedimentation, pressurized flotation, etc. It was also far less than low-pressure levitation. That is, for the above wastewater, other conventional methods,
That is, the results of measuring the separation time when separation was performed by the coagulation sedimentation method, pressure flotation method, and low pressure flotation method, respectively, and the separation time when separation was performed by the flotation separation cyclone device of the present invention are as follows. It was as shown in Table-3.

【表】 なお、浮上分離サイクロンの数は、原水の水
質、フロツクの性状等によつて任意に選定され、
一段以上にしてもよい。また、前記ZK剤とZA剤
の注入順序は原水の種類に応じて逆にしてもよ
い。 <本発明の効果> 以上説明したように、本発明の浄化装置では、
廃水中の溶存物質、懸濁性物質、沈降性物質など
を分離する処理能力が著しく増大し、しかもスカ
ムの脱水性、風乾性が優れており、敬遠されがち
な機械的濾過脱水の工程が不要となり、また従来
の浮上分離槽よりはるかに小型であるサイクロン
を用るため、設置面積の著しい縮少化、装置の著
しい小型化、設備コストの著しい低下を図ること
もできる。
[Table] The number of flotation separation cyclones is arbitrarily selected depending on the quality of the raw water, the properties of the flocs, etc.
It may be one or more stages. Furthermore, the order of injection of the ZK agent and ZA agent may be reversed depending on the type of raw water. <Effects of the present invention> As explained above, in the purification device of the present invention,
The processing capacity for separating dissolved substances, suspended substances, and settled substances in wastewater has been significantly increased, and the scum dehydration and air drying properties are excellent, eliminating the need for mechanical filtration and dehydration processes, which are often avoided. Furthermore, since a cyclone, which is much smaller than a conventional flotation tank, is used, the installation area can be significantly reduced, the equipment can be significantly downsized, and the equipment cost can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成概略図であ
る。 1……原水槽、5……水位検知器、10……条
件付与槽、21……オーバーフロー装置、22,
25……ポンプ、30……条件付与系薬剤供給装
置、31……薬剤槽、32……薬剤槽、40……
第1の浮上分離サイクロン装置、50……第2の
浮上分離サイクロン装置、41,51……サイク
ロン本体、42,52……受皿、43,53……
流出口、60……浮上分離系薬剤供給装置、7
3,74……ポンプ、80,81……流量調節
弁、90……エアポンプ、100,101……連
通管、110……スカム脱水槽、120……排出
槽、130……循環ポンプ。
FIG. 1 is a schematic diagram of an embodiment of the present invention. 1... Raw water tank, 5... Water level detector, 10... Condition imparting tank, 21... Overflow device, 22,
25...Pump, 30...Conditioning system drug supply device, 31...Drug tank, 32...Drug tank, 40...
First flotation separation cyclone device, 50... Second flotation separation cyclone device, 41, 51... cyclone body, 42, 52... saucer, 43, 53...
Outlet, 60...Flotation separation system chemical supply device, 7
3, 74... Pump, 80, 81... Flow control valve, 90... Air pump, 100, 101... Communication pipe, 110... Scum dehydration tank, 120... Discharge tank, 130... Circulation pump.

Claims (1)

【特許請求の範囲】 1 原水を貯える原水槽1と、 この原水槽1から送られてきた原水を貯える条
件付与槽10と、 原水中から重金属化合物を析出させ、あるい
は、原水中のエマルジヨン含油廃水を分解させて
フロツクを生じさせるための薬剤を、前記条件付
与槽10中へ、注入する条件付与系薬剤供給装置
30と、 前記条件付与槽10内の条件付与原水と注入さ
れた前記薬剤とを撹拌する撹拌装置と、 前記条件付与槽10からの流過経路において、
前記条件付与槽からの条件付与原水中に低圧
(0.1〜0.2Kg/m3)の気体を注入する気体供給装
置90と、 前記流過経路に設けられ、前記条件付与原水と
前記気体供給装置90から注入された気体と混合
撹拌して泡沫スカムを生成させつつ、泡沫スカム
が破壊されない程度の低速で送出するポンプと、 前記流過経路における前記ポンプの吸込み側直
前あるいは吐出側直後に、前記条件付与槽10で
生じた各種フロツクのスカム化を促進させるため
の薬剤を注入する浮上分離系薬剤供給装置60
と、 前記流過経路から前記ポンプで送出される前記
条件付与原水を円運動で回遊させて比重差によつ
て半径方向外方に液体を、中心部に泡沫スカムを
集まらせて、浮力によつて液体から泡沫スカムを
上部へ浮上分離させる少なくとも1つの浮上分離
サイクロンと、 前記浮上分離サイクロンの上部からオーバーフ
ローした泡沫スカムから、さらに液体を分離する
スカム脱水槽110とを備えた浄化装置。
[Scope of Claims] 1 A raw water tank 1 for storing raw water, a conditioning tank 10 for storing raw water sent from this raw water tank 1, and a system for precipitating heavy metal compounds from the raw water or emulsifying oil-containing wastewater in the raw water. a conditional chemical supply device 30 for injecting a chemical into the conditional tank 10 into the conditional tank 10, and a conditional raw water in the conditional tank 10 and the injected chemical; A stirring device for stirring and a flow path from the condition imparting tank 10,
a gas supply device 90 for injecting low-pressure (0.1 to 0.2 Kg/m 3 ) gas into the conditioned raw water from the conditioned tank; a pump that generates foamy scum by mixing with gas injected from the pump and sends the foam at a low speed that does not destroy the foamy scum; A flotation separation system chemical supply device 60 that injects a chemical to promote scum formation of various flocs generated in the application tank 10.
The conditioned raw water sent out by the pump from the flow path is circulated in a circular motion to cause the liquid to flow outward in the radial direction due to the difference in specific gravity, and to collect the foam scum in the center, so that the buoyant force causes the conditioned raw water to circulate in a circular motion. A purification device comprising: at least one flotation separation cyclone which floats and separates foamy scum from a liquid to the upper part; and a scum dehydration tank 110 which further separates liquid from the foamy scum overflowing from the upper part of the flotation separation cyclone.
JP12723582A 1982-07-21 1982-07-21 Flotation cyclone device Granted JPS5916585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12723582A JPS5916585A (en) 1982-07-21 1982-07-21 Flotation cyclone device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12723582A JPS5916585A (en) 1982-07-21 1982-07-21 Flotation cyclone device

Publications (2)

Publication Number Publication Date
JPS5916585A JPS5916585A (en) 1984-01-27
JPS6239040B2 true JPS6239040B2 (en) 1987-08-20

Family

ID=14955056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12723582A Granted JPS5916585A (en) 1982-07-21 1982-07-21 Flotation cyclone device

Country Status (1)

Country Link
JP (1) JPS5916585A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2684006B2 (en) * 1993-11-02 1997-12-03 一豊 杉原 Purification device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557956A (en) * 1970-01-28 1971-01-26 Bergstrom Paper Co Method for de-inking and removal of certain contaminants from reclaimed paper stock
US3669883A (en) * 1970-08-21 1972-06-13 Guido Huckstedt Foam flotation separation system particularly suitable for separating dissolved protein compounds and toxic metallic ions from aquarium water
JPS5092206A (en) * 1973-12-18 1975-07-23
JPS5220921U (en) * 1975-07-31 1977-02-15
JPS5230047A (en) * 1975-09-01 1977-03-07 Kao Corp Bubble breaking method
US4031006A (en) * 1976-03-12 1977-06-21 Swift And Company Limited Vortex coagulation means and method for wastewater clarification
JPS5323031A (en) * 1976-08-16 1978-03-03 Hitachi Ltd Malfunction protector for relays
JPS53111649A (en) * 1977-03-11 1978-09-29 Nikko Eng Method of treating waste water
JPS5463547A (en) * 1977-10-31 1979-05-22 Kurita Water Ind Ltd Floating separator
JPS5554082A (en) * 1978-10-17 1980-04-21 Shinko Sangyo Kk Waste water treatment apparatus
JPS5594677A (en) * 1979-01-12 1980-07-18 Kazutoyo Sugihara Float-up separation equipment
US4214982A (en) * 1977-08-27 1980-07-29 J. M. Voith Gmbh Process and device for removing printer's ink from a fiber suspension

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557956A (en) * 1970-01-28 1971-01-26 Bergstrom Paper Co Method for de-inking and removal of certain contaminants from reclaimed paper stock
US3669883A (en) * 1970-08-21 1972-06-13 Guido Huckstedt Foam flotation separation system particularly suitable for separating dissolved protein compounds and toxic metallic ions from aquarium water
JPS5092206A (en) * 1973-12-18 1975-07-23
JPS5220921U (en) * 1975-07-31 1977-02-15
JPS5230047A (en) * 1975-09-01 1977-03-07 Kao Corp Bubble breaking method
US4031006A (en) * 1976-03-12 1977-06-21 Swift And Company Limited Vortex coagulation means and method for wastewater clarification
JPS5323031A (en) * 1976-08-16 1978-03-03 Hitachi Ltd Malfunction protector for relays
JPS53111649A (en) * 1977-03-11 1978-09-29 Nikko Eng Method of treating waste water
US4214982A (en) * 1977-08-27 1980-07-29 J. M. Voith Gmbh Process and device for removing printer's ink from a fiber suspension
JPS5463547A (en) * 1977-10-31 1979-05-22 Kurita Water Ind Ltd Floating separator
JPS5554082A (en) * 1978-10-17 1980-04-21 Shinko Sangyo Kk Waste water treatment apparatus
JPS5594677A (en) * 1979-01-12 1980-07-18 Kazutoyo Sugihara Float-up separation equipment

Also Published As

Publication number Publication date
JPS5916585A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
US4156648A (en) Flotation device with pretreatment
US5462669A (en) Method for dissolved air floatation and similar gas-liquid contacting operations
RU2282592C2 (en) Method and apparatus for clarification of liquids, in particular water, saturated with material in the form of suspension
JPS6139880B2 (en)
CN108128965A (en) A kind of coal chemical industry wastewater zero emission treatment method
US4585561A (en) Flotation process for the continuous recovery of silver or silver compounds from solutions or dispersions
US2772234A (en) Sludge treatment
US10752520B2 (en) Water treatment process employing dissolved air flotation to remove suspended solids
JP2011000583A (en) Method and apparatus for treating waste liquid
US2360812A (en) Purification of liquids
WO2009148265A2 (en) Hydrocyclone flotation system and water pollution prevention system equipped with the same
US4767537A (en) Dewatering of sludge using nitrate
KR20120125323A (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
US4738784A (en) Flotation device
US3117082A (en) Flotation system
CN103030229B (en) Oily wastewater treatment device and treatment method in steel industry
JPH04166280A (en) Flotation cyclone device
US2245589A (en) Liquid treatment
JPS6239040B2 (en)
JP2766168B2 (en) Solid-liquid separation equipment for digested sludge
US4738783A (en) Flotation cyclone device
KR101899329B1 (en) a hybrid flotation separation system
CN1312226A (en) Counter-current air floating water-treating method and apparatus
JPS5927636B2 (en) flotation separation device
JP2000140825A (en) Floatation treatment